

Pierre Auger Observatory

Surface Detector Electronics Upgrade FMECA – FDIR Document

Abstract:

This document describes a functional analysis of the Surface Detector Electronics Upgrade followed with a Failure Mode Effects and Criticality Analysis (FMECA). The objective of these analyses is to identify failure modes that could degrade or cause loss of the Surface Detector Electronics or Station, to be able to propose mitigation solutions.

This document contains also the failure detection, isolation and recovery (FDIR) process description, implemented in the Slow Control Unit of the SDEU.

Document written by	: P. Stassi	Agreed by:	T. Suomijärvi
	Project System engineer		Task leader
Date:	28 November 2014	Date:	28 November 2014
Local Reference:	ATRIUM-2221	Project Reference:	WP10-LPSC-10C

Table of Content

1.	Intro	oduction	. 5
	1.1	Purpose and scope	. 5
	1.2	Documents	. 5
	1.2.1	Applicable Documents	. 5
	1.2.2	2 Reference Documents	. 5
2.	. INS	TRUMENT Description and functions	. 5
	2.1	Introduction	. 5
	2.2	SDEU Functional description (RD2)	. 6
	2.3	SDEU Interface Configuration (RD2)	. 7
	2.4	SDEU Product tree (RD1)	. 8
3.	. Prod	luct description diagrams	. 9
	3.1	PMT and signal conditioning,	. 9
	3.2	Digitizer	10
	3.3	Processing, Trigger and Time tagging,	11
	3.4	Slow Control and Calibration unit,	12
	3.5	Communication links,	13
	3.6	Power supplies,	13
4.	. UUF	3 Functional analysis	15
	4.1	Functions identification and hierarchical structure	15
5.	. SDE	U-UUB Failure Mode, Effects and critical analysis (FMECA)	16
	5.1	Analog Signal Conditioning Failure Mode and Effects Analysis (FMEA).	16
	5.2	Digitizing FMEA.	16
	5.3	Processing, Trigger and Time tagging FMEA.	17
	5.4	Slow Control FMEA.	18
	5.5	Calibration FMEA.	19
	5.6	Communications links FMEA	20
	5.7	Power supplies FMEA.	21
	5.8	Criticality Analysis	22
	5.8.1	Critical Items lists	22
	5.8.2	2 Critical Analysis process	24
	5.8.2	3 Criticality Matrix	27
	5.9	Critical Analysis conclusions	28
6.	. Failı	are detection, isolation and recovery (FDIR)	29
	6.1	Introduction	29
	6.1.1	Philosophy	29
	6.2	Software Action on Failures (SDE UUB internal FDIR)	30

ACRONYMS

AD	Applicable Document
ADC	Analog to Digital Converter
BGA	Ball Grid Array
CPU	Central Processing Unit
CR	Configurational Requirement
DAC	Digital to Analog Converter
DC	Direct Current
ER	Environmental Requirement
FADC	Flash ADC
FDIR	Failure Detection, Isolation and Recovery
FMECA	Failure Mode, Effects and Criticality Analysis
FMEA	Failure Mode, Effects Analysis
FPGA	Filed Programmable Gate Array
FR	Functional Requirements
GPS	Global Positioning System
HSIA	Hardware Software Interaction Analysis
H/W	HardWare
ICD	Interfaces Control Document
IR	Interface Requirements
LVDS	Low Voltage Differential Signaling
n/a	non applicable
OR	Operational Requirements
OTG	On The Go
PBS	Product Breakdown Structure
PCB	printed Circuit Board
PMT	PhotoMultiplier Tube
PPS	Pulse Per Second
PR	Physical Requirements
QR	Quality Requirements
RD	Reference Document
SDE	Surface Detector Electronics
SPF	Single Point Failure
SPMT	Small PMT
SR	Support Requirements
S/W	SoftWare
TBC	To Be Confirmed
TBD	To Be Defined
TBW	To Be Written
TC	Tele-Command
TM	TeleMetry
TPCB	Tank Power Control Board
UB	Unified Board
UC	Upgrade Committee
USB	Universal Serial Bus
UUB	Upgraded Unified Board
UHE	Ultra High Energy
UHECR	Ultra High Energy Cosmic Ray
VM	Verification Matrix
WP	Work Package

DOCUMENT CHANGE RECORD

Issue	Revision	Issue	Changes	Modified Pages Numbers, Change
		Date	Approved by	Explanations and Status
10	А	04/02/14		DRAFT for approbation
10	В	26/02/14	P. Stassi	Minor update
10	С	28/11/14	P. Stassi	Minor update

1. INTRODUCTION

1.1 *Purpose and scope*

This document describes a functional analysis of the Surface Detector Electronics Upgrade followed with a Failure Mode Effects and Criticality Analysis (FMECA). The objective of these analyses is to identify failure modes that could degrade or cause loss of the Surface Detector Electronics or Station, to be able to propose mitigation solutions.

