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๏ The problem: High-Luminosity LHC 

๏ Why Deep Learning: a few application examples 

๏ Deploying Deep NNs online 

๏ HLT accelerated inference 

๏ L1 NN on FPGAs with HLS 

๏ Conclusions

Outline
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ML and HEP future 
challenges



HL-LHC: elephant in the room

!6

‣~200 collisions/event 
‣~minute/event processing time 
‣(at best)Same computing resources 
as today

This is when the R&D has to happen

‣~40 collisions/event 
‣~10 sec/event processing time 
‣(at best)Same computing resources as 
today

Today

5 interactions/beam cross 400 interactions/beam cross



HL-LHC: elephant in the room
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G. Cerati (UCSD) Vertex14 - 2014/09/18

Timing

10

• Both new seeding and cluster charge cut reduce timing of PixelLess and TobTec 
iterations by a factor 2x

• Benchmark timing and physics performance across releases and for di!erent pile-up
‣ TTbar samples with realistic alignment and calibration conditions

• PU scenarios:
‣ BX=25 ns, <PU>=25, 40, 70, 140 
‣ BX=50 ns, <PU>=25

• Iterative tracking time reduction (for BX=25 ns):
‣ 2x at PU=25, 3x at PU=40, 4x at PU=70

๏ Flat budget vs. more 
needs = current rule-
based reconstruction 
algorithms will not be 
sustainable 

๏ Adopted solution: more 
granular and complex 
detectors " more 
computing resources 
needed " more problems 

๏ Modern Machine Learning 
might be the way out



HL-LHC: elephant in the room
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The HGCAL Cells geometry
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To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Beam tests results
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๏ Flat budget vs. more 
needs = current rule-
based reconstruction 
algorithms will not be 
sustainable 

๏ Adopted solution: more 
granular and complex 
detectors " more 
computing resources 
needed " more problems 

๏ Modern Machine Learning 
might be the way out



•40 MHz in / 100 KHz out

•~ 500 KB / event

•Processing time: ~10 μs

•Based on coarse local reconstructions

•FPGAs / Hardware implemented

Data Flow
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The LHC Big Data problem



•100 KHz in / 1 KHz out

•~ 500 KB / event

•Processing time: ~30 ms

•Based on simplified global reconstructions

•Software implemented on CPUs
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The LHC Big Data problem



•1 KHz in / 1.2 kHz out

•~ 1 MB / 200 kB / 30 kB per event

•Processing time: ~20 s

•Based on accurate global reconstructions

•Software implemented on CPUs

Data Flow
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The LHC Big Data problem



•Up to ~ 500 Hz In / 100-1000 events 
out

•<30 KB per event

•Processing time irrelevant

•User-written code + centrally 
produced selection algorithms

Data Flow
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The LHC Big Data problem



๏ Possible  solution to the HL-LHC problem: modern Machine 
Learning to be faster and better in what we do today, 
freeing resources for new ideas 

๏ This ML deployment need to happen in between collisions and 
data analysis (trigger, reconstruction, …), where freeing 
resources will make a difference

Deep Learning and LHC Big Data
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High-Level  

Trigger
L1 

trig
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1 KHz  
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Faster Particle Reconstruction 
With Computer Vision



๏ (next generation) digital calorimeters: 3D arrays of sensors with 
more regular geometry 

๏ Ideal configuration to apply Convolutional Neural Network 

๏ speed up reconstruction at similar performances 

๏ and possibly improve performances

Calorimetry & Computer Vision
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are

See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ High granularity to 
distinguish individual 
particles even with many 
simultaneous collisions 

๏ Standard algorithms slowed 
down by combinatorial 

๏ 3D Convolutional Neural 
Networks much faster in 
going from raw data to 
answer 

๏ Need to develop models to 
guarantee same 
performances, possibly 
better

HGCAL: Why Deep Learning
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10.1. Reconstruction and detector performance 253

10.1.3 Direct 3D clustering

The same imaging algorithm that is described in the previous section can be extended to cluster
directly in three dimensions. The cells are first assigned positions in a 3D (x, y, z) space. Since
the sensitive cells of the HGCAL are non-projective, one simple way of doing this is to project
their h, f positions to a chosen plane (for example the first layer of the calorimeter) and assign
the x, y position in that plane (i.e. creating a pseudo-projectivity). The z position assignment
used in the first tests of this algorithm was simply the true geometric z position, but proba-
bly more optimized choices involving scaling to the absorber thickness in terms of the energy
loss, dE/dx, between the cells might be useful, since the distance metric affects the algorithm
behaviour.

