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LiteBIRD is targeting one the biggest discovery of science in 
modern cosmology
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Scientific outcomes

• Primordial gravitational waves from inflation
- B-mode power spectrum
- Inflation energy (Full success / Extra success)
- Constraints on the inflation potential
- Beyond the B-mode power spectrum
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• Cosmological parameters with E polarisation
- Optical depth and reionization of the Universe
- Elucidating low-l anomalies with polarization

• Neutrino sector
• Cosmic birefringence

• Anisotropic CMB spectral distortions
• Galactic science
• Mapping the hot gas in the Universe

LiteBIRD is targeting one the biggest discovery of science in 
modern cosmology
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Scientific outcomes

• Primordial gravitational waves from inflation
- B-mode power spectrum
- Inflation energy (Full success / Extra success)
- Constraints on the inflation potential
- Beyond the B-mode power spectrum
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Primordial gravitational waves
Current status of the B-mode measurements

lensing 
induced

BB

primordial
BB

r < 0.032 (95% CL) BICEP2+Planck  
[Tristram et al. 2021]
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Primordial gravitational waves

LiteBIRD 

LiteBIRD Expectation

σr < 0.001 (for r=0) LiteBIRD only 
(no delensing)

lensing 
induced

BB

primordial
BB
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Rationale 
- Large discovery potential for  

0.005 < r < 0.05 
- Simplest and well-motivated R+R2 

“Starobinsky” model will be tested
- Clean sweep of single-field models 

with characteristic field variation scale 
of inflaton potential greater than mpl 
[Linde, JCAP 1702 (2017) no.02, 006]
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Primordial gravitational waves

0.945 0.960 0.975

Primordial tilt (ns)

10
�

4
10

�
3

10
�

2
10

�
1

T
en

so
r-

to
-s

ca
la

r
ra

ti
o

(r
)

Fig. 2 (Top) B-mode power spectra from primordial gravitational waves (purple lines) and

gravitational lensing (orange line), and the expected constraints from LiteBIRD (error bars).

The top to bottom lines show r = 0.01, 0.003, and 0.001. The solid lines show the sums of the

purple and orange lines. (Middle) Joint marginalized 68% and 95% CL constraints on the

primordial tilt ns and the tensor-to-scalar ratio r from LiteBIRD. The gray contours show

the current limits. The top blue contours show LiteBIRD’s constraints when the underlying

inflationary model is a Starobinsky’s R
2-like model [9] with rtrue = 0.004, whereas the bottom

contours show those for rtrue = 0. The yellow band shows the predictions of the ↵-attractor

class of inflationary models [35] for ↵ > 1/3. The Starobinsky model corresponds to ↵ = 1.

(Bottom) The improvement with delensing by Planck CIB+WISE data (which already exists,

denoted by green lines), and with delensing by CIB+WISE combined with high-resolution

ground-based CMB data at 3µK·arcmin (red line) are compared with the no delensing case

(blue line).

Model-dependent studies [39, 40] however arrive at the same conclusion when we redefine

�� as the characteristic scale of the inflaton field, which is defined as a range in which the

inflaton potential changes in a significant way. With �(r = 0) < 10�3 for 2  `  200, there-

fore, LiteBIRD would provide a fairly definitive statement about the validity of the most

important class of inflationary models, i.e. single field slow-roll models with �� exceeding

the Planck scale, which would constitute a milestone in cosmology.

Initially, when large-field inflationary models, which include m
2
�

2
, ��

4
, or more generally

V ⇠ M
4
pl(�/Mpl)n

, to give just a few examples, were in vogue, the expectation was that r

5/27

Full Success
• 𝜎(r) < 10-3 (for r=0, no delensing)

• >5𝜎 observation for each bump of the BB spectrum (for r≥0.01)

𝛼-attractor
models

Starobinsky
R+R2 models

rtrue = 0.004

rtrue = 0

current 
limits
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Primordial gravitational waves

Statistical uncertainty
• foreground cleaning residuals 
• lensing B-mode power 
• 1/f noise 

Full Success
• 𝜎(r) < 10-3 (for r=0, no delensing)

• >5𝜎 observation for each bump (for r≥0.01)

Systematic uncertainty
• Bias from 1/f noise 
• Polarization efficiency & knowledge 
• Disturbance to instrument 
• Off-boresight pick up 
• Calibration accuracy 

Margin
0,00057

Systematic  
uncertainty

0,00057

Statistical  
uncertainty

0,00057
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Reionization

LiteBIRD 2027+

Planck 2018

Planck 2015

WMAP 9-year

Fig. 3 (Left) E-mode power spectrum with the optical depths of ⌧ = 0.089 (WMAP 9-year

[89]; dotted), 0.066 (Planck 2015 with LFI polarization and CMB lensing [90]; solid), and

0.055 (Planck with HFI polarization [91]; dashed). We vary the primordial scalar curvature

amplitude such that the product As exp(�2⌧) is fixed. The green boxes show expected

LiteBIRD’s constraints at ` = 2 � 200, binned with �` = 3. (Right) Optical depths predicted

from various models of the number counts of star-forming galaxies, as a function of the

maximum redshift z (re-adapted from [83]). The green band shows expected LiteBIRD’s

68% and 95% CL constraints on the optical depth. The other bands show the WMAP and

Planck constraints as shown.

ionized gas [85] (called the kinetic Sunyaev-Zeldovich e↵ect [86]); and, finally, the polarization

of the CMB produced by electrons scattering quadrupole temperature anisotropies in a

reionized Universe [87].

Electrons in a reionized Universe see the quadrupole temperature anisotropy from their

own last scattering surface due to the polarization dependence of Thomson scattering. Con-

sequently, these anisotropies scattered by electrons in turn produce a polarization of the

CMB, which we can observe today [88]. The amplitude of the polarization is proportional to

the optical depth to electron scattering ⌧ . The wavenumber of the fluctuations contributing

to quadrupole temperature anisotropy as seen by an electron at a redshift z is given by

k ⇡ 3/[rL � r(z)] where rL = 14 Gpc is the comoving distance to our last-scattering surface,

and r(z) is the comoving distance to the redshift z. For example, a redshift of z = 7.7 gives

r(7.7) = 9.1 Gpc. We observe this wavenumber at a multipole of ` ⇡ kr(7.7) ⇡ 6, which cor-

responds to the so-called “reionization bump” in the polarization power spectra. The e↵ect

on the E-mode is shown in the left panel of Fig. 3.

