

Interaction between the Topology Manager
and

the centralized AGATA Detector Database

Draft 1- 18/05/2012

Goal of the document:
To determine the way the Topology Manager, TM, interacts with the centralized AGATA Detector Data Base, ADDB,
based on Oracle and hosted @ the CCIN2P3.

Important notes for this document:

1. The ADDB is hosted at CCIN2P3, with a connection that is possibly not always active. Thus, the TM at running
time should not require it.

2. Objects in the ADDB have a name, type and version number. They are uniquely identified by an alphanumeric
barcode. An object is set as valid / faulty to know if it can be used

3. There are two types of relations between objects stored in the ADDB. An object can be composed of other objects
or connected through cables.

4. Information concerning objects (measures, characteristics, etc) done in ADDB through actions. Amongst the
default fields:

a. A quality flag (integer) with signification of all values stored in the ADDB. In case of negative number,
the object is set automatically in the ADDB as faulty.

b. A status [Reference, valid, notvalid, running]. Reference means current ‘working’ values.
5. For consistency of the ADDB, it is highly recommended to use the BigBrowser GUI functionalities or XML files

(through BigBrowser or a command line program, CmdLineBB) to update the ADDB. In reading mode, direct
SQL request could be done.

The following picture gives an overview of interactions between different actors using the ADDB.

Figure 1: Interaction between TM, ADDB and other users

Here are the different tables as required by the TM and the way the information is organized in the ADDB world.
The fields are of two types static or dynamic:

• Static means the TM expects this information from the ADDB
• Dynamic means the TM is likely to change the fields but they can be modified also directly in the ADDB.

The following gives how the information exists in the TM and ADDB world and how it can be exchanged. Some fields are
already in the ADDB, additional fields (not already existing in the ADDB) are stored in an action which name starts with
TM_VERS_OBJECTNAME_ or if needed TM_VERS_OBJECTNAME_OBJECTTYPE.
At initialization, it would require TM to perform two consecutive requests. The first one to get all the elements and the way
they are composed/connected. Then the content of the TM_ actions for all individual items should be requested.

TM world Interface ADDB world

Detector (AGATA … to be defined in ADDB)
Parameters

 Last_Tag: varchar(25) : The last tag of Topology Manager development version
 Name: varchar(25)
 Status : on, off, damaged.

Relations

 The Agata detector has 60 triple-clusters.

Name
Status

Last_Tag

Relations

Bar code = AGATA
ON = 0, OFF = 1, damaged = -1
  same for all except if explicit

Composed of ATC, ADC

OBJECT_ASSEMBLY
TM_1_AGATA_VAL

TM_1_AGATA_LASTTAG

OBJECT_ASSEMBLY

Triple-cluster (extension to Double-cluster is obvious)
Parameters

 Position: tinyint : Position on the Agata array.
 Name: varchar(25)
 Satus: on, off, damaged.

Relations

 One triple-cluster has 3 crystals.

Name
Status
Position

Relations

Ex: ATC01

Composed of 3 DET_CAP_

OBJECT_ASSEMBLY
TM_1_TCLUSTER_VAL
TM_1_TCLUSTER_POSITION

OBJECT_ASSEMBLY

Crystal:
Parameters

 Color: varchar(25) : Describes the crystal type: red, green, blue. (The colors will change to A, B, C)
 Name: varchar(25).
 Status: on, off, damaged.

Relations

 One crystal has 36 crystal slices. It sends the signals from the detector segments and one core signals to 7
preamplifier modules.

Name
Status
Color

Relations

Ex: DET_CAP_BLU_C001

With MDR cables, not yet in ADDB

OBJECT_ASSEMBLY
TM_1_CAPSULE_VAL
OBJECT_ASSEMBLY_TYPE

LINK ? (not yet completed in ADDB)

Digitizer:
Parameters

 Mac_address: varchar(10) : serial hardware number.
 Name : varchar(25)
 Port : integer.
 Fpga_Name: varchar(25) : Name or Id of the Spartan Fpga which allows the access to the digitizer.
 Status : on, off, damaged.

Relations

 One digitizer home 2 main boards.