The density is defined using a 3D kernel, and the algorithm proceeds in the same way as the
2D algorithm.

Figure 10.1 shows a display of two pions, separated by 30 cm clustered by the direct 3D clus-
tering algorithm. This work is still exploratory and the algorithm has not been studied in a full
pileup environment. Detailed optimization needs to be done before having a working recon-
struction system using direct 3D clustering.

Figure 10.1: Direct 3D clustering of a charged pion shower in HGCAL. The hits included in the
reconstructed clusters of two pions, at h = 2, separated by 30 cm, are shown by red and green
dots. The dark blue dots are unclustered hits from noise.

10.1.4 Reconstruction using machine learning

A preliminary exploration of the application of machine-learning techniques to HGCAL recon-
struction and particle identification has been made. It is presented here as an illustration of the
potentialities of the rich and detailed information provided by the calorimeter. Exactly how
such techniques could best be exploited in the context of a complete detector reconstruction
program is a question for future study.

Deep neural networks (DNNs) have brought significant advances to a variety of fields in the
last decade, also enabled by developments in computing hardware. In contrast to shallow neu-
ral networks or standard boosted decision trees, widely used in high-energy physics for classi-
fication problems, deep neural networks allow for designs that efficiently exploit the structure



HGCAL: DL reconstruction
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10.1. Reconstruction and detector performance 255

Since the scale of the total energy deposits for those particles can differ by orders of magnitude,
the DNN must provide a good discrimination performance to achieve such resolution. As
shown in Fig. 10.3, showers stemming from charged pions and muons can be well disentangled,
in particular for high muon transverse momenta. Also more differences in the shower shapes
of electromagnetic showers and hadronic showers can be detected well.
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Figure 10.3: Efficiency for the discrimination of a muon from a charged pion (left) and for the
discrimination between an electromagnetic shower from an electron or photon and showers
from charged pions (right).

10.1.5 SimClusters

It has been found useful to also create ”SimClusters”, which are three-dimensional clusters of
calibrated RecHits (i.e. just like the multiclusters) where the pattern recognition is done using
Monte Carlo truth information, and each SimCluster corresponds to a simulated particle at
the front face of the calorimeter. After a superclustering step for photons and electrons, and
a track matching, and particle interpretation step, again using Monte Carlo truth information,
the resulting candidates can be fed into the existing CMS particle flow and physics object re-
construction system. The result of such a procedure is intrinsically optimistic about some of the
performance characteristics to be expected of a full reconstruction not using Monte Carlo truth
information, most notably about the ability to distinguish and separately cluster overlapping
showers. To better simulate performance on data, algorithms have been introduced to merge
showers that must be considered indistinguishable, and to share deposited energy between
distinguishable but nearby showers in a realistic way. These algorithms are based on the rel-
ative magnitude of energy deposited in a layer by the overlapping showers, and the distance
between them.

10.1.6 Electromagnetic energy resolution

The electromagnetic energy resolution of the HGCAL has been studied using a GEANT simula-
tion in which the geometry of the calorimeter is as described in the engineering sections of this
document, both in terms of the longitudinal structure and the lateral cell sizes. An exception to
this is that the sensors with a sensitive thickness of 120 µm are modelled by 100 µm thickness
silicon (together with the higher noise and lower charge collection of 100 µm).

The response to photons which do not convert in the tracker material was studied, both in the
absence of pileup, and with averages of 140, and 200 pileup events per bunch crossing. An
investigation was made of varying size of the region used to estimate the energy. Results for a
mean of 200 pileup events per bunch crossing have been shown in Section 5.1.3.

