
Selector:
AGATA+${ancillary} analysis

D. Brugnara
M. Sedlak

Outline

• Installation and introduction
• Setup of the analysis
• How to add histograms and personalize the analysis
• Detector specific analysis:

• Prisma
• Spider
• Dante
• LaBr
• Euclides

• Optimization
• Reading raw ancillary data and building ancillary events
• Other useful scripts

Installation and introduction

Installation procedure
• The repository can be found here:

https://baltig.infn.it/gamma/agataselector

• Some info and instructions are contained in the README.md file

https://baltig.infn.it/gamma/agataselector

Installation procedure

Note: root needs to be installed and compiled with a
c++ version > 14

(Optional)Adds the build directory to $PATH and adds tab-completition

Known troubles and how to solve them

• Make sure to compile root with at least c++14:

- DCMAKE_CXX_STANDARD=17 (or 14 if you prefer)

• On mac a compilation error, dependent on root, might appear. This is

a known bug and requires root to be compiled with the built-in

version of nlohmann:

-Dbuiltin_nlohmannjson=ON
• There is an issue with libPrisma that has the same name of femul. In

this case you need to source Scripts/selector.sh

Tests
• At each commit the code is tested.
• The test include:

• Does the code build properly?
• Additionally does the prisma-

agata analysis work?
• At last, two spectra (DC, DCBP)

are fitted for fully identified
isotopes

• The test passes if integral,
mean and sigma of the peaks
of interest is within the
parameters

• This helps us in controlling that
nothing was broken in the process

• An X marked commit means that
the test was not passed

Introduction

• Femul produces root files
• The selector represents the last step of the analysis procedure, where the

coincidences between different detectors are analyzed
• It allows to generate histograms (and possibly also other root files) with

high-level analyzed data
• Can perform optimization procedures to improve on its parameters
• Can place gates and select data based on cuts or intervals
• It can be made user (or experiment) specific to produce ad-hoc spectra
• You are meant to modify it at your will as it represents a starting point for

the analysis

Introduction

Built AGATA events

Ancillary 1
Raw data

Ancillary 2
Raw data

Prisma
Raw data

Built Ancillary events
(.adf format)

Prisma data
(.adf format)

Root files Analyzed Root
files

00A 01B 02C 05A

Femul

PrismaFilters

ReadCaenRaw

Femul

Selector

Prisma
only Root

files

Selector

The starting point

• Femul produces a root file containing MANY leaves
• The analysis procedure is common to all experiments and there is little

benefit of repeating the same steps over and over
• The code was created for a quick near-line analysis and has since evolved

with more refinements with full analysis capabilities
• This also means that sometimes some changes/improvements are made

and could break backward compatibility (for instance for the configuration
file). Since the program is more stable now it does not happen often

• We try to log on the CHANGELOG.md significant changes in different
versions

• Also checkout the README.md file in the root directory.
• Other README.md files are located in the Conf folder, explaining the

meaning of the files.

The output

• The selector produces ROOT files containing:

• Histograms (each analysis is contained within a folder):
• Single detector analysis
• Coincidence analysis

• TTrees of:
• High level data of a single detector. For instance, Spider provides things such as

excitation energy or angles
• Doppler correction based on the analysis of the agata+ancillary coincidence

• Generally, TTrees take up a considerable amount of disk space and are

not very useful since histograms provide the high-level analysis

already

The output

• For each input file an output file is produced in the output folder. The

files of each run are added in a single file called sum_xxx-yyy.root,

where xxx is the run number and yyy is the number of input files.

• Different runs can be also added with - -sum_all

• The partial files can be discarded with the option - -rm_partial

• Additionally to the “regular” output it is possible to personalize the

analysis with the UserSelector which will in turn produce additional

output in the User folder.