The height of the reionization bump is proportional to ⌧
2
As where As is the amplitude of

the scalar curvature power spectrum. On the other hand, scattering washes out small-scale

power by exp(�2⌧); thus, for a given high-` power spectrum, the height of the reionization

bump scales as ⌧
2 exp(2⌧) ⇡ ⌧

2(1 + 2⌧). We can use this to determine the value of ⌧, which

in turn provides an integrated constraint on the reionization history of the Universe because

⌧ = �T Ne is the column density of electrons Ne = c
R

dt ne integrated from today to the

9/27

A cosmic variance limited measurement of EE on large angular scales 
will be an important, and guaranteed, legacy for LiteBIRD 

𝜎(𝝉) = 0.002
LiteBIRD
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1 year�sky coverage

9

The LiteBIRD mission

#1

LiteBIRD in a nutshell

L-Class JAXA Mission 
Selected by JAXA (May 2019) 
CNES Phase-A (end 2023) 
Launch 2031

L2 orbit
All-sky Survey during 3 years
Large frequency coverage

15 bands 34 - 448 GHz

Resolution
LFT 70’   - 23.7’ 
MFT 37.8’ - 28.0’ 
MHFT 28.6’ - 17.9’

Sensitivity
2.8 uK.arcmin 
after component separation 
(more than 100 times better than 
Planck in P)
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The LiteBIRD mission

#1

Mission Challenges

Lensing 

Statistics 

Foreground 
Goal 

δr < 0.001 

Systematics 

Observer 
bias 

Focused on largest 
multipole scales

Large frequency 
coverage from Space

High Sensitivity
Detectors

Mitigation and 
Control of 
Systematics

All-sky 
survey

Continuously
Rotating HWP
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ESA and the Planck collaboration

11

Mission challenges
foregrounds
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The LiteBIRD mission

#1

frequency coverage

15 bands 
from 34GHz 
to 448GHz

4676 
detectors

C
O
J1

0

C
O
J2

1

C
O
J3

2

C
O
J4

3

du
st

synchrotron

CMB

HFT

MFT
HFT

LFT

3 telescopes

9 bands LFT
5 bands MFT
5 bands HFT

 
with 4 overlapping bands
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The LiteBIRD mission

JPN

US

CA

EU

France

LFT HFT

Cryo-chain

Sub-K 
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Focal 
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Focal 
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Payload Module

Passive 
Cooling
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JAXA 
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The LiteBIRD mission

Lenslets
Platelets

320	mm	

102	mm	

195	mm	82	mm	

280 337 402235195

1355 detectors
2 x 254 Dichroic TES 
338 Monochromatic TES166 GHz 448 GHz

HFT (2.7:1)

40 50 60 68 78

LFT (4.7:1)

34GHz 161 GHz

89 100 119 140

1258 detectors
2 x (64 + 155) Trichroic TES

100 119 140 166 195

MFT (2.5:1)89GHz 224 GHz

2075 detectors
366 Trichroic TES 
488 Dichroic TES

Number of detectors: 4676
Overlap between telescopes

focal plane
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The LiteBIRD mission

300 K

100 K

30 K

5 K

200 K

Mirrors 5K

HWP <18K

Mechanical structure 
5K

20°x10º 
FoV

Spin axis

LF-FPU 
(0.1K)

#1

telescopes and optics at 5K

focal planes at 100mK

LFT

HFT

MFT

continuously Rotating Half-Wave Plates
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The LiteBIRD Collaboration

#1

About 180 researchers from all over the world�

An international collaboration

More than 350 researchers from Japan, Europe & North America
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Current French involvement

#1

LiteBIRD-FRANCE

APC

IAS

IJClab

IAP

CEA-SBT

IRAP

LPSC

I. Neel

Paris

Grenoble

Toulouse

IPAG

ENS

CEA-DAp

 

 

 

IN2P3

INSU

INP

 

 

CEA

ENS
50 chercheurs 
12 ingénieurs 
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MHFT
CNES phase A2 (2019-2023)

Montage LiteBIRD Réunion Inter-Organisme CNES 22 Juin 2020

European Contribution: MHFT
(including US & Canada)

LiteBIRD Mission

2

Instrument Design  
& Management

MHFT Mechanical 
Structure

30K-5K cryo-structure

Electronics & on-board 
software

Focal Plane

US

Cold Readout 
Electronics

Warm Readout 
Electonics

Canada

Optics

UK

CalibrationHWP mechanism

Italy

Sub-K Cooler 
(LFT, MFT, HFT)



LiteBIRDCS IN2P3 (juil. 2023) 19

MHFT (IN2P3)
CNES phase A2 (2019-2023)

Montage LiteBIRD Réunion Inter-Organisme CNES 22 Juin 2020

European Contribution: MHFT
(including US & Canada)

LiteBIRD Mission

2

Instrument Design  
& Management

MHFT Mechanical 
Structure

30K-5K cryo-structure

Electronics & on-board 
software

Focal Plane

US

Cold Readout 
Electronics

Warm Readout 
Electonics

Canada

Optics

UK

CalibrationHWP mechanism

Italy

Sub-K Cooler 
(LFT, MFT, HFT)
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Joint Study Groups

• Science Ground Segment 
under responsibility of the LiteBIRD international collaboration (TBD)

• Collaboration bylaws for phaseB (TBD) 
(incl. governance, publication, configuration control, and data policies)

20

LiteBIRD organisation (phase A)

Interim Governance Board

systematics

foregrounds

calibration

Payload Module

Performance Team

Data Management Group

Instrument Model Team

40 members 
(7 French including 4 IN2P3)

Paolo Natoli (Italy)
Matthieu Tristram (IJClab)

G. Patanchon (APC)
H. Ishino (IPMU)
J. Borrill (LBNL)

Simulation Team

PI: Masashi Hazumi (JPN) 
PI-US: Adrian Lee (LBNL) 
PI-EU: Ludovic Montier (IRAP)

N. Katayama (Japan)
R. Flauger (US)
C. Baccigalupi (Europe)

T. Matsumura (Japan)
K. Arnold (US)
S. Henrot-Versille (IJClab)

Y. Sekimoto (Japan)
K. Thompson (US)
B. Mot (IRAP)

Takashi Hasebe (Japan)
Josquin Errard (APC)
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• 3 labs (APC, IJClab, LPSC)

• 13 staff researchers

• 7 engineers

• 2 post-docs, 3 PhD

21

LiteBIRD @ IN2P3

• Hardware task-sharing
- responsible for System Thermal Modeling 

- responsible for the mechanical structure

- responsible for the ground calibration

• LiteBIRD Management
- Interim Governance Board (4 members)

- Joint Study Groups (2 co-lead)

- Data Management Group (1 co-lead)

• Large implication in science and forecasting studies

11.25 FTE
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• The telescopes are designed in order to overcome the challenges related 
to the extreme sensitivity (reduction and control of systematics)

• The project is the following:
- selected by the JAXA as the next Large Scale mission with a launch currently scheduled in 2031

- pre-phase A undergoing at JAXA

- phase A is ending at CNES   for the study of the Medium and High Frequency Telescopes

- ASI   commitment for a phase A

- ESA      is interested. Participation through a Mission of Opportunity needs to be consolidated. 