254 Chapter 10. Reconstruction and detector performance

of the data and can therefore process input having a large dimensionality. In this context,
the sensor signals from the HGCAL can be interpreted as 4-dimensional energy images or 3-
dimensional images with an energy and a time colour dimension.

To limit the number of inputs to the DNN, a cone in DR = 0.1 around each particle entering
the first HGCAL layer is defined based on MC truth information. However, the same approach
can be applied using e.g. local energy maxima or multiclusters as seeds while extending the
network to identify those seeds not associated to a real particle.

Typically, computer-vision networks consist of a set of convolutional layers [56] that exploit
the translation invariance of the input data. In each network layer, a kernel covering a selected
number of adjacent squared pixels is moved over the image to find structures such as edges or
areas, requiring a homogeneous spatial and colour resolution, which contradicts the HGCAL
design. Therefore, the 3D image with uniform pixel size is built in a first step by overlaying
a coarse squared grid on each HGCAL layer with up to 6 cells in each pixel. A small DNN
with two layers consisting of 32 and 16 nodes collects the time and energy information from
all contributing cells taking into account their relative position within the pixel. The third
dimension is defined by the HGCAL layer number. The resulting uniform 3D image is fed
through two blocks of convolutional networks in parallel. One consists of 4 layers with kernels
of similar size as typical hadronic showers in h and f but shorter in the number of covered
HGCAL layers, and the other comprises 3 kernels very narrow in DR, spanning over a larger
range with respect to the shower depth, optimised for muon reconstruction. The output of both
is merged and fed through two dense network layers with 64 and 32 nodes. The final output
nodes predict the particle type and the particle energy.

The network is trained using electrons, muons, photons and charged pions generated with
uniform pT between 2 and 100 GeV, restricted to 2.3 < |h| < 2.5, and flattened in energy.
Photons that convert into an e+e� pair within the first 200 cm in z direction are discarded. The
sample consists of 600,000 particles with 0 PU and 400,000 particles with 200 PU. Between 4 and
12 particles are generated per event and endcap, resulting in partially overlapping showers.
The sample used to evaluate the performance is separate from the training sample.

The energy resolution achieved by the current network for hadron showers from charged pions
is shown in Fig. 10.2.
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Figure 10.2: Energy resolution for charged pions using only HGCAL information. The last bin
includes overflow.

๏ State-of-the-art performances in terms of particle 
identification & energy measurement 

๏ Sizeable speed-up at reconstruction time 

๏ Can get even better performances with model optimization 



๏ New hardware + new 
techniques = new 
opportunities & paradigm 
breaking 

๏ Muon reconstruction with 
calorimeters

HGCAL: Opportunities
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Since the scale of the total energy deposits for those particles can differ by orders of magnitude,
the DNN must provide a good discrimination performance to achieve such resolution. As
shown in Fig. 10.3, showers stemming from charged pions and muons can be well disentangled,
in particular for high muon transverse momenta. Also more differences in the shower shapes
of electromagnetic showers and hadronic showers can be detected well.
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Figure 10.3: Efficiency for the discrimination of a muon from a charged pion (left) and for the
discrimination between an electromagnetic shower from an electron or photon and showers
from charged pions (right).

10.1.5 SimClusters

It has been found useful to also create ”SimClusters”, which are three-dimensional clusters of
calibrated RecHits (i.e. just like the multiclusters) where the pattern recognition is done using
Monte Carlo truth information, and each SimCluster corresponds to a simulated particle at
the front face of the calorimeter. After a superclustering step for photons and electrons, and
a track matching, and particle interpretation step, again using Monte Carlo truth information,
the resulting candidates can be fed into the existing CMS particle flow and physics object re-
construction system. The result of such a procedure is intrinsically optimistic about some of the
performance characteristics to be expected of a full reconstruction not using Monte Carlo truth
information, most notably about the ability to distinguish and separately cluster overlapping
showers. To better simulate performance on data, algorithms have been introduced to merge
showers that must be considered indistinguishable, and to share deposited energy between
distinguishable but nearby showers in a realistic way. These algorithms are based on the rel-
ative magnitude of energy deposited in a layer by the overlapping showers, and the distance
between them.