Reproducibility

• The output files contain the parameters

used to generate it:

• The entire selector.conf

• The git hash

• The date of creation

• This means that the analysis can be

reproduced simply by printing the

selector.conf used for this specific file

and checking out the correct hash

• It is also citable with a DOI:

Running the replay
• Although the replay.py script is present in

agataselector/Scripts/Replay/, it is mainly meant for the nearline

users. It can, in principle be adapted but is not very useful

• In this case on the femul side of things there is not much to do except

setting the appropriate time windows to build events, the rest is

done in the selector

• As a consequence, once Agata is time aligned and calibrated the

replay will be run once

The Topology

The gen_conf.py

• The event builder builds

agata events

• The event merger builds

agata+ancillary events. The

ancillary events need to be

already built

The gen_conf.py

• The tracking and TreeBuilder are the last steps

Common issues

• Prisma needs a configuration folder containing gates and calibrations

generated for the Prisma analysis. Check that the gates are loaded at

the start of femul (they should flash in green and yellow).

• The folder, according to the nearline gen_conf.py should be in the

Conf/Prisma folder. After running the gen_conf.py, the manager.conf

file should point to the correct path of the conf of the specific replay

• If the prisma branches are empty check the DoPrismaAnalysis

parameter in the gen_conf.py

• In some cases the coincidence peak will not be present, we will

handle the situation later on

Setup of the analysis

Setup of the analysis folder
AnalysisFolder

Out selector.conf

Conf

run_0001

Out/Analysis

Data

Tree_0000.root

run_0002

Out/Analysis
Tree_0000.root

Tree_0001.root

run_0001_0000.root Runs-1-2.root

run_0001_0001.root

sum_run_1-2.root

run_0002_0000.root

sum_run_2-1.root

CUT LUT NuclearData Optimizer

Generate/retrieve the default selector.conf
• In all experiments, a nearline analysis was performed, it is a good

starting point for the offline analysis.

• To “recall” the analysis you should have compiled the selector with

che cmake option “-DEXP_NAME=EXP_###”. This will compile the

UserSelector that you can find in agataselector/User/EXP/EXP_###

• The configuration folder adapted for your experiment is

agataselector/User/EXP/EXP_###/Conf

• The selector.conf is in agataselector/User/EXP/EXP_###/selector.conf

(you might have multiple versions if the setup was changed during

the experiment)

In general, the selector is being constantly updated with bug fixes and improvements. This could mean that some features
could have been added and some changes need to be applied to the selector.conf if you have pulled from origin. In order to get
access to all options you can print the default configuration file with the option RunSelector - -print_conf my_selector.conf.
Each conf parameter will contain a comment with some infos on the effect of the parameter

Options

Agata leaves

• In general, the leaves contain the following information for:

• Single hit (within a segment)
• Single core
• Addback (nearest cores)
• Tracking

Leaf name Data type Content
nb int Number of gammas/interactions

id int[nb] Id of the core/segment

Energy float[nb] Energy of the gamma/hit

TS unsigned long/unsigned long[nb] Lowest timestamp/array of all triggered channels

(G)X/(G)Y/(G)Z float[nb] Position of the hit/first interaction

T float[nb] Cfd time, needs to be added to TS

Agata leaves

• Some leaves are more specific

Leaf name Data type Content
trackX2/trackY2/trackZ2 float[nb] Position of the second interaction of the gamma

(for polarization analysis puroposes)

hitX/hitY/hitZ float[nb] Position of a hit in the crystal frame of reference

trackFOM float[nb] Figure of merit of tracking

trackType float[nb] Compton/photoelectric/pair production

Other ancillaries (aka CAEN digitizers)

• Caen digitizers provide a common input data as a consequence each

of these detectors (Euclides, Spider, Dante, Labr, …) require a lookup

table (LUT) that assigns to board+channel a given signal that is used in

the analysis.
Leaf name Data type Content
nb int Number of channels in an event

Channel int[nb] Channel that has triggered

Board int[nb] Board that has triggered

TS unsigned long Lowest timestamp of all triggered channels

TSHit unsigned long[nb] Timestamp of the single hit

Time float[nb] Interpolated time, needs to be added to TSHit

Energy float[nb] Energy of trapezoid (PHA) of Qlong (PSD)

QShort float[nb] Short integration (PSD only)

General remarks

• Although the naming scheme for histograms can be messy there are

some rules:

• h_??? Means TH1D, g_?? Means TGraph, m_??? Means TH2D and TH3D
• DC means Doppler corrected for whatever is detected directly by the

ancillary
• DCBP means Doppler corrected for the undetected binary partner of the

reaction
• Similarly ThetaBP would mean the reconstructed angle of the binary partner

• Otherwise, one has to read the histogram title

Structure of the selector.conf

Detectors considered in the analysis

Configuration of the folders, the file
patterns, and the TTree names

Configuration of the reaction,
multiple ions of interest can be
added

Target thickness and rotations, used
for energy loss calculaitons. The
presence of a degrader before or
after the target is also possible.

KEYWORD | value(s) | unit of measure | comment

Example of Detector Conf: Agata

• Enable/disable
histograms or
TTrees

• Speficy LUT (if
necessary)

• Set some global
angles and psitions

• Sets parameters of
the histograms such
as bin width

• Sets other detector-
dependent
parameters

KEYWORD | value(s) | unit of measure | comment

Example of Coincidence Conf: Agata+Spider

• Set the coincidence window
based on the peak position

• Enable histograms and trees
• Set Doppler correction

position
• Other detector-dependent

parameters

KEYWORD | value(s) | unit of measure | comment

Frame of reference

Z

Y (up)
X

• The frame of reference with respect to

the beam is necessary for reaction

calculations

• It is common to all detectors.

• Z points in the direction of the beam and

Y points upwards

Energy loss corrections

• The energy loss corrections for the target are calculated for the

kinematics reconstruction and the doppler correction. The kinematics

reconstruction is done in at the reaction point specified in the

REACTION_CONF ([0-1]).

• They are calculated only if the eloss table is present under

Conf/EnergyLoss with the naming scheme given by the keyword

MATERIAL/DEGRADER_MATERIAL under TARGET_CONF (check with - -

verb 2).

• They need to be calculated with SRIM, and can be generated with the

Script under Scripts/Srim

How to add histograms and personalize
the analysis

The source code

• Conf: parameters that can be read from the
selector.conf

• Container: classes that represent the analyzed
detector

• Core: things unrelated to the analysis
• Lut: classes that read the lookup tables of various

detectors
• Optimizer: fitter class and minimizer for optimization
• Physics: nuclear data class, energy loss and reaction

calculator
• Selector: analysis code

The source code

• The analysis is contained in src/Selector

• In the newest version, the detector analysis is separated from

the coincidence analysis

The analyzed data

• The ”Analyzed” data is saved in classes that

can be accessed in later steps of the analysis.

• The doppler correction is also saved for each

detector that can provide it

• These classes are the ones that can be saved

also in root files

• They are kept in the directory: src/Container/

Basic steps of the analysis procedure
• Each analysis is associated to a different folder and all

have some steps:
• Istantiate->Associates to a detector the correct

input
• AllocateHistos->Allocates memory for the

histograms if they are enabled
• Clear -> Clears the containers of each detector
• Analyze ->Fills the container based on the analysis
• FillHistos -> Fills the histograms with the data in

the containers
• Finalize -> Performs operations on the final

histogram

Ev
er

y
ev

en
t

At
 th

e
st

ar
t

At
 th

e
en

d

How to add a histogram

• If you want to add an

histogram you have to declare

it in the correct analysis class’

header

• The histogram are placed in a

struct that correspond to the

analysis folder

• Substructs and subfolders are

also present

How to add a histogram

• Use the specific functions that
ensure functionalities such as
the detection of not enabled
histograms:
• Allocate the memory with

Initialize<TH*D>(…)
• Fill with the Fill(…) function

The Conf folder

• Contains the parameters used by the
selector

LUT
• The default LUTs can be found in User/EXP/Template/Conf/LUT/.
• The name of a channel+board combination is important for the analysis
• Generally, they allow to add an energy threshold (low, high), a time offset

for alignment, and a N-degree polynomial calibration
• The remaining parameters are detector dependent and include angles or

positions in space

The UserSelector

• If a part of the analysis is of
general interest, it should be
added to the regular part of
the code under src/Selector

• However, in many cases some
things are experiment-specific
and can be handled by the
UserSelector

• Histograms can be added to
the struct in the header

The UserSelector

• Memory is allocated in the SlaveBegin

• Histograms are filled in the Process

function

• Example from EXP_019

The UserConf

• It adds the possibility of reading custom
parameters from the selector.conf
• You can declare a parameter in the .h

and read it in the .cxx
• In this case the parameter to read is a

double (parD), other types are also
present such as strings (parS)
• Checkout src/Conf/Conf.h for other

types

Time coincidences

• All ancillary detectors need to be
time-gated

• All coincidences will have a time
difference histogram that is used
to select the gate in the ***_CONF

• Some detectors such as Euclides,
Agata have an internal time gate

• All time gates are set with the
parameter:
• COINC_W_LEFT
• COINC_W_RIGHT

Gate

Detector specific analysis

Example: Agata-Prisma analysis

• Ion-gated histograms can be found in the Z##/A## folder.
• Important histograms include:

• The DC(BP)_Qval which allows to gate on the total excitation energy
of the system

• The DC(BP,noDC)_Theta(BP) that allows to check the Doppler
correction as a function of the angles

• The various gamma-gamma matrices

Prisma

• The analysis of Prisma is more complex with respect to the other

ancillaries and is mostly performed

• The selector can produce the histograms for the analysis on which

one can set gates

• Refer to Elia Pilotto’s presentation

Prisma

• Broken IC or PPAC channels can be disabled

• The TOF offset can be set in the selector to optimize the Doppler

correction without disrupting the identification

• One can require or discard some parameters such as TOF_OK, IC_OK

to perform the analysis

• Cuts in Z can be placed in Conf/CUT/Prisma/IC/ to produce

histograms in coincidence

• In AGATAPRISMA_CONF it is possible to set EX_VALUES to gate on

specific values of TKEL and generate additional histograms

Prisma

• Example of identification

F. Angelini PhD Thesis

Pr
eli

mina
ry

 an
aly

sis

Prisma example
• Prisma provides the possibility of a fine

kinematics reconstruction
• The Q-value matrices are often a very

powerful tool
• The angle reconstruction is also great

E. Pilotto Master Thesis

Spider

• The first step

• In some cases, the excitation energy can

be very helpful

• The EX_VALUES keyword allows to

generate histograms gated on the right

value

1239
1346

1377

1992

2616
2776

2023

1580?

420 keV

3/2-

7/2-

1/2-

3/2-
(7/2)-

E γ
= E x

p3/2

f7/2

p1/2

L. Zago PhD Thesis

Spider

• Additionally, it is possible to gate on a gamma-ray to generate

additional histograms in coincidence with it such as additional

gamma-gamma matrices with the keyword GAMMA_GATE of

AGATASPIDER_CONF

• Kinematic line TCuts can be placed in the

Conf/CUT/SPIDER/ThetaLabELab folder

• To extract the optimal results it is possible to tune theta and phi of

each spider channel to optimize the Doppler correction. This feature

is under construction and testing and can be compiled running cmake

with the option –DSPIDER_ANGCAL=On

Spider

• Detector
dependent
parameters:
• Theta
• Phi

• Channel
names are not
important but
are helpful for
the user

Dante

• In general, a “perfect” Dante event should contain at least 3 events,

corresponding to x, y (TACS) and T (cfd logic signal)

• Additionally, a TAC can be placed between Dante and Prisma, this is

also handled by the analysis

• This does not happen all the time and the selector should handle this,

some options are present in the selector.conf file

• The spatial calibration is performed by selecting the (x,y) points of the

extremities of the

• The analysis should be expanded and improved for Dante

Dante
• The position is used to refine the Doppler

correction
• It is possible to set gates in

Conf/Cuts/PrismaDante/TOF_TKEL
• In this case of the triple coincidence AGATA-

PRISMA-DANTE it is necessary to set two time
gates: agata-prisma and agata-dante

Dante

• Detector

dependent

parameters:

• P1, P2, P3
• pos1, pos2, pos3

• Channel names

distinguish X, Y, T

and TOF

The lookup table also performs the 3D position reconstruction of DANTE, mapping 2D
points (pos1, pos2, pos2) to 3D points (P1, P2, P3)

LaBr

• They share the same base class of Agata: GammaDetector

• As a consequence, the analysis of coincidences with Agata is exactly

the same, so you can perform the same analysis as for Agata.