This document contains also the failure detection, isolation and recovery (FDIR) process description, implemented in the Slow Control Unit of the SDEU.

1.2 Documents

1.2.1 Applicable Documents

- AD1 Failure Modes Effects and Criticality Analysis (ECSS-Q-30-02A)
- AD2 Procedure for Performing a FMECA (MIL- STD-1629A)
- AD3 Reliability Prediction of Electronic Equipment (MIL-HDBK-217F2)

1.2.2 *Reference Documents*

- RD1 SDEU Development Plan, WP10LPSC02
- RD2 SDEU Specifications, WP10LPSC03
- RD3 SDEU Electrical Interfaces Control Document, WP10LPSC05
- RD4 SDEU Detectors Interfaces Control Document, WP10LPSC07

2. INSTRUMENT DESCRIPTION AND FUNCTIONS

2.1 Introduction

The current Surface Detector electronics was designed 15 years ago by using the technology available at that time. Evolution in processors, power consumption of electronics components and timing systems make it possible today to design and implement a higher performance electronics system for the Surface Detector array. The new electronics system will enhance the data quality in terms of improved resolution, extended dynamic range, and new trigger possibilities. Furthermore, the calibration and monitoring capabilities will be enhanced increasing the overall reliability of the data taking. A short description of the Surface Detector Electronics Upgrade (SDE Upgrade) proposal is given below.

2.2 SDEU Functional description (RD2)

Figure 2.3.a: SDEU Functional Block Diagram

The design objectives of the SDE Upgrade globally aim to increase the data quality (faster sampling for ADC traces, better timing accuracy, increased dynamic range), to enhance the local trigger and processing capabilities (more powerful local station processor and FPGA) and to improve calibration and monitoring capabilities of the Surface Detector stations.

The design objectives also aim for higher reliability and easy maintenance. An important feature in the design of the upgraded SD electronics is a facility for interfacing additional sensors. The speed of the upgraded CPU will be >10 times faster than the current one, with a commensurate increase in memory. This will allow much more sophisticated processing in the local station. The addition of accessible trigger IN/OUT and GPS 1 PPS signals will simplify time synchronization with other upgrade possibilities.

High speed USB interfaces and direct connection to the trigger will allow interfacing a variety of additional sensors.

The proposed upgrade involves the main electronics boards: the Unified Board and the Front End board of the current electronics. The interface board to the power system, the Tank Power Control Board (TPCB), will not be upgraded, and the interface to the communication system will also remain unchanged. Furthermore, new functionalities will be added to the tank calibration LED system and to the monitoring system. The dynamic range will be increased by adding a small PMT (SPMT) to the current 3 large 9 inch PMTs. All the functionalities will be implemented in a single board, called Upgraded Unified Board (UUB). The main design features of the proposed electronics are described below. The anode channel of the large PMTs will be split and amplified to have a gain ratio of 32. The signals will be filtered and digitized by commercial 12 bit 120MHz FADCs. The design of the current LED controller will be upgraded to enhance the precision of the calibration and to allow simulation of shower events. The upgraded system will extend the

capabilities of the present system for both small and large signals. The least FADC count will have a 4 times smaller step than the present system, improving the precision of the low threshold triggers. 10 FADC channels will be implemented. This leaves extra channels for additional detectors.

2.3 SDEU Interface Configuration (RD2)

Figure 2.4.a: Interface configuration

Figure 2.4.a shows the interface between the UUB and the other part of the SD.

2.4 SDEU Product tree (RD1)

		1.1 - Amplifiers
-1 - PM	Ts & signal Cond.	1.2 - Filters
		1.3 - Additional PMT & base
-2 - Digi	tizer	-2.1 - ADC
		3.1 - FPGA Algorithms
-3 - Digi	tal Trigger	-3.2 - Memories
A Bro		4.1 - Processor
4-110	cessing	4.2 - Program Memories
-5 - Slov	w Control	5.1 - Manager
		-5.2 - Interfaces
1		-5.3 - Sensors
-6 - Cal	ibration	6.1 - Light controller
5		6.2 - Light generators
_		7.1 – Time Tagger
-7 - Tim	e Tagging	7.2 - GPS board
		8.1 - RS232
R - Cor	munications Links	-8.2 - USB
		-8.3 - Ethernet
		-8.4 - Digital interfaces
-9 - Po	wer Supplies	9.1 - Filtering & Protections
		9.2 - DC to DC Conversions
		10.1 - Connectors
_10 - M	echanics	-10.2 - Housing
		10.3 - Internal cables