10.1.6 Electromagnetic energy resolution

The electromagnetic energy resolution of the HGCAL has been studied using a GEANT simula-
tion in which the geometry of the calorimeter is as described in the engineering sections of this
document, both in terms of the longitudinal structure and the lateral cell sizes. An exception to
this is that the sensors with a sensitive thickness of 120 µm are modelled by 100 µm thickness
silicon (together with the higher noise and lower charge collection of 100 µm).

The response to photons which do not convert in the tracker material was studied, both in the
absence of pileup, and with averages of 140, and 200 pileup events per bunch crossing. An
investigation was made of varying size of the region used to estimate the energy. Results for a
mean of 200 pileup events per bunch crossing have been shown in Section 5.1.3.



๏ Tracking is the pattern-recognition task that builds particle trajectories 
from a set of recorded hits 

๏ One of the slowest tasks we perform to reconstruct particles in LHC 
collisions 

๏ Non-linear slow-down with number of simultaneous collisions, due to 
combinatoric effects
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CA-based HitChain Maker
• The CA is a track seeding algorithm designed for parallel architectures
• It requires a list of  layers and their pairings
– A graph of  all the possible connections between layers is created
– Doublets aka Cells are created for each pair of  layers (compatible with a region hypothesis)

9

See talk by my evil twin on this afternoon, Track 1

Tracking



๏ Works in three steps 

๏ seeding: start from pair of hits in the 
inner detector 

๏ hit-to-track association: propagate the 
seed and look for hits close ton the 
predicted trajectory 

๏ Track fitting: measure the track 
parameters (particle energy) from a fit 
of the points to an helix trajectory
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Tracking

07/05/16 DS@HEP2016, Simons Foundation, vlimant@cern.ch 32

Seeding

● Combinatorics of 2 or 3 hits
with tight/loose constraints
to the beam spot or vertex

● Seed cleaning/purity plays
in an important in reducing
the CPU requirements of
sub-sequent steps
➔ Consider pixel cluster

shape and charge to
remove incompatible
seeds

● Initial track parameters from
helix fit

07/05/16 DS@HEP2016, Simons Foundation, vlimant@cern.ch 33

Pattern Recognition
● Use of the Kalman filter

formalism with weight matrix

● Identify possible next layers
from geometrical considerations

● Combinatorics with compatibles
hits, retain N best candidates

● No smoothing procedure

● Resilient to missing modules

● Hits are mostly belonging to one
track and one track only

● Hit sharing can happen in dense
events, in the innermost part

● Lots of hits from low momentum
particles

07/05/16 DS@HEP2016, Simons Foundation, vlimant@cern.ch 36

Track Fitting

● Use of the Kalman filter
formalism with weight
matrix

● Use of smoothing
procedure to identify
outliers

● Field non uniformity are
taken into account

● Detector alignment
taken into account



๏ The detector sees the charge deposited by the crossing 
particle: a hit 

๏ A hit is a window of sensors (16x16 here) with its deposited 
charge. This can be seen as a sparse digital image. 

๏ Given two images, one can train a network to decide if a pair 
of hits is a good or bad match

Deep Learning to the Rescue

 21

CNN

12

• Typical binary classification problem : keep true doublets & reject fake doublets
• Hit is a 15x15 pixel pad/image 
• Cluster centered
• pattern recognition problem : suitable for a Convolutional Neural Network approach



Table 1: Layer map network scores for train,validation and test dataset.