Name
Status
Mac_address
Port
Fpga_Name

Relations

Ex: DPS_DIG_009

Composed of two DIGITIZERMOD

OBJECT_ASSEMBLY
TM_1_DIGITIZER _VAL
TM_1_DIGITIZER _MACADDRES
TM_1_DIGITIZER _PORT
TM_1_DIGITIZER _FPGANAME

See OBJECT_ASSEMBLY

Main Board:
Parameters

 Name : varchar(25)
 Status : on, off, damaged.
 Mac Address: varchar(10) : Serial number of adc board.
 Kind: segment, core : Segment or core.
 Fpga_Name : varchar(25) : Name or id of Virtex2 pro Fpga.
 Firmware_version : varchar(25)
 Board_Version : varchar(25)
 Modification_state: varchar(25) :Hardware modification level. It is incremented when a change is made to the

hardware.

Relations

 There are two types of main boards into a digitizer: segment and core. The segment main board homes 4 segment
ADCs; the core main board homes 2 segment ADCs and one core ADC.

Name
Kind
Status
Mac_address
Fpga_Name
Firmware
Board_Version
Modification_state

Ex: DPS_DIG_COR_001

OBJECT_ASSEMBLY
OBJECT_ASSEMBLY_TYPE
TM_1_DIGITIZERMOD _VAL
TM_1_DIGITIZERMOD _
TM_1_DIGITIZERMOD _
TM_1_DIGITIZERMOD _
TM_1_DIGITIZERMOD _
TM_1_DIGITIZERMOD _

TM_1_DIGITIZERMOD _ADC1

As shown in picture 2 (hatching), in the ADDB there is no ADC defined. The proposition is then to have the information
relative to ADC in the same action that the digitizer module it belongs to (blob or separated field with names to be defined)
or to define a separate action (Ex: TMADC). As well Preampli are defined in ADDB, associated to a cluster but the
information is not at all actually in the ADDB.

ADC:
Parameters

 Name : varchar(25)
 Status : on, off, damaged.
 Mac Address: varchar(10) : Serial number of adc board.
 Fpga_Name : varchar(25) : Name or Id of Virtex2 pro Fpga.
 Fpga_spare_Name : varchar(25)
 Kind: Segment or core.
 Board_Version : varchar(25)
 Modification_state: varchar(25) : Hardware modification level. It is incremented when a change is made to the

hardware.
 Status : on, off, damaged.

Relations

 One ADC module receive the analog signals from 6 segment channels or 2 core channels from the preamp
modules.

 One module output the digital signals of 6 segment channels or 2 core channels to one mezzanine.

Preampli:
Parameters

 Name : varchar(25)
 Value : blob
 Status : on, off, damaged.

Relations

 One preamp module receive the signals from 6 segment channels or 2 core channels.
 One preamp output the digital signals of 6 segment channels or 2 core channels to one ADC.

Fiber channel
Parameters

 Name: varchar(25) : Name or Number on the coaxial cable connecting the ADC output to one mezzanine. The
number of coaxial cable connection is the same as detector segment level(?).

 Status : On, off, damaged.

Relations

 One coaxial cable forward the signals of 6 segments channels or 2 core channels coming from one ADC to one
mezzanine on the carrier.

In the ADDB, the electronic cards in charge of processing a single crystal are associated into a virtual object called
Pre Processing Capsule (see picture 2).

Figure 2 Compositions of objects in the ADDB

From the composition of the PreProcessing Caps, carrier, GTS, mezzanine could be obtained
(Question for Cecile: how to get father knowing son)

Carrier:
Parameters

 Name: varchar(25)
 Status : On, off, damaged.
 mac_address: varchar(10)
 Port: integer
 Kind : Master or slave . QUESTION: master is the one with GTS ??
 Slot : blob : slot on the crate
 Board_version : varchar(25)
 Firmware version: varchar(25)
 Emb_soft_version: varchar(25) : Embedded system version

Relations

 The master carrier has two segment mezzanines, one core mezzanine and one GTS; the slave carrier has 4 segment
mezzanines.

Name
Status
Mac_address

Ex: DPS_PP_ACAR_018

OBJECT_ASSEMBLY
TM_PPECARD_
TM_PPECARD_

Port
Kind
Slot
Board_version
Firmware_version
Emb_soft_version

! kind different from type in ADDB1 ?
! same comment ?

TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_

Note: If the fields regarding carrier and mezzanine are similar, only one action to be defined, otherwise an action for each
type of PPECARD.

Mezzanine:
Parameters

 Name: varchar(25)
 Status : On, off, damaged.
 Mac_address: varchar(10) : Unique identification.
 Slot: blob : Position on the carrier board: 1,2,3 or 4. QUESTION: Not always the same ?? internal TM ?
 Kind: Segment or core.
 Board_version: varchar(25)
 Firmware_version: varchar(25)
 Emb_soft_version: varchar(25) : Embedded software version

Relations

 One segment mezzanine receive 6 segment channels and one core mezzanine receive 2 core channels from one
ADC.

Name
Status
Mac_address
Port
Kind
Slot
Board_version
Firmware_version
Emb_soft_version

Ex: DPS_PP_SEGM_064

! kind different from type in ADDB1 ?
! same comment ?

OBJECT_ASSEMBLY
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_

GTS:
Parameters

 Name : varchar(25)
 Status : On, off, damaged.
 Mac_address: varchar(10) : equal to the lowest byte of the IP number.
 Kind: Leaf, root or fanin-fanout depending of the position in the GTS Tree
 Port: integer : on the GTS Board for the udp/ip connection
 Slot: blob : Position in the carrier Board: 1,2,3 or 4.
 Board_version: varchar(25)
 Firmware_version: varchar(25)
 Host_port: integer : varchar(25) : the port used on the PC host.
 Emb_soft_version: varchar(25) : Embedded software version
 Host_soft_version: varchar(25) : Host software version
 The versions of firmware and embedded software that have been used for the test(??)

Relations

 Each TreeGTS can connect to at most 4 other GTS.

1 To be discussed, should this field be in action or retrieve from composition?

Name
Status
Mac_address
Port
Kind
Slot
Board_version
Firmware_version
Host_port
Emb_soft_version
Host_soft_version

Ex: DPS_PP_GTSM_008

! kind different from type in ADDB1 ?
! same comment ?

OBJECT_ASSEMBLY
TM_PPECARD_GTS
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_
TM_PPECARD_

Crate:
Parameters

 Name : varchar(25)
 Status : On, off, damaged.
 Mac_address: varchar(10) : Unique identification.

Relations

 One crate home 12 carriers.

Name
Status
Mac_address

Ex: DPS_PP_ATCA

OBJECT_ASSEMBLY
TM_ PPCRATEPS_
TM_ PPCRATEPS_

Narval node:
Parameters

 Name : varchar(25)
 Status : On, off, damaged.
 Port : integer
 Mac_address: varchar(10) : Unique identification.

Relations

 One Narval node receives the data from 2 carriers.

Name
Status
Port
Mac_address

Ex: DAQ_NODE_

OBJECT_ASSEMBLY
TM_COMPUTINGNODE_
TM_COMPUTINGNODE_
TM_COMPUTINGNODE_

Note : A cable should be added between PreProcessing Capsule and the Node.

The following items don’t have equivalent in the ADDB. TO BE DISCUSSED in a second step.

Mac Ip:
Parameters

 Mac_address: bigint : Mac_address of the pcs
 Ip_or_name: blob : Ip or name of the pcs.

Server:
Parameters

 Name: varchar(25).
 Port: integer.
 kind: Device type of server: Carrier, etc.
 address : varchar(128) : server address.
 path: varchar(25) :Complete URL address of server.

 internal_ref: varchar(25) : internal identification of server.

Relations:
Parameters

 Id_origin: integer : (This id is only for the database) : Identification in the Topology Manager database.
 Id_destination: integer : (This id is only for the database) :Identification in the Topology Manager database.
 Type_origin: Device type of “Id_origin” device: Digitizer, triple_cluster, adc, etc.
 Type_destination: Device type of “Id_destination” device: Digitizer, triple_cluster, adc, etc.

The following table shows the different possibilities of relations between devices in the TM database:

Figure 3: TM Database relation