3. PRODUCT DESCRIPTION DIAGRAMS

3.1 *PMT and signal conditioning,*

10 ADC channel are implemented, 6 for the three 9 inch actual PMTs anodes (IN1, IN2, IN3), one for the SPMT anode. The other channels are used by the ASCII detector. The design will be adjusted after the detector test phase.

3.2 Digitizer

The signals will be digitized by commercial 12 bits 120MHz dual FADCs, with analog differential inputs and LVDS digital outputs.

3.3 *Processing, Trigger and Time tagging,*

The processing unit is based on an architecture with an FPGA containing an LINUX based embedded ARM processor. The trigger and time tagging functionalities will also be implemented in the FPGA. The speed of the upgraded CPU will be >10 times faster than the current one, with a commensurate increase in memory. This will allow much more sophisticated processing in the local station.

The commercial GPS board with enhanced accurate precision in timing is used with an upgraded Time Tagging algorithm contained in the FPGA.

3.4 Slow Control and Calibration unit,

The slow control system is derived from the Auger Engineering Radio Array design; incorporating a separate micro-controller (MSP430) is used. 64 channels are implemented for the slow control ADC. Currently 35 channels are required; leaving free channels for test purposes and for additional detectors.

An USB communication link is dedicated to the Slow Control system monitoring.

3.5 *Communication links*,

Ethernet and UBS OTG are implemented for communication purpose. A dedicated USB port is implemented for FPGA system monitoring.

3.6 *Power supplies*,

All power supplies are built from the +19 to +32 Volts supplied by the solar panels system and the TPCB.

4. UUB FUNCTIONAL ANALYSIS

4.1 *Functions identification and hierarchical structure*

5. SDEU-UUB FAILURE MODE, EFFECTS AND CRITICAL ANALYSIS (FMECA)

Note: Severity Classification used for this analysis (AD1, AD2).

- I Catastrophic = A failure which may cause SD station loss.
- II Critical = A failure which may cause major system damage which will result on SDE loss.
- III Marginal = A failure which may cause minor system damage which will result in delay or loss of part of SDE availability.
- IV Minor = A failure not serious enough to cause system damage but which will result in unscheduled repair.

5.1 Analog Signal Conditioning Failure Mode and Effects Analysis (FMEA)

ID	ltem	Function Description	Failure Mode	Most	Fá	ailure Effect	on		Failure	Remarks
#	Description			Probable cause	SDEU	SD Station	PAO	Severity	Mode Detection	
1.1		Input connection	No or wrong signal	Bad cleanliness Or SMA connector degraded	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring	Maintenance requested
1.2		Input buffer	No or wrong signal	Amplifier failure	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring	Maintenance requested
1.3	Analog signal conditioning	Low or high gain amplification	No or wrong signal	Amplifier failure	1 PMT low or high gain signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring	Maintenance requested
1.4	.4	Anti-aliasing filter	No or wrong signal	Discrete component connection failure	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring	Maintenance requested

5.2 Digitizing FMEA

ID #	ltem	Function Description	unction Failure scription Mode	Most	Failure Effect on				Failure	Domorko
	Description			Probable cause	SDEU	SD Station	PAO	Severity	Detection	Remarks
2.1	Digitizing	Signal digitizing	No or Wrong digital signal	ADC Failure	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring	Maintenance requested

5.3 *Processing, Trigger and Time tagging FME.*

ח	ltem	Function	Failure Mode	Most	Fá	ailure Effect	t on		Failure	
#	Description	Description		Probable cause	SDEU	SD Station	ΡΑΟ	Severity	Mode Detection	Remarks
3.1				S/W corrupted	Not available	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
3.2		Processing	No or wrong processing	Power supply failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
3.3				FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
3.4			No or wrong	Memory chip failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring	
3.5		Memory R/W access	No or wrong data in R/W process	Connection failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring	
3.6				Power supply failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
3.7	Broossing Triggor	Trigger algorithm	No or wrong trigger signal	Analog signal not present	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
3.8	Processing, Trigger			S/W corrupted	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
3.9	and time tagging			FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
3.10			No or Bad	S/W corrupted	Time tagging not available	Science Loss	Science Loss	III - Marginal	Off line monitoring	
3.11			Tagging	FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
3.12	-	Time Tagging process		GPS Board failure	Time tagging not available	Science Loss	Science Loss	III - Marginal	Off line monitoring	
3.13		and GPS operation	No or wrong	Connection failure	Time tagging not available	Science Loss	Science Loss	III - Marginal	Off line monitoring	
3.14			1PPS signal	Antenna failure	Time tagging not available	Science Loss	Science Loss	III - Marginal	Off line monitoring	
3.15				Power supply failure	Not available	Science Loss	Science Loss	III - Marginal	Off line monitoring & Slow control on site	