TN/N at fixed TP/P TP/P at fixed TN/N

AUC Acc TP/P = 0.99 TP/P= 0.999 TN/N=0.99 TN/N=0.5

Train 0.982 0.940 0.85426 0.6706 0.5896 0.9997
Test 0.982 0.941 0.8542 0.6709 0.5899 0.9996
Val 0.982 0.939 0.8525 0.6707 0.5948 0.9996

3 Model testing and results100

Once tested and tuned on a smaller sample, the model has been trained on the whole dataset (2.5M101

doublets) split in ten batches of 250k doublets in order to fit the available memory. The model has102

been trained with a categorical cross entropy loss function [?], using Adam [?] optimizer and accuracy103

as evaluation metric. At each batch training iteration the weights and the parameters of the trained104

network are passed to the next step. This procedure has been carried out for 20 global epochs on the105

whole dataset and each iteration is run with an early stopping callback, that is a form of regularization106

used to avoid over-fitting. It stops the network training when the selected metric (validation accuracy107

in our case) does not improve for a given number of consecutive epochs, denoted as patience (p=25108

for the layer map setup). The training took about 5 days on a NVIDIA Tesla K20 node.109

Figure ?? shows the model accuracy for train and validation dataset versus the number of training110

epoch for the first 250k batch. Validation curves follow the same trend as the training ones and this111

indicates that the network is not over-fitting on the training data. Note that the validation accuracy is112

always greater than the training one. This behavior depends on the fact that dropout layers are turned113

off when the network process the validation data. Therefore the network has more connections and114

neurons active thus is more complete and accurate.115

The ROC curves for validation, test and training dataset, shown in Figure ??, completely overlay each116

other, and the area under the curves (AUCs) is more than 0.98. While assuring a 0.99 efficiency (true117

positive rate), network’s sensitivity (true negative rate) reaches 0.85. The highest accuracy reached118

is about 0.94 for all the three datasets. See Table 1 for further network performance results. The119

normalized output score, namely the network estimated probability that a doublet is true (ptrue) shows120

optimal separation between fake and true doublets sample. Both train and test ptrue distributions121

are plotted in Figure 3 and the cut for an efficiency of 0.99. In order to compare them a two sided122

Kolmogorov-Smirnov test has been performed. This tests whether two samples are drawn from123

the same distribution [?]. For both true and fake histograms, the resulting score is KS ⇡ 0.070124

corresponding to a p-value of pval ⇡ 0.961, that assures us that the two histogram come from the125

same distribution with a very high level of confidence.126

4 Conclusions and acknowledgments127

In conclusion, the results described show that CNN techniques for mitigating combinatorial explosion128

look very promising and need to be further explored. Ongoing work includes the verification of the129

Figure 3: Network score for true (blue) and
fake (doublets) for train (filled histogram) and
test dataset (diamond markers). In purple the
0.94 accuracy threshold. In green the 0.99
efficiency threshold.

4

๏ The final model uses two sets of 
inputs: 

๏ the hit images  

๏ a set of expert features (e.g., 
position of the hits in the 
detector) to help the learning 
process 

๏ The trained model shows a good 
separation of true vs fake seeds 

๏ One can reduce the fake rate by one 
order of magnitude with a few % loss 
in efficiency 

PixelSeed ConvNN
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2.1 Doublet Hits Cluster Shape68

As described above, while building seeds, the compatibility between two hits is evaluated only on the69

basis of geometrical considerations. A possible way of reducing the doublet fake ratio is taking into70

account that each hit is actually a cluster of pixels with its own shape. Each pixel is characterized by71

its 16-bit A.D.C. level (maxADC = 216 � 1) and its local position (x, y) on the layer, where x is the72

azimuthal direction in the barrel detector and radial direction in the forward detectors. Then a single73

hit can be considered as a collection of three vectors: the x, the y and the ADC levels of each of its74

pixels. For each hit a 15⇥15 squared matrix M is built with the pixel local x on the rows and the75

local y on the columns. The matrix center is matched with the hit center of charge and each element76

mij is set to the A.D.C. level of the corresponding (xi, yj) pixel. Those pixels that stride over the77

hit cluster boundaries are set to zero (zero-padding technique).With this procedure each doublet can78

be considered as a collection of two 15⇥ 15 matrices, an example is shown in Figure 2, or as a two79

channel 2D image (n⇥m⇥ r = 15⇥ 15⇥ 2). Thus the rejection of fake doublets is reduced to an80

image/pattern recognition task, perfectly suitable for being dealt with CNNs.81

2.2 Doublet dataset: generation and features82

To test the feasibility of this kind of approach, the generation (via PYTHIA 8 [?]) and the reconstruc-83

tion of tt̄ events at energy of the center of mass of
p
s = 13 TeV, with average pileup < PU >= 3584

and bunch time spacing of 25 ns has been simulated within the CMS software framework (CMSSW85

[?]). For each event, both all the doublets produced and all the MC matched reconstructed tracks,86

i.e. associated with a tracking particle, are collected. A doublet is then labeled as true only if it is87

formed by pixel hits belonging to the same MC matched track. About 106 doublets are produced per88

each event and the ratio between true and fake doublets is between 300-400. For each doublet 53789

parameters are stored:90

• 225 + 225 pixels for the inner and the outer hit;91

• 63 doublet features defined for each doublet and that include detector information and92

further hit and cluster characteristics;93

• 24 track labels defined only for MC matched doublets, e.g. the corresponding track vertex94

coordinates, pt and eta;95

On the whole, 1000 events are simulated, 800 for the training dataset, 150 for testing and 50 for96

validation. The training and the validation set are balanced so that the ratio between fake and true97

doublet is one. The whole balanced training dataset is composed of approximately 2.5 millions98

doublets.99

Figure 2: Layer map model architecture

3
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• Accuracies and loss function for train and validation sets on GTX1080
– Train:0.909
– validation:0.911
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

15

kt

anti-kt

• choice of jet 
algorithm matters 

• GRU “gating” 
improves 
performance

anti-ktkt

Particle (language) processing
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๏ CMS uses particle flow for event reconstruction: 

๏ At some point in the central processing, collision 
images are turned into a list of particles.  

๏ From these particles, complex objects (e.g., jets) are 
formed 

๏ In this framework, Computing vision approaches are not 
necessarily ideal 

๏ One can instead use language-processing approaches (e.g., 
recurrent neural networks 

๏ particles are words in a sentence 

๏ QCD is the grammar



๏ A network architecture 
suitable to process an 
ordered sequence of inputs 

๏ words in text processing 

๏ a time series 

๏ particles in a list 

๏ Could be used for a single 
jet or the full event  

๏ Next step: graph networks 
(active research 
direction)

Recurrent Neural Networks

 25

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20
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A typical example: leptonic triggers  

๏ at the LHC, producing an isolated 
electron or muon is very rare. 
Typical smoking gun that something 
interesting happened (Z,W,top,H 
production)-> TAKE THEM! 

๏ Triggers like those are very central 
to ATLAS/CMS physics 

๏ The sample selected is enriched in 
interesting events, but still 
contaminated by non-interesting ones 

๏ Can we clean this up w/o biasing the 
physics? yes, with ML

A Topology Classifier

 26 See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf
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Photons

Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward

Charged Tracks Neutral Hadrons

Figure 2: An example of a tt̄ event as the input of the raw-image classifier.

hexagons for neutral hadrons. The images are digitized as arrays of size 5⇥ 150⇥ 94, where each
of the first four channels contains a separated particle class, and the last channel contains the E

miss
T ,

represented as a circle. As an example, the abstract representation for the event in Fig. 2 is shown in
Fig. 3.

This abstract representation allows mitigating the sparsity problem of the raw images. On the other
hand, there is no guarantee that the physics information is fully retained in this translation. As a result,
there could be a reduction of discrimination power. This is one of the points we aim to investigate in
this study.

(a) Photons (b) Charged Particles (c) Neutral Hadrons

(d) Lepton (e) Emiss
T

Figure 3: Example of a tt̄ event, represented as a 5-channel abstract image.

3 Model description

In this section, we describe five types of multi-class classifiers, trained on the four data representations
described in the previous section. We start by considering a state-of-the art HEP application, based
on the high-level features listed in Sec. 2. We then consider a convolutional neural network taking as
input the raw images. This model offers the baseline point of comparison for the classifier using the
abstract images. In order to have a fair comparison between the two approaches, the same kind of
network architecture is used for the two sets of images. Next, we consider recurrent neural networks
based on LSTMs and GRUs, trained directly on the lists of 801 particles. Finally, we consider a
classifier taking both the high-level features and the list of 801 particles as inputs, using a combination
of recurrent neural networks and fully connected neural networks.

The CNNs are implemented in PyTorch [12]. The recurrent neural networks and feed-forward
neural networks are implemented in Keras and trained using Theano [13] as a back-end. The Adam
optimizer [14] is used to adapt the learning rate. The training is capped at 50 epochs, and can be
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5

A Topology Classifier



Selection performances

 28

Can select 99% of the top events and reduce 
the fraction of written events by a factor ~ 7 

(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ⇠ 690 Hz, more than a factor
two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ⇠ 280 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
large that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:
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The pileup problem

 30

๏ Pileup introduces noise to any reconstruction algorithm 

๏ Usually, one runs a PU subtraction algorithms first 

๏ Usually based on global information of the event (average occupancy vs observed 
local occupancy) 

๏ OK offline, sort of OK @HLT, complicated @ L1  

๏ State-of-the-art algorithms (Softkiller, PUPPI) improved situation dramatically wrt Run 
I  

๏ Now ATLAS and CMS deal with ~40 collisions/bunch crossing with no problems

Figure 1. Depiction of the effect of CHS. The full event (left), the event after CHS is applied
(middle) and the Ground Truth (right) are shown. Particles from the LV are shown in orange (dark)
and those from pileup in blue (light).

we dub PUPPIML. In addition, a model based on fully-connected Neural Networks and one
based on Gated Recurrent Units (GRU) [5] are presented for comparison.

We take as starting point for our study the PileUp Per Particle Identification (PUPPI) [1]
algorithm. Unlike many other pileup-removal algorithms, PUPPI is designed to assign a
weight to each particle. The weight quantifies how likely it is that a particle might have
originated from the Leading Vertex and is computed using the quantity:

↵�
i = log

X

j2event
⇠ij ⇥⇥(�Rij < Rmin)⇥⇥(�Rij < R0) , (1.1)

where i is the label of the considered particle in the event and ⇠ij = pTj/�R�
ij . �Rij =p

��2 +�⌘2 is the distance between the i-th and j-th particle in the plane identified by
the pseudorapidity ⌘ and the azimuthal angle �. R0 = 0.3 defines a cone around the i-th
particle and Rmin = 0.02 removes the region surrounding the i-th particle. In Ref. [1], ↵1

i is
found to be the optimal metric to quantify the so-called PUPPI, weight, based on the per-
event ↵1

i distribution. When Charged Hadron Subtraction (CHS, see Section 2) is applied
upstream to PUPPI, the sum in Eq.(1.1) is performed over the charged particles from the
LV, as opposed to the full event.

2 Related work

Owing to the CMS [6] and ATLAS [7] vertex resolution, charged particles from pileup
can be accurately removed, based on their vertex information, in particular in the central
region. This technique, referred to as CHS, greatly simplifies the problem, as can be seen
in Figure 1. The main challenge becomes correcting for the neutral pileup contribution,
for which sufficient vertex information is typically unavailable. Early approaches, such as
the area-subtraction method [8–11] employed in LHC Run I (2009-2012) analyses, correct
the event based only on the characteristic per-event pileup energy density. While they help
in obtaining unbiased estimates of the jets four-momenta, they are affected by a serious
resolution loss with increasing number of pileup interactions, even when extended to jet

– 2 –



๏ Graph networks can be seen as 
generalization of Conv NN 

๏ Network learns from single 
“pixel” (graph node) and its 
neighbours 

๏ The concept of neighbour is not 
driven by geometrical proximity 

๏ Instead, what is “close” and 
what is not depends on 
connections (graphs) which are 
learned in the training 

๏ We used a Gated Graph NN to 
decide if a given particle is 
from PU or not, based on its 
neighbours charged particles 
(which can be tracked to a vtx) 
are pileup or not

Graph Networks
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Figure 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by
linking local particles together, after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and
including a residual connection from the first to the third layer. This is then passed, individually per
graph node, to a fully-connected network that outputs a [0,1] pileup classification score. Adam is
used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network
is checked to be a well-calibrated probability.

includes global (⇢, ⇢C , ⇢N ) and local (↵C
i ,↵

F
i ) features, the network has no mechanism by

which to learn any of these types of features by itself. Multiple architectural changes can
be considered such that these quantities could be learned by the network.

We first examine a Neural Network with a GRU, taking as input the full list of particles
in the event ordered by decreasing pT , but still outputting a per-particle label. In particular,
we make use of a bidirectional layer and concatenate its output to each particle’s features.
We show that this does not improve classification performance and theorize that, since one
of the crucial considerations in determining whether a particle comes from the LV is its local
neighborhood, it is complicated to choose a global ordering that will aid in this matter.

This last consideration leads to the introduction of Graph Neural Networks, where we
choose to determine pairwise connections by distances in the (⌘,�) space. Our first at-
tempts, based on Graph Convolutional Networks [29], including their attentive variant [30],
showed clear improvements in per particle pileup classification performance with respect to
our fully-connected baseline. Best performances were obtained using Gated Graph Neural
Networks [4]; these achieved state-of-the-art performance in multiple notable graph prob-
lems and, crucially for our work, allow for a sparse implementation, making it feasible to
consider the full event.

A GGNN can be considered a special type of Message Passing Neural Network [31].
Given a graph G = (V, E) with vertices v 2 V and directed edges of discrete types t, et 2 E ,
we let each node be represented by a 1-dimensional feature vector at the i-th time-step hi

v.
The initial node representation corresponds to the input features xv possibly padded with
zeros since the size of hi

v, h, is taken to be fixed (4.1). At each time-step i we perform two
operations. First, for each node v we generate per neighbour vj an incoming message aiv,vj
through multiplication with a learnable matrix At, different for each node type and of size
h⇥h (4.2). Second, all the incoming messages are averaged, maintaining graph isomorphism
invariance, and the node is updated according to one step of a Gated Recurrent Unit, taking
as initialization for its memory cell the node representation from the previous time-step hi�1

v

and as input the averaged incoming message (4.3).
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๏ Improve state-of-the-art 
algorithms substantially 

๏ Little dependence of algorithm 
tuning on pileup conditions 

๏ Small/No performance loss with 
average number of PU collisions

PUPPIML: Graph Nets for PU subtraction
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nPU 20 (CHS) 80 (CHS) 140 (CHS) 80 (No CHS)
pT 92.3% 92.3% 92.5% 64.9%

PUPPI weight 94.1% 93.9% 94.4% 65.1%
Fully-connected 95.0% 94.8% 94.8% 68.5%

GRU 94.8% 94.8% 94.7% 68.8%
GGNN 96.1% 96.1% 96.0% 70.1%

Table 1. Area under the curve for the different discriminating variables and models. The best
results are highlighted in bold.

Figure 3. Receiver Operating Characteristic (ROC) curve for our proposed features and models
(zoomed in). The PUPPI weight and pT are included as an indicator of the expected performance
of PUPPI and SoftKiller respectively. GGNN outperform other proposed architectures. Since CHS
is applied and assumed perfect, the curves do not cross the points (0,0) and (1,1) (not shown here).

results, we only consider the performance of our GGNN and the state of the art algorithms
from here on. We tune R1 = 0.3 and N0 = 5 to maximize the area under the curve. We
fix the particle cut to pcut = 0.4 (nPU = 20) and pcut = 0.35 (nPU = 80, nPU = 140)
so as to minimize the offset between the reconstructed and the LV observables. We find
that minimizing the offset for one observable also approximately minimizes the offset for
all other observables.

Figure 4 shows the effect of running our proposed approach on an event at nPU = 20.
The reconstructed event is shown on the bottom left, with particles represented as dots sized
according to their pT . Dots are colored as orange (dark) if they come from the LV and blue
(light) if they originate from pileup interactions. The event is also shown as reconstructed
by PUPPI (bottom left) and by SoftKiller (bottom center). Moreover, we show the ground
truth on the top left and the unprocessed event on the top right. Similarly, