SAMATAN LE 18 OCTOBRE 2018

INSTRUMENTATION OPTIQUE AUTOUR DE LA FA LASER : EXEMPLES D'APPLICATION

PRESENTATION DU LABORATOIRE PIMM

QUATRE équipes de recherche

COMET

Comportement et microstructure des métaux

P&C Polymères et composites

DYSCO

Dynamique structure, systèmes et contrôles

HUIT centres de ressources (CR)

Groupement des moyens techniques autour d'un champ d'expertise donné (LASER, microscopies, essais mécaniques,...)

Effectif de 140 membres

- 60 permanents;
- 69 doctorants;
- 11 post-docs / ATER.
- (~40 stagiaires par an)

ecnam

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

LASER **Procédés LASER**

PRESENTATION DE L'EQUIPE LASER

Effectif

- 5 chercheurs et enseignants chercheurs ;
- 4 IT ;
- 11 doctorants et 2 post-docs.

Moyens expérimentaux du CR LASER : deux plateformes

- Plateforme procédés thermiques LASER (FA, soudage, découpe, combustion);
- Plateforme choc laser (test d'adhérence LASAT, grenaillage photonique LSP).

Thématiques

- Étude de l'interaction laser/matière (couplage laser/poudre/ZF);
- Maîtrise et amélioration des procédés ;
- Simulation des procédés ;
- Microstructures et propriétés mécaniques ;
- Élaboration de matériaux innovants (composites, bi-matériaux);
- Traitements thermiques et mécaniques des matériaux.

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

PLATEFORME PROCÉDÉS THERMIQUES LASER : **MACHINES DE FA**

SLM SLM125HL (SLM Solutions)

- Volume utile : 125x125x75mm - Atmosphère neutre (Ar ou N₂) -> %O₂ ~ 100ppm - CFAO sous Magix

SLM **MACHINE PROTOTYPE** (ILS)

- Reproduction du processus d'étalement des machines industrielles - Intégration de 2 lasers - Intégration d'instrumentation

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

LMD **LENS 850R OPTOMEC**

INSTITU

ARTS

RANCILIENNE

PLATEFORME PROCÉDÉS THERMIQUES LASER : **BANCS INSTRUMENTES DE SLM**

BANC SLM n°1

Table à grande vitesse **Protection locale**

_

BANC SLM n°2 (fin 2018)

- Etude de l'interaction monocordon et multicordons
 - Etude matériaux
 - Test d'instrumentation
 - **Recherche paramétrique**

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

Tête scanner proche IR Enceinte de protection avec hublots de visualisation

PLATEFORME PROCÉDÉS THERMIQUES LASER : **BANCS INSTRUMENTES DE LMD**

BANC LMD n°1

- **Protection locale**
- -> 0₂ ~ 1000ppm
- Possibilité de chauffage par induction (> 400°C)

- Etude de l'interaction

- surface)
 - Test d'instrumentation
 - **Recherche paramétrique**

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

BANC LMD n°2 (2019) Banc de caractérisation des buses de projection

Etude et élaboration matériaux (composites, revêtements de

PLATEFORME PROCÉDÉS THERMIQUES LASER : EXEMPLES DE REALISATIONS

DL

SLM

Fusée de « Tintin »

Murs architecturés en 316L (éprouvettes mécaniques)

Pièce composite à matrice titane (TA6V + 3% B₄C)

Rehausse compresseur TA6V - Recalage 3D

Inducteur en 316L

RTS MÉTIERS

Moules d'injection plastique avec canaux de refroidissement Matériaux : 904L Dimensions : 100x83mm

e cnam

Dépôt alumjnium / TA6V

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

LMD

Réparation sommet Aube en MC2 (monocristal)

Dépôt TRIBALOY700 / Inox (utilisation d'un préchauffage à 500°C)

L'INSTRUMENTATION OPTIQUE **POURQUOI FAIRE ?**

_

Géométrie, champ de vitesse et température de la zone fondue

Simulation de la buse de projection

Sources : S.MORVILLE, COMSOL Int. Conf. (2010) S.MORVILLE, M. CARIN, J. Las.Appl. (2012) P.PEYRE, M.DAL, Icaleo'16 (2016)

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

RTS

FRANCILIENNE

OBSERVATION GENERALE DU PROCEDE SLM

Vision à travers le hublot d'une machine SLM125HL

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

OBSERVATION DE LA ZONE FONDUE EN SLM (1)

Laser fibre λ = 1070 nm (D_{spot} = 70-100 μ m)

A 0° d'inclinaison

dénudation

Visualisation sur banc instrumenté

Éjections + fumées + instabilités de la Zone Fondue → Contamination du lit de poudre, dégradation des matériaux

Source : Thèse V. GUNENTHIRAM

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

A 50° d'inclinaison

P = 520 W - V = 0,33 m/s

OBSERVATION DE LA ZONE FONDUE EN SLM (2)

Sources : Thèse V. GUNENTHIRAM WONG, Mat & Design (2017)