5.4 Slow Control FMEA

ID	ltem	Function	Failure Mode	Most	Fá	ailure Effec	t on		Failure	
#	Description	Description		Probable cause	SDEU	SD Station	ΡΑΟ	Severity	Mode Detection	Remarks
4.1		Processing and SAW	No or wrong	Micro-controller failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.2			processing	S/W corrupted	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.3				S/W corrupted	Slow control data not available	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
4.4			No or wrong	Sensor failure	Part of Slow control data not available	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
4.5		I/O, interface & Communications	data reading	Interface chip failure	Not available	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
4.6				Peripheral unit or connection failure	Part of Slow control data not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.7	Slow Control			S/W corrupted	Slow control data cannot be send	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.8			No or wrong data writing	Interface chip failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.9				Connection failure	Part of Slow control data not available	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
4.10	-			Micro-controller failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.11		FPGA Power supplies control	No or wrong data R/W	S/W corrupted	Part of Slow control data not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
4.12				Connection failure	Part of Slow control data not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	

5.5 Calibration FMEA

ID	ltem	Function	Failure Mode	Most Probable	Fa	Failure Effect on			Failure Mode	Romarks
#	Description	Description		cause	SDEU	SD Station	PAO	Geventy	Detection	Nema NS
5.1				Component failure	Calibration not available	Calibration not possible if needed	Possible science Loss	IV - Minor	Off line monitoring	
5.2			No or wrong signal	Bad cleanliness Or SMA connector degraded	Calibration not available	Calibration not possible if needed	Possible science Loss	IV - Minor	Off line monitoring	
5.3			No FPGA communication	FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
5.4	Calibration	LED Controller		Connection failure	Calibration not available	Calibration not possible if needed	Possible science Loss	III - Marginal	Off line monitoring & Slow control on site	
5.5		Signal generation	No synchronization with 1 PPS signal	GPS unit failure	Calibration and time tagging not available	Science Loss	Science Loss	III - Marginal	Off line monitoring	
5.6				Connection failure	Calibration and time tagging not available	Science Loss	Science Loss	IV - Minor	Off line monitoring	
5.7			No or wrong delay in the signal	Component failure	Fake showers not available	Fake showers not available	Science Loss	IV - Minor	Off line monitoring	

5.6 Communications links FMEA

ID	Item	Function	Failure	Most Brobablo	Fai	lure Effect on		Sovority	Failure Mode	Pomarks
#	Description	Description	Mode	cause	SDEU	SD Station	PAO	Seventy	Detection	Kennarko
6.1			No or wrong communication	Interface component failure	Ethernet not available	Ethernet not available	No effect	IV - Minor	On site	
6.2		Ethernet communication		FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.3				S/W corrupted	Ethernet not available	Ethernet not available	No effect	IV - Minor	On site	
6.4				Interface component failure	USB for ext. device not available	USB for ext. device not available	No effect	IV - Minor	On site	
6.5		USB OTG Communication	No or wrong communication	FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.6				S/W corrupted	Interface component failure	USB for ext. device not available	No effect	No effect	IV - Minor	
6.7		USB FPGA device mode Communication	No or wrong communication	Interface component failure	FPGA maintenance not available	Possible science loss	Possible science loss	IV - Minor	On site	
6.8				FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.9	Communications			S/W corrupted	FPGA maintenance not available	Possible science loss	Possible science loss	IV - Minor	On site	
6.10	IIIKS	USB slow control device mode communication	No or wrong communication	Interface component failure	Slow Control maint. not available	Possible science loss	Possible science loss	IV - Minor	On site	
6.11				FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.12				S/W corrupted	Slow Control maint. not available	Possible science loss	Possible science loss	IV - Minor	On site	
6.13		Sorial communication	No or wrong	Interface component failure	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
6.14		(radio)	communication	FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.15				S/W corrupted	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
6.16				Interface component failure	External data not available	Possible science loss	Possible science loss	IV - Minor	Off line monitoring	
6.17		External digital communication (LVDS)	No or wrong communication	FPGA failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
6.18				S/W corrupted	External data not available	Possible science loss	Possible science loss	IV - Minor	Off line monitoring	

