

Ecole de mécanique IN2P3 - 15 au 19 octobre – Samatan Impression 3D METAL

Comprendre le monde, construire l'avenir®

Caractérisation et analyse de l'acier inox 316L en FA

G. Sattonnay, S. Bilgen, S. Djelali

LAL, IN2P3-CNRS, Université Paris Sud, Orsay Groupe Technologies Vide et Surfaces

- Comparer la microstructure de pièces délivrées par trois fabricants (fusion laser sélective sur lit de poudre-SLM)
- Identifier les différences microstructurales au moyen de plusieurs techniques d'analyses (MEB/EBSD, DRX, SIMS, microscope confocal)
- Faire le lien entre la microstructure et les propriétés mécaniques (dureté, traction cf A. Gonnin)

Composition chimique

Taille des grains

> Orientation préférentielle des grains

Acier inoxydable austénique structure CFC

Matériaux polycristallins

Influence de la microstructure sur les propriétés

Influence de la taille des grains sur les propriétés mécaniques : Loi de Hall et Petch

$$R_e = A_0 + \frac{k}{\sqrt{d}}$$

R_e = limite d'élasticité d= taille moyenne des grains

Figure 6.5 Variation de la limite d'élasticité, $R_{e0,2}$, de plusieurs métaux et alliages en fonction de la taille moyenne des grains d, selon la relation de Hall-Petch.

La limite d'élasticité augmente quand la taille moyenne des grains diminue

Influence de la microstructure sur les propriétés

Influence de l'orientation préférentielle des grains (texture cristalline)

1. Description schématique de l'orientation des grains à partir de cubes dans un matériau de structure cristalline cubique.

Ex. : cas du laminage

La texture influence les propriétés (anisotropie)

Echantillons

Fournisseurs	Méthode	Granulométrie poudre (µm)	Epaisseur couche (µm)	
А	SLM	20 - 125	40	
В	SLM	20 - 50	40	
С	SLM	?	40	

Deux orientations:

- Parallèle

- Perpendiculaire

Etat de surface

Composition chimique (MEB/EDX)

	Composition Chimique en % Massique								
	Fe	Cr	Ni	Мо	Mn	Si	Al		
Std	Compl.	16 - 19	9 - 13	1,5 - 3	< 2	< 1	/		
A	67,4	17,3	12,3	2,2	0,3	0,4	0,2		
	± 0,4	± 0,2	± 0,3	± 0,2	± 0,2	± 0,1	± 0,1		
В	63,1	18,0	14,7	2,3	1,6	0,4			
	± 0,4	± 0,2	± 0,3	± 0,2	± 0,2	± 0,1	/		
С	67,2	16,2	11,7	2,5	1,9	0,6			
	± 0,6	± 0,3	± 0,5	± 0,3	± 0,3	± 0,1	/		

5um

Composition chimique (MEB/EDX)

Taille des grains (MEB)

Taille des grains (MEB)

Taille des grains (MEB)

d(C) > d(B) > d(A)taille perp > taille para

→ longs grains colonnaires orientés perpendiculairement au plateau (gradients thermiques lors du dépôt couche par couche)

Texture : analyse MEB-EBSD

A //

B //

C //

Pas de texture

texture (101) et (111)

texture (001)

Color Coded Map Type: Inverse Pole Figure [001]

Iron (Gamma)

Structure cristalline : DRX

Diffractogrammes - Echantillons Parallèles

- A: pas de texture
- B: orientation préférentielle (202) (ou (101))
- C: orientation préférentielle (200) (ou (100))

Dureté Vickers des échantillons

(cf Alexandre Gonnin)

Éprouvettes de traction imprimées horizontalement ou verticalement (M. Guerrier, J. Bonnis)

anisotropie de la microstructure (taille de grains, texture) → anisotropie des propriétés mécaniques

Effet d'un traitement thermique

Traitement Thermique : 1050° C / 2h – 1,6x10⁻⁶ mbar

La dureté diminue après traitement thermique \rightarrow relaxation des contraintes internes

Conclusion

Aspect chimique :

• Présence d'Al dans les échantillons de A (attention à la contamination)

Aspect microstructurale :

- Formation de grains colonnaires
- Taille de grains plus importante pour les échantillons B et C que celle des échantillons A
- Echantillons de B et C sont texturés

Aspect mécanique :

- Echantillons de C sont les plus durs
- Anisotropie induite par l'anisotropie microstructurale (notamment pour B et C)

Perspectives :

- Mesures de densité (porosité résiduelle?)
- Réaliser les analyses sur un plus grand nombre d'échantillons
- Corréler les propriétés mécaniques à la microstructure
- Utiliser la même méthode de fabrication de synthèse additive ne garantit pas d'avoir des pièces avec les mêmes propriétés physico-chimiques (et mécaniques)
- ➢ Méthode de fabrication par SLM → Anisotropie des propriétés
- Influence de nombreux paramètres : la puissance du laser, la vitesse de passage du laser sur la poudre, l'environnement de fabrication, la température, la vitesse de refroidissement etc.

CINIS

MEB/EBSD

Schéma du principe de fonctionnement pour l'obtention des lignes de Kikuchi

Code couleur de la cartographie selon le plan d'orientation des grains

Analyse MEB-EBSD

A //

B //

Color Coded Map Type: Inverse Pole Figure [001] Iron (Gamma)