• In some cases, they were acquired without external trigger, meaning

that they will have a lot of data. In this case you can use the --

labr_slave option of ReadCaenRaw and/or the mandatoryKey of femul
to process their data only if it is in coincidence with other ancillaries in

the first case or femul in the second.

• In the case of experiments with Prisma, we discovered that they are

strongly affected by the magnetic field despite the shielding so they

require a calibration when the magnet was on

Labr

• Detector

dependent

parameters:

• Theta
• Phi

Euclides

α
d

p

• Set gates for all telescopes in
Conf/CUT/EUCLIDES/EdE/

• The naming scheme to adopt should be
z1_m1_mapnr for while for alphas it
should be z2_m2_mapnr

• Check the time alignment
• Calibrate with alpha run or with punch

trough points
• In this case the reaction of interest could

be a Nbody reaction. In this case the ions
of interest need to be specified with:

IONS A1 Z1 A2 Z2 A3 Z3 END Comment Mirco Del Fabbro PhD Thesis

Euclides

• Constructing a “rough” compound system excitation energy it is possible to discriminate
not only protons, deutrons and alphas but also the 1p1n channel from the 1p channel (as
an example)

Mirco Del Fabbro PhD Thesis

Euclides

• Detector

dependent

parameters:

• Theta
• Phi

• Channel

names

distinguish E

and dE

Optimization

The optimization procedure

• Remarkable improvements are possible with the optimization but are experiment
dependent.

• The selector contains a procedure to find the optimal parameters by running
RunSelector - -optimize 2

The optimization procedure

• Checkout the “OPTIMIZER_CONF” parameters in the selector.conf

• Any parameter contained in the selector.conf that is a single float

number can be optimized (target thickness, angles, calibration

coefficients). Parameters are minimized simultaneously

• This can be used to improve the doppler correction or the q-

value/excitation energy to the right position based on the user’s

insight

• It is done with a root minimizer (multiple ones are available: Migrad,

Simplex, …)

Reducing the data

• Since the selector will run multiple times, one must reduce the data

to the one of interest. To do so, it is possible to apply a reduction

condition on the data such as:

./RunSelector --reduction_cond nbTrack\>0\&\&Z_Nr\>0 262

• For every input file, a reduced file will be created in the folder where

the original tree is, called red_TREENAME_####.root. The files can be

then added to create a single file with the data of interest of few MB

that will allow the selector to run with high frequency.

• The optimizer should be run on this file by changing the input file

pattern in the selector.conf

Running the optimizer

• The parameter(s) to be optimized can be specified adding one (or multiple lines) in the
selector.conf:

PARAMETER |detector|par_name|initial_value|min|max|step| ->

PARAMETER AGATA_CONF ANGLE 31 25 25 1 deg
PARAMETER TARGET_CONF THICKNESS 1 0.5 2 0.1 mg/cm2

• The “line(s)” to optimize can be specified adding one (or multiple lines) in the selector.conf :
TRANSITION |folder|spec_name|centroid|sigma|tail|bias ->
TRANSITION /AgataPrisma/Z16/A32 h_DC_ion_32_16 2230 4 0.1 0.5 keV

• The fit can be done without a tail, with a left, right, left+right and left+right symmetric tail
(parameter TAIL).

• The SIGMA_WEIGHT is a parameter that goes from 0 to 1. It adds weight to the sigma in the cost
function.

• The SCAN option will create a root file with the gradient scanned by the parameter, multiple scans
can be performed.

Checking the results

• If the Conf/Optimizer/parameters.dat is present it will be created. If it is
present the parameters for the fit (mean, sigma, tau, xmin, xmax, integral)
will be read from there, otherwise the default ones will be used. You can
simply remove it to start from the default ones.
• At each step some lines will be added to the Conf/Optimizer/log.txt with

the current value of each parameter as well as the current cost (gradient
value)
• At the end an optimized conf will be created in the folder based on the

optimial value.
• The results of the fit can be checked step by step with the option:

-- debug_canvas

Reading raw data and building ancillary
events

Generating the .adf files from the raw data

• The script to read the raw data and build ancillary events is contained

in Scripts/AncMerging. To build it, run “cmake -DBUILD_SCRIPTS=On .”

• It builds events within the ancillary within a window

• It handles coincidences also with prisma+other ancillary

• It adds time offset based on the necessary delays

• It applies the correct key for each detector

• The output can then be used by femul to build Agata+ancillary events

ADF composite frame scheme for
built events
• The TS is the lowest

subframe’s TS

• Has a key (0xCA020100)

that is associated to the

event merger

• Contains other ADF

frames

• Can be checked with the

ListFrames utility

32 bit words (uint)

Total size

0xCA020100

Ev num

TS high

TS low

Size of subframe

Detector key

Board

TS high

TS low

Channel

Data

Building ancillary events

• Compile the selector with the option –DBUILD_SCRIPTS=On

• This will create an executable called ReadCaenRaw (note that boost
libraries need to be installed)

• Run with
RunCaenRaw [--labrslave] [--dante MinMultDante] [--prisma InputPrismaFileName] [--
global-anc-tsoffset value] [--root file_name] OutputADFFileName

• labrslave only adds labr events if other detectors are in coincidence
• dante Nr only adds dante events if Nr channels are present
• global-anc-tsoffset adds an offset to all timestamps to merge data with Agata
• You can add a root file for debugging purposes

Building ancillary events

• The ReadCaenRaw.set file allows to set delays channel by channel, you

should check the time-coincidence peak to set it up

• The boards need to be setup in ReadCaenRaw.cxx

• The same file sets the window in units of 10 ns

Issues with built ancillary events

• There are four possible issues that one might encounter with ancillary

events built ”online”:

1. The DAQ could have stopped building events at some point during the run,
in this case one must monitor the coincidence peak over time

2. The global offset of AGATA might not have been added, therefore there
should not be a coincidence peak.

3. The global offset applied is wrong and needs to be changed
4. Events built by the DAQ were showing a loss of statistics that can be solved

by building events offline
• These issues are important as they cause a significant loss of

statistics

Issues with built ancillary events

• Ancillary events should be built
with a 500 ns window (50 ts
units)
• In reality the window should be

the same of the one set in the
trigger processor
• Red and blue lines represent a

good coincidence peak

Issues flow chart

Coincidences stop at
some point

Multiple peaks

No peak

Exponential shape

Online building problem

Ancillaries or cores not aligned

There is no global offset

The global time offset is wrong

Loss of statistics

Online building problem

Run
ReadCaenRaw and

then femul

Align with genconf.py or
ReadCaenRaw.set

Find the coincidence peak as
explained in

Scripts/TimeOffsetPeak

Issue Cause Solution

Finding the coincidence peak

• It is not straightforward and is strongly dependent on the trigger

processor settings

• If LaBr are present and acquired as slaves of other ancillaries they can

be used to find the right offset

• The offset can be found by randomly correlating all events as

explained in Scripts/TimeOffsetFix:

Other useful scripts

Generation of SRIM tables

MPI

• The selector can be distributed on multiple machines if they have a

common file system and boost-mpi installed.

• To enable MPI compile with:

• It is also necessary to add a file called “hfile” with the ip of each

machine that will contribute

• To distribute simply add the option - -distribute when launching the

selector.

• Note that the machine where you launch it from will be only assigning

jobs and thus will not be under load.

Perspectives and foreseen updates

• S1 (Sauron) and Oscar will be added to the analysis

• Tests should be added for other detectors

• If you find a bug or have a feature please help us, it benefits the

community! You can contact us by email or open an issue on baltig:

https://baltig.infn.it/gamma/agataselector/-/issues

https://baltig.infn.it/gamma/agataselector/-/issues

The end.

Many people are involved in
maintaining and developing the

selector: Matus Sedlak, Elia Pilotto,
Luca Zago, Filippo Angelini, Sara

Pigliapoco, ..