5.7 *Power supplies FMEA.*

ID	ltem	Function	Failure	Most	Fá	ailure Effect	t on		Failure	_
#	Description	Description	Mode	Probable cause	SDEU	SD Station	PAO	Severity	Detection	Remarks
7.1		+/- 3.3V production for	No or wrong	DC/DC failure	Analog FE unavailable	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
7.2		analogic	voltage	Connection failure	Analog FE unavailable	Not available	Science Loss	III - Marginal	Off line monitoring & Slow control on site	
7.3		+3.3V, +1.8V, +1.2V,	No or wrong	DC/DC failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
7.4		+1V production for digital	voltage	Connection failure	Not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
7.5		+3.3V and +19 to 32V for LED controller	No or wrong voltage	DC/DC failure	Calibration not available	Calibration not possible if needed	Possible science Loss	III - Marginal	Off line monitoring & Slow control on site	
7.6	Power supplies			Connection failure	Calibration not available	Calibration not possible if needed	Possible science Loss	III - Marginal	Off line monitoring & Slow control on site	
7.7		12 2)/ for Slow control	No or wrong voltage	DC/DC failure	Slow control not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
7.8		+3.3V IOI Slow control		Connection failure	Slow control not available	Not available	Science Loss	II - Critical	Off line monitoring & Slow control on site	
7.9			No or wrong	DC/DC failure	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring & Slow control on site	
7.10		+12V for PMTs	voltage	Connection failure	1 PMT signals unavailable	Science losses on one PMT	Science loss on one station	IV - Minor	Off line monitoring & Slow control on site	
7.11				DC/DC failure	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
7.12		+12V for Radio com.	voltage	Connection failure	Not available	Not available	Science Loss	III - Marginal	Off line monitoring	
7.13		Ext1 or Ext2 +24V	No or wrong voltage	Component failure	Ext +24V unavailable	No effect	Science Loss	IV - Minor	Off line monitoring	

5.8 Criticality Analysis

5.8.1 *Critical Items lists*

Failure rate definition: $\lambda \mathbf{p} =$ number of failures/10⁶ hours. The data source is the AD3 document. The general parameters for each part are:

- Junction Temperature = $67 \degree C (45 + 22)$
- Environment factor = G_F (Ground, Fixed)
- Learning factor=1 (>2 years production)

5.8.1.1 Analog Signal Conditioning

ITEM	Function	Failure Rate (λρ)	Remarks
ADA4927	Amplifiers, buffers	0.039	
Discrete SMD	filters	0.720	
SMA Socket	connectors	0.011	

5.8.1.2 Digitizing

ITEM	Function	Failure Rate (λρ)	Remarks
AD9628	ADC digitizer	0.065	

5.8.1.3 Processing, Trigger and Time tagging

ITEM	Function	Failure Rate (λp)	Remarks
ZINQ 7020 Indus.	FPGA	0.530	
MT42L128M32D1LG- 25	Memories DDR	0.140	
N25Q00AA13GSF40	Memories Flash	0.071	
M12M I Lotus	GPS board	0.030	
Motorola T2000	GPS Antenna	0.010	estimated
N type	Connectors	0.011	estimated

5.8.1.4 Slow Control

ITEM	Function	Failure Rate (λp)	Remarks
MSP430F2618	Micro controller	0.490	
ADG608	8 Ch. Multiplexor	0.066	
LTC2637	DAC	0.066	
BMP085	Pressure sensors	0.020	

5.8.1.5 Calibration

ITEM	Function	Failure Rate (λp)	Remarks
LM224D	Amplifiers	0.039	
AD5316	DAC	0.066	
MMBT3904LT1	Transistors	0.160	
SMA	Connectors	0.011	

5.8.1.6 Communications links

ITEM	Function	Failure Rate (λp)	Remarks
Marvell 88E1518	Eth interface	0.080	
USB3320	USB OTG interface	0.080	
FTDIFT32232R	USB interface	0.080	
MAX3218	Serial interface	0.080	
74AVCH8T245	Buffers drivers translator	0.080	

5.8.1.7 Power supplies

ITEM	Function	Failure Rate (λp)	Remarks
LM3150	DC/DC converter	0.065	
LTC1174	DC/DC converter	0.065	
TPS62125	DC/DC converter	0.065	
TPS54020	DC/DC converter	0.065	
LMR24220	DC/DC converter	0.065	
TPS40170	DC/DC converter	0.065	
BSS138P	FET Switch	0.160	
BC846B	Bip. transistor	0.160	
FDN358P	FET Switch	0.160	
?	Resettable fuse	0.560	estimated

5.8.2 Critical Analysis process

The process performed here is following the AD3 document. The aim of the critical analysis is to calculate Criticality Number for Failure Mode (Cm), representing the level of criticality for each failure mode, and the Item Criticality Number (Cr), representing the level of criticality for each considered item (component). The item criticality number helps the designer to isolate the most critical components and to propose mitigation solutions (redundancy, protection, etc.).

According to the AD3 document Cm and Cr are defined as follow:

$$Cm = \beta. \alpha. \lambda p. t$$
 and $Cr = \sum_{n}^{1} (\beta. \alpha. \lambda p. t)_{n}$

With:

 \mathbf{n} = number of failure mode for each component or item.

 β = failure effect probability, these values are the conditional probability that the failure effect will result in the identified criticality classification, given that the failure mode occurs. The β values represent the level as to the conditional probability the loss will occur and should be quantified in general accordance with the following table:

Failure Effect	β value
Actual loss	1.00
Probable loss	>0.10 to <1.00
Possible loss	>0.00 to <0.10
No effect	0

 α = Failure Mode Ratio, This number is the probability expressed as a decimal fraction that the component or item will fail in the identified mode. If all potential failure modes of a particular component or item are listed, the sum of the α values for that component or item will equal one.

 $\lambda \mathbf{p}$ = number of failures/10⁶ hours as defined earlier.

t = Duration of the applicable experiment, usually express in hours.

5.8.2.1 Critical Analysis Table

ID #	ITEM (component)	Function	Failure Mode ID#	Severity	Failure Effect Probability (β)	Failure Mode Ratio (α)	Failure Rate (λp)	Operating Time (t, hours)	Failure Mode Criticality (Cm)	Item Criticality (Cr)	Remarks			
1	ADA4927	Amplifier	1.2	IV. Minor	0.1	0.5	0.039		256.23	512.46				
2	Disarata SMD	Filter	1.3	IV. Minor	0.1	0.5	0 720		230.23	0460.80				
~	Discrete SMD	Filter	1.4	IV. Minor	0.1	0.7	0.720		101 18	9400.00				
3	SMA socket conn.	I/O connection	5.2	IV. Minor	0.1	0.3	0.011		43.36	144.54				
4	AD9628	FADC	2.1	IV Minor	0.5	01	0.065		4270 50	4270 50				
			3.3	II Critical	0.5	0.1	0.000		3482.10	127 0100				
			3.9	II Critical	0.5	0.1			3482.10					
			3.11	II Critical	0.5	0.1			3482.10					
			5.3	II Critical	0.5	0.1			3482.10					
5	ZINO 7020	EDCA	6.2	II Critical	0.5	0.1	0 5 2 0		3482.10	24921 00				
5	ZINQ 7020	IIGA	6.5	II Critical	0.5	0.1	0.550		3482.10	34021.00				
			6.8	II Critical	0.5	0.1			3482.10					
			6.11	II Critical	0.5	0.1			3482.10					
			6.14	II Critical	0.5	0.1			3482.10					
			6.17	II Critical	0.5	0.1			3482.10					
6	MT42L128M32D	Memories	3.4	II Critical	0.5	1	0.140		9198.00	9198.00				
7	N25Q00AA13GSF40	Memories	3.4	II Critical	0.5	1	0.071		4664.70	4664.70				
8	M12M I Lotus	GPS board	3.12	III. Marginal	0.5	0.5	0.020	.030 131400 (15 years)	985.50	1971.00				
0	WI12WI I-Lotus	GI 5 board	5.5	III. Marginal	0.5	0.5	0.030		985.50					
٥	T2000 Motorola	CDS Antonno	3.14	III. Marginal	0.1	0.5	0.011		72.27	144.54				
3	12000 Wi0to101a	OF 5 Antenna	5.5	III. Marginal	0.1	0.5	0.011		72.27					
40	N. Gaalast Cana	A	3.13	III. Marginal	0.1	0.5	0.014	0.014	0.011	0.011		72.27	144 54	
10	N Socket Conn	Antenna conn.	5.5	III. Marginal	0.1	0.5	0.011	1	72.27	144.54				
44	MDG 42052(10		4.1	II Critical	0.3	0.5	0.400		9657.90	40045.00				
11	MPS430F2618	Micro controller	4.10	II Critical	0.3	0.5	0.490		9657.90	19315.80				
40	100(00		4.5	III. Marginal	0.5	0.5	0.000		2168.10	1000.00				
12	ADG608	Multiplexor	4.8	II Critical	0.5	0.5	0.066		2168.10	4336.20				
13	LTC2637	DAC	4.8	II Critical	0.3	1	0.066		2601.72	2601.72				
14	BMP085	Pressure sensor	4.4	III. Marginal	0.1	1	0.020		262.80	262.80				
15	LM224D	Amplifier	5.1-5.7	IV. Minor	0.5	1	0.039		2562.30	2562.30				
16	AD5316	DAC	5.1-5.7	IV. Minor	0.5	1	0.066		4336.20	4336.20				
17	MMBT3904LT1	Transistor	5.1-5.7	IV. Minor	0.3	1	0.160		6307.20	6307.20				
18	Marvell 88E1518	ETH Interface	6.1	IV. Minor	0.7	1	0.080		7358.40	7358.40				
19	USB 3320	USB OTG Interface	6.4	IV. Minor	0.7	1	0.080		7358.40	7358.40				
20	ETDIET22220D	LICD Interfere	6.7	IV. Minor	0.7	0.5	0.080		3679.20	7259.40				
20	F1DIF132232K	USB Interface	6.10	IV. Minor	0.7	0.5	0.080		3679.20	/ 358.40				
21	MAX3218	Serial interface	6.13	IV. Minor	0.7	1	0.080		7358.40	7358.40				
22	74AVCH8T245	Buffers drivers	6.16	IV. Minor	0.7	1	0.080		7358.40	7358.40				
23	LM3150	DC/DC converter	7.1	III. Marginal	0.5	0.25	0.065	131400	533.81	2135.25				

WP10LPSC10C _SDEU_FMECA _FDIR_28Nov14.docx

28/11/14 11:11 - 25 / 30

ID #	ITEM (component)	Function	Failure Mode ID#	Severity	Failure Effect Probability (β)	Failure Mode Ratio (α)	Failure Rate (λp)	Operating Time (t, hours)	Failure Mode Criticality (Cm)	Item Criticality (Cr)	Remarks
			7.3	II Critical	0.5	0.25		(15 years)	533.81		
			7.5	III. Marginal	0.5	0.25			533.81		
			7.7	II Critical	0.5	0.25			533.81		
24	LTC1174	DC/DC converter	7.1	III. Marginal	0.5	1	0.035		2299.50	2299.50	
			7.1	III. Marginal	0.5	0.333			1422.08		
25	TPS62125	DC/DC converter	7.3	II Critical	0.5	0.333	0.065		1422.08	4266.23	
			7.7	II Critical	0.5	0.333			1422.08		
26	TPS54020	DC/DC converter	7.3	II Critical	0.5	1	0.065		4270.50	4270.50	
			7.3	II Critical	0.5	0.333			1422.08		
27	LMR24220	DC/DC converter	7.9	IV. Minor	0.5	0.333	0.065		1422.08	4266.23	
			7.11	III. Marginal	0.5	0.333			1422.08		
28	TPS40170	DC/DC converter	7.3	II Critical	0.5	1	0.065		4270.50	4270.50	
20	DECI20D	EET Conital	7.3	II Critical	0.5	0.5	0.160		5256.00	10510.00	
29	B55138P	FET Switch	7.5	III. Marginal	0.5	0.5	0.160		5256.00	10512.00	
30	BC846B	Transistor	7.13	IV. Minor	0.3	1	0.160]	6307.20	6307.20	
31	FDN358P	FET Switch	7.13	IV. Minor	0.3	1	0.160]	6307.20	6307.20	
32	? FUSE	Resettable fuse	7.13	IV. Minor	0.3	1	0.56		22075.20	22075.20	

5.8.3 *Criticality Matrix*

The criticality matrix provides a way to identify the most critical components regarding the number of failure mode versus the severity level.

Part Reference	Part ID #	Part Criticality (Cr)		Number of F	ailure Mode		1	
ZINQ 7020	5	34821.00			10			
? FUSE	32	22075.20	1					
MPS430F2618	11	19315.80			2			
BSS138P	29	10512.00		1	1			
Discrete SMD	2	9460.80	1					
MT42L128M32D	6	9198.00			1			
Marvell 88E1518	18	7358.40	1				X	
USB 3320	19	7358.40	1				lit	
FTDIFT32232R	20	7358.40	2				al	
MAX3218	21	7358.40	1				ic	
74AVCH8T245	22	7358.40	1				it	
MMBT3904LT1	17	6307.20	2					
BC846B	30	6307.20	1				\mathbf{U}	
FDN358P	31	6307.20	1				B	
N25Q00AA13GSF40	7	4664.70			1		[e]	
ADG608	12	4336.20		1	1		Ι	
AD5316	16	4336.20	2				f	
AD9628	4	4270.50	1				2	
LM3150	23	4270.50		2	2		e	
TPS54020	26	4270.50			1		e v	
TPS40170	28	4270.50			1		Ĩ	
TPS62125	25	4266.23		1	2		50	
LMR24220	27	4266.23	1	1	1			
LTC2637	13	2601.72			1		as	
LM224D	15	2562.30	2				e l	
LTC1174	24	2299.50		1			CL	
M12M I-Lotus	8	1971.00		2			Ŭ	
ADA4927	1	512.46	2					
BMP085	14	262.80		1				
T2000 Motorola	9	144.54		2				
N Socket Conn	10	144.54		2				
SMA socket conn.	3	144.54	2					
			IV	III	II	Ι		
			Increasing level of Severity →					

5.9 Critical Analysis conclusions

The Critical Matrix indicates the most critical components producing the most sever effect on their failure modes. Those components are typically the FPGA, micro controller and the DC/DC converter. A redundant design for these components cannot be considered but some mitigation solutions must be implemented in the design to reduce the effects of the most critical components, see below:

- Separate power supplies between FPGA and micro controller
- Do not provide voltage to all DC/DC with only one DC/DC converter avoiding to create a single point failure (SPF) on the power supply unit
- Implement internal voltage and current monitoring, in addition to an internal failure detection, isolation and recovery (FDIR) mechanism performed by the Slow Control micro controller (WP7).
- Implement DC/DC protections and technics to improve their reliability.
- Use secure mechanisms in the S/W to read and write memories to be able to detect memory failure.
- Use gold plated connectors and keep a high level on cleanliness.
- Use high reliability cabling and soldering process to avoid bad connections and contacts.
- Use inverted logic for on board switches (normal state in open circuit)

All these solution are included as requirements in the specification list for the UUB design. The next chapter describes the FDIR mechanism to be implemented in the Slow Control unit.

6. FAILURE DETECTION, ISOLATION AND RECOVERY (FDIR)

6.1 Introduction

The FDIR mechanisms reported here consider the actions performed by the Slow Control unit for some failure mode on the power supplies inside the UUB system.

The following information shall be considered for each failure mode:

- Symptoms triggering the software actions.
- Actions of the software (failure isolation and recovery)
- Effect of the software actions on the system functionality (SDE).

6.1.1 *Philosophy*

The Fault Detection Isolation and Recovery (FDIR) system implemented in the SDE UUB Slow Control unit must permit the system to respond automatically in case of failures detected in respect of the following philosophy:

- Keep the system in a safety state for itself and the detectors connected to it.

- Record all the needed information on the system, allowing the users to take the best decision for maintenance action, in case of failure.

6.2 Software Action on Failures (SDE UUB internal FDIR)

All the failure described here will trigger action only from the Slow Control, Unit.

ID#	Failure Mode	Detection Method	Symptom Trigger	Isolation	Recovery	Slow Control Actions
1	FPGA S/W failure a loading	An acknowledge message is send by the FPGA to signal a good S/W loading	No acknowledge message received	Yes	Yes	 Load a mirrored version of the S/W sited in in another part of the memory Write a message in the non-volatile Slow Control memory
2	FPGA core voltage failure	The core voltage is monitored every second	The core voltage is below 0.9 Volts	Yes	No	 Shut down all the FPGA power supplies in a delay below one second Write a message in the non-volatile Slow Control memory
3	Symmetric voltage failure	The symmetric power supply is monitored every second	One of the polarity voltage values of the symmetric power supply is different with more than 10 % of the other, regardless of the polarity.	Yes	No	 Shut down the symmetric power supply in a delay below one second Write a message in the non-volatile Slow Control memory
4	External 24V failure	The voltage and the current on the +24V provided on the 2 extension connectors are monitored every second	 The voltage value after the switch is below 17 Volts The current value on each line is over 100 mA per line 	Yes	No	 Shut down the considered +24V line on the extension connector Write a message in the non-volatile Slow Control memory Send an alarm on the telemetry for the monitoring S/W (TBC)

End of document