ARTS . CI **ET MÉTIERS** e cnam ParisTech

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

DIAGRAMME DE STABILITE DE LA ZONE FONDUE EN SLM

Diagramme pour un lit de poudre de 50µm

Rétrécissement de la zone stable si augmentation de l'épaisseur de poudre

Source : Thèse V. GUNENTHIRAM

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

FEDERATION FRANCILIENNE

CARACTERISATION DE SURFACE LIT DE POUDRE ET PARTIE FUSIONNEE

cnam

е

Dénudation

Surépaisseur

- Mise en évidence des zones dénudées

- Augmentation des projections avec l'augmentation de la VED
 - Phénomène de humping pour la VED la plus élevée

Dispositif lent

ETIERS

ParisTech

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

es dénudées Sugmentation de la VED VED la plus élevée

MESURE DE TEMPERATURE EN SLM (1)

Schéma d'une tête scanner instrumentée équipant une Renishaw AM250

Source : PAUL A. HOPPER, Additive Manufacturing 22 (2018)

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

INSTITUT

ARTS

ARNO

FEDERATION FRANCILIENNE DE MECANIQUE

MESURE DE TEMPERATURE EN SLM (2)

Chronogramme de la première ligne de remplissage de la couche 142 d'une forme rectangulaire

Source : PAUL A. HOPPER, Additive Manufacturing 22 (2018)

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

RTS

PROPRIETES MATERIAU REFLECTIVITE DU LIT DE POUDRE

Exemple de lit de poudre à caractériser

е

cnam

Signaux mesurés par la photodiode et réflectivités associées pour λ = 1030nm

- Réflectivités aux états solide et/ou liquide avec une précision de l'ordre de 1%
 - Configuration en réflexion spéculaire + diffusée
 - (configuration en réflexion spéculaire uniquement possible)

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

ParisTech

COMPORTEMENT D'UN LIT DE POUDRE FACE AU RAYONNEMENT LASER

Tir statique : 280 W (D_{spot} = 200 μm @ 5500Hz)

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

α [*] um²/s)	ΔH _{vap} (kJ/kg)	η (Pa.s)	σ (N/m)
5.3	6300	0.007	1.7
23	10900	0.0012	0.9

ANALYSE DE FAISCEAU (1) EXEMPLE SUR UNE TÊTE OPTIQUE DE LMD

Analyseur de faisceau PRIMES

Doigt avec un pinhole de 17µm

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

Spot « Top-Hat »

ecnam

ÉTIERS

ANALYSE DE FAISCEAU (2) EXEMPLE SUR UNE TÊTE OPTIQUE DE LMD

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

OBSERVATION DE LA ZONE FONDUE EN LMD

Dépôt d'un revêtement de surface base nickel sur substrat de 316L $P = 600W - V = 3,33mm/s - D_m = 5g/min$

Vue coaxiale

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

Rechargement d'une structure plane en TA6V $P = 600W - V = 3,33mm/s - D_m = 2,5g/min$

Vue latérale

MESURE DE TEMPERATURE EN LMD **CYCLE THERMIQUE**

Utilisation d'une caméra FLIR SC4000 + thermocouples de type K

ÉTIERS

ParisTech

CI

e cnam

Cycle thermique pour un rechargement de 20 couches

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

MESURE DE TEMPERATURE EN LMD **TEMPERATURE DES ZONES FONDUES**

Vue Coaxiale avec profil de température (Top-Hat)

Source : Thèse M. GHARBI

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

CONTROLE PROCEDE EN LMD EXEMPLE

Stabilisation directe dès le début du process

Action sur la puissance laser

Source : Thèse R. MEZARI

ANALYSE DU JET DE POUDRE (1) REPARTITION SPATIALE

ARTS ET MÉTIERS

ParisTech

a : poudre + gaz porteur **b** : gaz de protection des optiques

Vue de dessous de la buse

0.6 0,5 0,4 0,3 0,2 0,1

-1

-0,5

e cnam

INSTRUMENTATION OPTIQUE EN FA

-2

-1,5

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

Forme du jet au PFP

Concentration (u.a.)

ANALYSE DU JET DE POUDRE (2) CARTOGRAPHIE EN Z

-13,5mm

-9mm

-8,5mm

-4,5mm

ANALYSE DU JET DE POUDRE (3) VITESSE DES PARTICULES

Détermination de la zone de convergence

Matériau : Inconel 718 / 45-105µm

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

1000 images Maximum des intensités

ANALYSE DU JET DE POUDRE (4) VITESSE DES PARTICULES

CONTACTS AU PIMM

Contacts scientifiques

- Patrice PEYRE (patrice.peyre@ensam.eu)
 - → Interaction et matériaux en FA laser
- Morgane DAL (morgane.dal@ensam.eu)
 - → Simulation des procédés
- Matthieu SCHNEIDER (matthieu.schneider@ensam.eu)
 - → Interaction laser/matière

Contacts techniques

- Frédéric Coste (frederic.coste@ensam.eu)
 - → Instrumentation multiprocédés
- Corinne DUPUY (<u>corinne.dupuy@ensam.eu</u>)
 - → Experte machine SLM125HL et Magix
- Thierry MALOT (<u>thierry.malot@ensam.eu</u>)
 - \rightarrow Expert machine OPTOMEC et LMD

Site internet du labo : pimm.ensam.eu

ARTS ET MÉTIERS COTS le cnam ParisTech

INSTRUMENTATION OPTIQUE EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

MERCI !

LES POUDRES METALLIQUES EN FA

18 octobre 2018- SAMATAN cyril.gorny@ensam.eu