22

Status

current JAXA calendar
May 2019 Class-L Mission Selection
2019-2023 pre-phaseA2
mi-2023 Mission Definition Review

mi2023-03/2024 Phase A1
03/2024-03/2025 Phase A2
03/2025-06/2026 Phase B
6/2026-12/2027 Phase C (EM development and tests)
01/2028-12/2029 Phase D (FM production and tests)

01/2031 Launch
2031-2033 Mission Operation

The MHFT project just went through a Key-
Point (may 2023) organised by CNES/JAXA 
ended up with 5 recommendations for the 
phase A2.  
The review of the end of phase A2 will 
happen in december 2023. 

News
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• LiteBIRD at IN2P3
- Large involvement in the management

- Responsibilities in the instrument hardware, calibration and systematics studies

- Science Ground Segment: co-lead and need to increase !

- Forecast and simulation: leader and need to increase !

- Science Exploitation: expertise and interest in France (and at IN2P3 in particular)

• What we need from IN2P3
- help to keep the CMB community structured in France (keep expertise, increase scientific 

impact and relations between instrument/data-analysis/theory, relation with INSU, INP & CEA) 

- support: during phase A2 and, if selected, for further phases (B, C, D)

- manpower: PhD and Post-doc to increase IN2P3 participation to science and data analysis

- Permanent position at IN2P3 (last CMB was in 2017)

23

Conclusions
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Fig. 4 Two-dimensional marginalized contour levels at 68% C.L. for the optical depth to

reionization and the sum of the neutrino masses as measured by future combinations of CMB

and large-scale structure data (including BAO from DESI or galaxy lensing and clustering

from LSST). The contours are centered on fiducial values ⌧ = 0.054 and ⌃m⌫ = 60 meV, as

indicated by the cross. A cosmic variance limited measurement of ⌧ is reached with LiteBIRD

(�(⌧) = 0.002). This ⌧ limit then enables a better neutrino mass measurement, reaching a

5� detection when combined with DESI or LSST. The shaded gray region shows the region

to exclude around the fiducial model needed to achieve a detection of significance greater

than 3� and highlights the importance of having the LiteBIRD data. [Figure adapted from

Ref. [96].]

will also enable a � 3� cosmological detection of the sum of neutrino masses, even for the

minimum, 60 meV sum of masses [102]. Figure 4 shows that a cosmic variance limited

measurement of ⌧ from LiteBIRD will be necessary to reach a significant detection of the

neutrino mass from cosmological data.

To complete the picture on the neutrino sector, the expected error bar on the e↵ective

number of relativistic species, Ne↵ , from LiteBIRD alone is of the same order of magnitude

as the one obtained by Planck [103]. Still, it would give an independent measurement, and

an important cross-check, as it has been shown for instance in [104] that the Ne↵ value

depends on the modelling of the foregrounds in the high-` Planck likelihoods. More accurate

value of Ne↵ would also help constrain the energy density of the stochastic gravitational

wave background ⌦GW [105], as the gravitational waves behave as radiation.

Beyond a cosmic variance limited measurement of the optical depth, the E-mode measure-

ments by LiteBIRD constrain the precise reionization history [106]. In particular, the “dip”

in the E-mode power spectrum at ` ⇡ 20 in Fig. 3 can distinguish between instantaneous

reionization at a redshift of zreion and a reionization history extending to z > zreion. A recent

analysis [107] shows that an extended reionization history out to z & 10 may be preferred

11/27

Improvement in reionization optical depth measurement implies:

26

Neutrino sector

- 𝜎(Σmν) = 15 meV

- determine neutrino hierarchy 
normal v.s. inverted

- measurement of minimum mass  
≥ 3𝜎 detection NH,  
≥ 5𝜎 detection for IH

complementarity with ground-based measurements
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LiteBIRD 
2 ≤ l ≤ 300 
σ(r) <0.001

Ground telescopes 
30 ≤ l ≤ 8000 

27

CMB from space and ground

LiteBIRD
Ground

a powerful duo
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Fig. 2 (Top) B-mode power spectra from primordial gravitational waves (purple lines) and

gravitational lensing (orange line), and the expected constraints from LiteBIRD (error bars).

The top to bottom lines show r = 0.01, 0.003, and 0.001. The solid lines show the sums of the

purple and orange lines. (Middle) Joint marginalized 68% and 95% CL constraints on the

primordial tilt ns and the tensor-to-scalar ratio r from LiteBIRD. The gray contours show

the current limits. The top blue contours show LiteBIRD’s constraints when the underlying

inflationary model is a Starobinsky’s R
2-like model [9] with rtrue = 0.004, whereas the bottom

contours show those for rtrue = 0. The yellow band shows the predictions of the ↵-attractor

class of inflationary models [35] for ↵ > 1/3. The Starobinsky model corresponds to ↵ = 1.

(Bottom) The improvement with delensing by Planck CIB+WISE data (which already exists,

denoted by green lines), and with delensing by CIB+WISE combined with high-resolution

ground-based CMB data at 3µK·arcmin (red line) are compared with the no delensing case

(blue line).

Model-dependent studies [39, 40] however arrive at the same conclusion when we redefine

�� as the characteristic scale of the inflaton field, which is defined as a range in which the

inflaton potential changes in a significant way. With �(r = 0) < 10�3 for 2  `  200, there-

fore, LiteBIRD would provide a fairly definitive statement about the validity of the most

important class of inflationary models, i.e. single field slow-roll models with �� exceeding

the Planck scale, which would constitute a milestone in cosmology.

Initially, when large-field inflationary models, which include m
2
�

2
, ��

4
, or more generally

V ⇠ M
4
pl(�/Mpl)n

, to give just a few examples, were in vogue, the expectation was that r

5/27

Aiming at detection with >5𝜎 in case of 
Starobinsky model 

Baseline 
+ delensing w/current external data
+ extra foreground cleaning w/ 
high-resolution future ground CMB data 

28

CMB from space and ground
Extra Success

• improve 𝜎(r) with external observations

• delensing improvement to 𝜎(r) can be a factor ≥ 2
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Planck Collaboration: Cosmological parameters
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Fig. 2. Planck 2018 T E (top) and EE (bottom) power spectra. At multipoles ` � 30 we show the coadded frequency spectra
computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectra estimates from the SimAll likelihood
(though only the EE spectrum is used in the baseline parameter analysis at `  29). The best-fit base-⇤CDM theoretical spectrum fit
to the Planck TT,TE,EE+lowE+lensing likelihood is plotted in light blue in the upper panels. Residuals with respect to this model
are shown in the lower panels. The error bars show Gaussian ±1� diagonal uncertainties including cosmic variance. Note that the
vertical scale changes at ` = 30, where the horizontal axis switches from logarithmic to linear.
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• EE

Planck Collaboration: Cosmological parameters
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Fig. 2. Planck 2018 T E (top) and EE (bottom) power spectra. At multipoles ` � 30 we show the coadded frequency spectra
computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectra estimates from the SimAll likelihood
(though only the EE spectrum is used in the baseline parameter analysis at `  29). The best-fit base-⇤CDM theoretical spectrum fit
to the Planck TT,TE,EE+lowE+lensing likelihood is plotted in light blue in the upper panels. Residuals with respect to this model
are shown in the lower panels. The error bars show Gaussian ±1� diagonal uncertainties including cosmic variance. Note that the
vertical scale changes at ` = 30, where the horizontal axis switches from logarithmic to linear.
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• TE

Planck Collaboration: Cosmological parameters
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Fig. 3. CMB lensing-potential power spectrum, as measured by
Planck (see PL2018 for a detailed description of this measure-
ment). Orange points show the full range of scales reconstructed
with a logarithmic binning, while grey bands show the error and
multipole range of the conservative band powers used for the
likelihood, with black points showing the average multipole of
the band weight. The solid line shows the best ⇤CDM fit to the
conservative points alone, and the dot-dashed line shows the pre-
diction from the best fit to the Planck CMB power spectra alone.
The dashed line shows the prediction from the best fit to the
CMB power spectra when the lensing amplitude AL is also var-
ied (AL = 1.19 for the best-fit model; see Sect. 6.2 for a detailed
discussion of AL).

sibly also systematic di↵erences between individual frequencies
that we were unable to resolve. Multipoles at L < 8 are very
sensitive to the large mean-field correction on these scales, and
hence are sensitive to the fidelity of the simulations used to esti-
mate the mean field. As described above, our baseline cosmolog-
ical results therefore conservatively use only the multipole range
8  L  400.

The Planck measurements of C
��
L

are plotted in Fig. 3, where
they are compared to the predicted spectrum from the best-fitting
base-⇤CDM model of Sect. 3, and Fig. 4 shows the correspond-
ing broad redshift ranges that contribute to the lensing band pow-
ers in the ⇤CDM model. Fig. 3 shows that the lensing data are in
excellent agreement with the predictions inferred from the CMB
power spectra in the base-⇤CDM model (�2

e↵ = 8.9 for 9 binned
conservative band-power measurements, �2

e↵ = 14.0 for 14 bins
over the full multipole range; we discuss agreement in exten-
sions to the ⇤CDM model in more detail below). The lensing
data prefer lensing power spectra that are slightly tilted towards
less power on small scales compared to the best fit to the CMB
power spectra. This small tilt pulls joint constraints a small frac-
tion of an error bar towards parameters that give a lower lensing
amplitude on small scales. Parameter results from the full mul-
tipole range would be a little tighter and largely consistent with
the conservative band powers, although preferring slightly lower
fluctuation amplitudes (see PL2018).

As described in detail in PL2018, the lensing likelihood (in
combination with some weak priors) can alone provide ⇤CDM

Fig. 4. Contributions to the conservative CMB lensing band
powers (see text and Fig. 3) as a function of redshift in
the base-⇤CDM model (evaluated here, and only here, using
the Limber approximation (LoVerde & Afshordi 2008) on all
scales). Multipole ranges of the corresponding band powers are
shown in the legend.

parameter constraints that are competitive with current galaxy
lensing and clustering, measuring

�8⌦
0.25
m = 0.589 ± 0.020 (68 %, Planck lensing). (5)

Combined with BAO (see Sect. 5.1 below) and a baryon density
prior to break the main degeneracy between H0,⌦m, and �8 (de-
scribed in PL2015), individual parameters H0, ⌦m, and �8 can
also separately be constrained to a precision of a few percent. We
use ⌦bh

2 = 0.0222 ± 0.0005 (motivated by the primordial deu-
terium abundance measurements of Cooke et al. 2018, see also
Sect. 7.6), which gives

H0 = 67.9+1.2
�1.3 km s�1Mpc�1,

�8 = 0.811 ± 0.019,

⌦m = 0.303+0.016
�0.018,

9>>>>=
>>>>;

68 %, lensing+BAO. (6)

The constraints of Eq. (5) and (6) in are in very good agreement
with the estimates derived from the Planck power spectra and are
independent of how the Planck power spectra depend on the cos-
mological model at high multipoles. This is a strong test of the
internal consistency of the Planck data. The Planck lensing con-
straints in Eqs. (5) and (6), and the consistency of these results
with the Planck power spectrum likelihoods, should be borne in
mind when comparing Planck results with other astrophysical
data (e.g., direct measurements of H0 and galaxy shear surveys,
see Sect. 5).

In this paper we focus on joint constraints with the main
Planck power spectrum results, where the lensing power spec-
trum tightens measurements of the fluctuation amplitude and im-
proves constraints on extended models, especially when allow-
ing for spatial curvature.

A peculiar feature of the Planck TT likelihood, reported in
PCP13 and PCP15, is the favouring of high values for the lens-
ing consistency parameter AL (at about 2.5�). This result is dis-
cussed in detail in Sect. 6.2. It is clear from Fig. 3, however, that
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck

TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, c

EE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
c

EE

100

⌘
EE fit

= 1.021;
⇣
c

EE

143

⌘
EE fit

=

0.966; and
⇣
c

EE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E

spectra,
⇣
c

EE

100

⌘
TE fit

= 1.04,
⇣
c

EE

143

⌘
TE fit

= 1.0, and
⇣
c

EE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-

7
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Fig. 5. Constraints on parameters of the base-⇤CDM model from the separate Planck EE, T E, and TT high-` spectra combined
with low-` polarization (lowE), and, in the case of EE also with BAO (described in Sect. 5.1), compared to the joint result using
Planck TT,TE,EE+lowE. Parameters on the bottom axis are our sampled MCMC parameters with flat priors, and parameters on the
left axis are derived parameters (with H0 in km s�1Mpc�1). Contours contain 68 % and 95 % of the probability.

Table 1. Base-⇤CDM cosmological parameters from Planck TT,TE,EE+lowE+lensing. Results for the parameter best fits,
marginalized means and 68 % errors from our default analysis using the Plik likelihood are given in the first two numerical
columns. The CamSpec likelihood results give some idea of the remaining modelling uncertainty in the high-` polarization, though
parts of the small shifts are due to slightly di↵erent sky areas in polarization. The “Combined” column give the average of the
Plik and CamSpec results, assuming equal weight. The combined errors are from the equal-weighted probabilities, hence including
some uncertainty from the systematic di↵erence between them; however, the di↵erences between the high-` likelihoods are so small
that they have little e↵ect on the 1� errors. The errors do not include modelling uncertainties in the lensing and low-` likelihoods
or other modelling errors (such as temperature foregrounds) common to both high-` likelihoods. A total systematic uncertainty of
around 0.5� may be more realistic, and values should not be overinterpreted beyond this level. The best-fit values give a represen-
tative model that is an excellent fit to the baseline likelihood, though models nearby in the parameter space may have very similar
likelihoods. The first six parameters here are the ones on which we impose flat priors and use as sampling parameters; the remaining
parameters are derived from the first six. Note that ⌦m includes the contribution from one neutrino with a mass of 0.06 eV. The
quantity ✓MC is an approximation to the acoustic scale angle, while ✓⇤ is the full numerical result.

Parameter Plik best fit Plik [1] CamSpec [2] ([2] � [1])/�1 Combined

⌦bh
2 . . . . . . . . . . . . . 0.022383 0.02237 ± 0.00015 0.02229 ± 0.00015 �0.5 0.02233 ± 0.00015

⌦ch
2 . . . . . . . . . . . . . 0.12011 0.1200 ± 0.0012 0.1197 ± 0.0012 �0.3 0.1198 ± 0.0012

100✓MC . . . . . . . . . . . 1.040909 1.04092 ± 0.00031 1.04087 ± 0.00031 �0.2 1.04089 ± 0.00031
⌧ . . . . . . . . . . . . . . . . 0.0543 0.0544 ± 0.0073 0.0536+0.0069

�0.0077 �0.1 0.0540 ± 0.0074
ln(1010

As) . . . . . . . . . 3.0448 3.044 ± 0.014 3.041 ± 0.015 �0.3 3.043 ± 0.014
ns . . . . . . . . . . . . . . . 0.96605 0.9649 ± 0.0042 0.9656 ± 0.0042 +0.2 0.9652 ± 0.0042

⌦mh
2 . . . . . . . . . . . . 0.14314 0.1430 ± 0.0011 0.1426 ± 0.0011 �0.3 0.1428 ± 0.0011

H0 [ km s�1Mpc�1] . . . 67.32 67.36 ± 0.54 67.39 ± 0.54 +0.1 67.37 ± 0.54
⌦m . . . . . . . . . . . . . . 0.3158 0.3153 ± 0.0073 0.3142 ± 0.0074 �0.2 0.3147 ± 0.0074
Age [Gyr] . . . . . . . . . 13.7971 13.797 ± 0.023 13.805 ± 0.023 +0.4 13.801 ± 0.024
�8 . . . . . . . . . . . . . . . 0.8120 0.8111 ± 0.0060 0.8091 ± 0.0060 �0.3 0.8101 ± 0.0061
S 8 ⌘ �8(⌦m/0.3)0.5 . . 0.8331 0.832 ± 0.013 0.828 ± 0.013 �0.3 0.830 ± 0.013
zre . . . . . . . . . . . . . . . 7.68 7.67 ± 0.73 7.61 ± 0.75 �0.1 7.64 ± 0.74
100✓⇤ . . . . . . . . . . . . 1.041085 1.04110 ± 0.00031 1.04106 ± 0.00031 �0.1 1.04108 ± 0.00031
rdrag [Mpc] . . . . . . . . . 147.049 147.09 ± 0.26 147.26 ± 0.28 +0.6 147.18 ± 0.29

14

TE polarization spectra highly consistent with TT spectra 
EE spectra also consistent but still noisier
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•Consistency 
The CMB anisotropies in temperature and polarisation (TT, 
TE, EE), CMB lensing ΦΦ, as well as BAO, BBN, and SNIa 
measurements are all consistent, among themselves and across 
experiments, within ΛCDM 

•Robustness 
These probes allow many different checks of the robustness for the 
ΛCDM model and some of its extensions, including flatness, sum 
of neutrinos masses and effective number, DM 
annihilation limits, dark energy equation of state w(z), details 
of the recombination history (A2s⇾1, T0, and also fundamental 
constants variation, or any energy input...)

•Precision 
This network of consistency tests is passed with per cent level 
precision but for relative tensions (including AL, H0, S8) 

0.7% 
1.0% 
0.03% 
13% 
0.5% 
0.4%

Planck Collaboration: Cosmological parameters

Table 2. Parameter 68 % intervals for the base-⇤CDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f

TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to D

TT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh

2). The reionization redshift mid-point zre and optical depth ⌧ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck

TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

⌦bh
2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

⌧ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
�0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010
As) . . . . . . . 3.040 ± 0.016 3.018+0.020

�0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s�1 Mpc�1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

⌦⇤ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
�0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

⌦m . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
�0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056

⌦mh
2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034

�0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087

⌦mh
3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016

�0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

�8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ⌘ �8(⌦m/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
�0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

�8⌦
0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
�0.75 7.10+0.87

�0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109
As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031

�0.034 2.100 ± 0.030 2.105 ± 0.030

109
Ase
�2⌧ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
�0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z⇤ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
�1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r⇤ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22

100✓⇤ . . . . . . . . . 1.04097 ± 0.00046 1.04156 ± 0.00049 1.04001 ± 0.00086 1.04109 ± 0.00030 1.04110 ± 0.00031 1.04119 ± 0.00029

zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc�1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
�92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc�1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
�0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100✓s,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020

f
143
2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7

f
143⇥217
2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9

f
217
2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

3.2. Hubble constant and dark-energy density

The degeneracy between ⌦m and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s�1Mpc�1,

⌦m = 0.3166 ± 0.0084,

)
68 %, TT,TE,EE
+lowE. (13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-⇤CDM cosmology with minimal neutrino mass.

These estimates are highly model dependent and this needs to
be borne in mind when comparing with other measurements, for
example the direct measurements of H0 discussed in Sect. 5.4.
The values in Eq. (13) are in very good agreement with the inde-
pendent constraints of Eq. (6) from Planck CMB lensing+BAO.
Including CMB lensing sharpens the determination of H0 to a
0.8 % constraint:

H0 = (67.36 ± 0.54) km s�1Mpc�1 (68 %, TT,TE,EE
+lowE+lensing). (14)
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Table 2. Parameter 68 % intervals for the base-⇤CDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f

TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to D

TT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh

2). The reionization redshift mid-point zre and optical depth ⌧ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck

TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

⌦bh
2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

⌧ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
�0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010
As) . . . . . . . 3.040 ± 0.016 3.018+0.020

�0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s�1 Mpc�1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

⌦⇤ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
�0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

⌦m . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
�0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056

⌦mh
2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034

�0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087

⌦mh
3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016

�0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

�8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ⌘ �8(⌦m/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
�0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

�8⌦
0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
�0.75 7.10+0.87

�0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109
As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031

�0.034 2.100 ± 0.030 2.105 ± 0.030

109
Ase
�2⌧ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
�0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z⇤ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
�1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r⇤ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22

100✓⇤ . . . . . . . . . 1.04097 ± 0.00046 1.04156 ± 0.00049 1.04001 ± 0.00086 1.04109 ± 0.00030 1.04110 ± 0.00031 1.04119 ± 0.00029

zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc�1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
�92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc�1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
�0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100✓s,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020

f
143
2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7

f
143⇥217
2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9

f
217
2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

3.2. Hubble constant and dark-energy density

The degeneracy between ⌦m and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s�1Mpc�1,

⌦m = 0.3166 ± 0.0084,

)
68 %, TT,TE,EE
+lowE. (13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-⇤CDM cosmology with minimal neutrino mass.

These estimates are highly model dependent and this needs to
be borne in mind when comparing with other measurements, for
example the direct measurements of H0 discussed in Sect. 5.4.
The values in Eq. (13) are in very good agreement with the inde-
pendent constraints of Eq. (6) from Planck CMB lensing+BAO.
Including CMB lensing sharpens the determination of H0 to a
0.8 % constraint:

H0 = (67.36 ± 0.54) km s�1Mpc�1 (68 %, TT,TE,EE
+lowE+lensing). (14)

15
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Table 2. Parameter 68 % intervals for the base-⇤CDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f

TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to D

TT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh

2). The reionization redshift mid-point zre and optical depth ⌧ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck

TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits
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2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

⌧ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
�0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010
As) . . . . . . . 3.040 ± 0.016 3.018+0.020

�0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s�1 Mpc�1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

⌦⇤ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
�0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

⌦m . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
�0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056
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2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034

�0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087
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3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016

�0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

�8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ⌘ �8(⌦m/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
�0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

�8⌦
0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
�0.75 7.10+0.87

�0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109
As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031

�0.034 2.100 ± 0.030 2.105 ± 0.030

109
Ase
�2⌧ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
�0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z⇤ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
�1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r⇤ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22
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zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc�1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
�92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc�1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
�0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100✓s,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020
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2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7
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2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9
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2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

3.2. Hubble constant and dark-energy density

The degeneracy between ⌦m and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s�1Mpc�1,

⌦m = 0.3166 ± 0.0084,

)
68 %, TT,TE,EE
+lowE. (13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-⇤CDM cosmology with minimal neutrino mass.

These estimates are highly model dependent and this needs to
be borne in mind when comparing with other measurements, for
example the direct measurements of H0 discussed in Sect. 5.4.
The values in Eq. (13) are in very good agreement with the inde-
pendent constraints of Eq. (6) from Planck CMB lensing+BAO.
Including CMB lensing sharpens the determination of H0 to a
0.8 % constraint:

H0 = (67.36 ± 0.54) km s�1Mpc�1 (68 %, TT,TE,EE
+lowE+lensing). (14)
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what’s next ?

•Consistency 
The CMB anisotropies in temperature and polarisation (TT, 
TE, EE), CMB lensing ΦΦ, as well as BAO, BBN, and SNIa 
measurements are all consistent, among themselves and across 
experiments, within ΛCDM 

•Robustness 
These probes allow many different checks of the robustness for the 
ΛCDM model and some of its extensions, including flatness, sum 
of neutrinos masses and effective number, DM 
annihilation limits, dark energy equation of state w(z), details 
of the recombination history (A2s⇾1, T0, and also fundamental 
constants variation, or any energy input...)

•Precision 
This network of consistency tests is passed with per cent level 
precision but for relative tensions (including AL, H0, S8) 
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Gravitational waves

LISA
Gravitational 
waves with 

classical origin

LiteBIRD 
Gravitational 
waves with 

quantum origin

Big leap between LISA and LiteBIRD
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Primordial gravitational waves

B-Modes

Opportunity to probe the Cosmic Inflation but also to 
shed light on GUT-scale physics

Observational test of quantum gravity

Inflation

quantum fluctuations of 
spacetime

primordial gravitational waves

imprints on the CMB 
(B-modes: "vortex" in polarization)
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• dynamics of an homogeneous scalar field in a FRW geometry is given by 

• inflation happen when potential dominates over kinetic energy (slow-roll)

- where did V(Φ) comes from ?

- why did the field start in slow-roll ?
- why is the potential so flat ?

- how do we convert the field energy into particules ?

36

Inflation

reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface ⌧ = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time ⌧ ⌧ 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (�), dominates over its kinetic energy, 1

2
�̇
2. Inflation ends at �end when the

kinetic energy has grown to become comparable to the potential energy, 1

2
�̇
2 ⇡ V . CMB

fluctuations are created by quantum fluctuations �� about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field �, the inflaton. Here, we don’t

specify the physical nature of the field �, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

Z
d4

x
p

�g


1

2
R +

1

2
g
µ⌫

@µ� @⌫� � V (�)

�
= SEH + S� . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, S�. The potential V (�) describes the self-interactions of the
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scalar field. The energy-momentum tensor for the scalar field is

T
(�)

µ⌫ ⌘ � 2p
�g

�S�

�gµ⌫
= @µ�@⌫� � gµ⌫

✓
1

2
@
�
�@�� + V (�)

◆
. (62)

The field equation of motion is

�S�

��
=

1p
�g

@µ(
p

�g@
µ
�) + V,� = 0 , (63)

where V,� = dV

d�
. Assuming the FRW metric (1) for gµ⌫ and restricting to the case of a homogeneous

field �(t,x) ⌘ �(t), the scalar energy-momentum tensor takes the form of a perfect fluid (20) with

⇢� =
1

2
�̇
2 + V (�) , (64)

p� =
1

2
�̇
2 � V (�) . (65)

The resulting equation of state

w� ⌘
p�

⇢�
=

1

2
�̇
2 � V

1

2
�̇2 + V

, (66)

shows that a scalar field can lead to negative pressure (w� < 0) and accelerated expansion (w� <

�1/3) if the potential energy V dominates over the kinetic energy 1

2
�̇
2. The dynamics of the

(homogeneous) scalar field and the FRW geometry is determined by

�̈ + 3H�̇ + V,� = 0 and H
2 =

1

3

✓
1

2
�̇
2 + V (�)

◆
. (67)

For large values of the potential, the field experiences significant Hubble friction from the term H�̇.

6.2 Slow-Roll Inflation

The acceleration equation for a universe dominated by a homogeneous scalar field can be written as

follows
ä

a
= �1

6
(⇢� + 3p�) = H

2(1 � ") , (68)

where

" ⌘ 3

2
(w� + 1) =

1

2

�̇
2

H2
. (69)

The so-called slow-roll parameter " may be related to the evolution of the Hubble parameter

" = � Ḣ

H2
= �d ln H

dN
, (70)

where dN = Hdt. Accelerated expansion occurs if " < 1. The de Sitter limit, p� ! �⇢�, corresponds

to " ! 0. In this case, the potential energy dominates over the kinetic energy

�̇
2 ⌧ V (�) . (71)
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• According to single field, slow-roll inflationary scenario, quantum vacuum 
fluctuations excite cosmological scalar and tensor perturbations 

• with the definition of the tensor-to-scalar ratio “r”
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8 2 SCIENTIFIC POTENTIAL OF CMB MEASUREMENTS

Detecting tensor perturbations would also give us a measurement of the inflaton field excursion since
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MPl
' Ne

✓ r
8

◆1/2
. (3)

In this generic formula (known as the Lyth bound), MPl is the reduced Planck mass and Ne is the number of
e-folds probed in the observational window (in practice, Ne ' 7). This implies that the field excursion during
inflation can easily be of the order of, or even larger than the Planck mass depending on r. In fact, this leads
to a “natural” value of r, namely r ' 10�3, corresponding to a field excursion of the order of the Planck mass.
From an e↵ective field theory point of view this means that the higher order operators that are the “remnants”
of quantum gravity at the inflationary scale can become crucial and can a↵ect the shape of the inflationary
potential. This inflationary Ultra-Violet (UV) sensitivity can be turned to our advantage and used to probe
quantum gravity if one can reach the limit r ' 10�3.

Another consequence of a detection would be a measurement of the first derivative of the inflaton potential.
Indeed, the tensor-to-scalar ratio can be written as

r = 8M2
Pl

 
V�
V
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and, hence, a detection of the B-polarization would allow us to infer the first derivative of the inflaton poten-
tial, V�. This is important because, today, we only have a measurement of the second derivative, V��, and no
significant constraint of the higher derivatives. The constraint on V�� is derived from the measurement of the
scalar spectral index

nS � 1 ⌘
d lnP⇣
d ln k
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Planck has shown for the first time at the 5� level that nS , 1 (a crucial prediction of inflation) and has obtained
nS ' 0.96. Further improving the precision of the determination of nS , and possibly a detection of its variation
(the so-called running index), is of key interest for constraining models of inflation. Next generation can extend
the lever arm for nS , particularly in the polarization spectrum (EE-modes). It may indeed be possible to extend
the primary E-mode spectrum to multipoles of a few thousands because of the very low level of polarized
foregrounds at high ` (see § 3). It allows a direct determination of the primary metric fluctuation spectrum of
wave-modes of about k = 0.35 h/Mpc for an ` of about 5000 (the maximum values of ` and k are proportional).

A measurement of r would also significantly impact model building and model selection outlook since
precise observations of nS and r can bring constraints on specific models of inflation. In other words, with a
detection of B-polarization, our understanding of the shape of the potential would drastically improve, opening
the possibility to learn about the physical nature of the inflaton field. Of particular interest, the minimal Higgs
inflation (HI) model introduced before predicts r ' 10�3, see Fig. 4, a target already encountered before. As
a consequence, checking observationally whether the inflaton field is the Higgs field is within reach of – and
therefore an exciting goal for – future CMB experiments.

Of course, many other models than HI can also be constrained. This is also illustrated in Fig. 4 where
the predictions of a small field model, SFI4, have been displayed [The corresponding potential is given by
V(�) = M4[1 � (�/µ)p] where µ and p are two free parameters]. In fact preliminary studies on model selection
indicate that the next experiments should be able to exclude more than 4/5 of the vanilla scenarios (Martin et al.
2014c), as opposed to 1/3 for Planck which gives an idea of the constraining power of those observational
projects. It is very important to stress that this conclusion is true if a detection of B-modes is achieved but also
in the situation where only an upper bound on r is obtained.

Finally, the next generation of experiments will allow us to significantly improve our knowledge of reheat-
ing (the phase that concludes inflation). Again, this is illustrated in Fig. 4. For a given potential and for fixed
values of the free parameters characterizing the shape of the potential, di↵erent reheating histories lead to dif-
ferent points in the (nS , r) space. Those points can be inside or outside the experimental contours thus opening
the possibility to probe the reheating phase. We have already seen that Planck has obtained model-dependent
constraints corresponding to prior-to-posterior reduction of about 40%. Preliminary studies show that an ex-
periment such as CORE could raise this number to 90% (Martin et al. 2014c). Again, this conclusion is true
even if only an upper bound on r is obtained. In any case, obtaining relevant constraints on the reheating epoch
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2.1 The early universe 7

Figure 2: Existing and expected constraints on nS and r. The orange and yellow contours show the 68% and
95% confidence regions expected from the baseline configuration of COrE+. The possibility to improve the error
bars by delensing is not included in this forecast. The fiducial model is the Starobinsky R2 model [7]. The blue and
cyan contours show the Planck 2013 constraints, while the gray contours show the WMAP 9-year constraints. The
symbols show predictions of a few other well known inflationary models. The violet, yellow, and red regions show
vacuum-dominated convex potentials (V �� > 0), convex potentials vanishing at their minimum, and concave potentials
(V �� < 0; hilltop or plateau inflation), respectively.

parity ‘E mode’ and an odd parity ‘B mode’ [9, 10]. The scalar fluctuations produce only E modes, whereas
the tensor fluctuations produce both E and B modes. Thus B mode polarization o�ers a sensitive and highly
model-independent probe of tensor fluctuations.

Detection of the long wavelength, nearly scale-invariant tensor fluctuations is considered as an observa-
tional tell-tale sign that inflation occurred at energies a trillion times higher than the ones achieved by the
Large Hadron Collider (LHC) at CERN. At such high energies we may also see hints of quantum gravity.
Consequently, the main science goal of COrE+ will give us a powerful clue concerning how the Universe
began and the precise character of the fundamental laws of nature (i.e., how gravity and the other forces in
nature are unified).

Inflation is thought to be powered by a single energy component called ‘inflaton’. The precise physical
nature of the inflaton is unknown but it is often assumed to be a scalar field, just like the Higgs field recently
discovered by the LHC [11, 12]. The simplest models of inflation are based on a single scalar field � with
a potential energy density V (�). We can easily generalize to models involving more fields. The potential
energy drives the scale factor of the Universe to evolve as a(t) � exp(Ht) where H2 � (8�G/3)V (�). As a
result, the Universe is quickly driven to a spatially flat, Euclidean geometry, and any memory of the initial
state of the observable Universe is e�ectively erased, since a patch of space that undergoes inflation becomes
exponentially stretched and smoothed.

According to inflation, the large patch of the Universe that we live in originated from a tiny region in
space that was stretched to a large size by inflation. The original region was so tiny that quantum mechanics
played an important role. Namely, the energy density stored in the inflaton field � varied from place to
place according to the laws of quantum mechanics. This scalar quantum fluctuation is the seed for all the
structures that we see in the Universe today [6]. This is a remarkable prediction of inflation, which agrees
with all the observational data we have collected so far [8]. The only missing piece is the existence of tensor
quantum fluctuations, which would appear as long-wavelength gravitational waves propagating through our
Universe [7]. We wish to detect this using the B mode polarization of CMB.

An important prediction of inflation is that the scalar and tensor fluctuations are nearly, but not exactly,
scale-invariant—namely that the variance of fluctuations depends only weakly on the spatial length scale.
More specifically, the variance of fluctuations decreases slowly toward smaller length scales [6]. This behavior
in the scalar fluctuations has now been convincingly detected by WMAP [13, 14] and Planck [8]. While

7

Figure 4: Existing and expected constraints on nS and r. The orange and yellow contours show the 68% and 95% confi-
dence regions expected from the baseline configuration of a typical next generation medium size CMB space experiment
(specifically CORE+, as was proposed at ESA for the M4 call). The possibility to improve the error bars by delensing is
not included in this forecast. The fiducial model is the Higgs inflation model (or equivalently Starobinsky R + R2 model,
see text). The blue and cyan contours show the Planck 2013 constraints, while the grey contours show the WMAP 9-year
constraints. The symbols show predictions of a few other well known inflationary models. The purple, yellow, and red
regions show vacuum-dominated convex potentials (V�� > 0), convex potentials vanishing at their minimum, and concave
potentials (V�� < 0; hilltop or plateau inflation), respectively. Taken from Martin et al. (2014b).

of a quantum gravitational wave, clearly a breakthrough for quantum gravity (moreover, the amplitude of these
primordial gravitational waves cannot be seen by experiments such as LIGO or VIRGO, even by eLISA). In
fact, inflation is probably the only case in physics where an e↵ect based on general relativity and quantum me-
chanics leads to predictions that, given our present day technological capabilities, can be tested experimentally.
As a consequence, if any experimental signatures of quantum gravity is ever obtained, it is very likely that this
will be through the study of inflation and its cosmological predictions. Probing B-polarization precisely exem-
plifies the idea of using inflation as a tool towards a better understanding of the theoretical and observational
aspects of quantum gravity. In other words, our ability to see through the inflationary window has turned the
early universe into a laboratory for ultra-high energy physics at energies entirely inaccessible to conventional
experimentation.

Another crucial aspect related to a detection of the B-modes is that this would lead to a determination of the
energy scale of inflation which is, as recalled above, still presently unknown. More precisely the energy scale
of inflation is

V1/4(�) ' 1016 GeV
✓ r
0.01

◆1/4
, (2)

where V(�) is the potential of the inflaton field �. This determination of the energy scale is the primary goal
of any CMB missions. Determining the value r would undoubtedly be a major discovery, re-enforcing the
inflationary paradigm and it would set the stage for any subsequent theoretical attempts to build global models
of inflation. We would know how far from the Planck or string scale inflation proceeded.
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• According to single field, slow-roll inflationary scenario, quantum vacuum 
fluctuations excite cosmological scalar and tensor perturbations 

• with the definition of the tensor-to-scalar ratio “r” 
 

which characterises the amplitude of GW and gives direct constraints on 
the shape of the potential 

- energy scale of inflation 

- inflaton field excursion 

- derivative of the potential
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With frequency range from 34 to 448 GHz and access to large scales 
LiteBIRD will gives constraints on

39

Galactic science

Synchrotron Dust

- Characterisation of the foregrounds SED

- Large scale Galactic magnetic field

- Models of dust polarization grains
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Synergy with other probes

• Galaxy surveys

how gas traces the matter in the Universe

⊗
3D distribution of the matter 

(galaxy survey)

full-sky map of hot gas 
(thermal SZE)

improvement on ISW signal (~20%)

• Integrated Sachs-Wolf effect

improve our knowledge of the 
projected gravitational lensing 
produced by the large-scale 

structure 

LiteBIRD E-modes

CMB-S4 high-resolution

+

• Lensing


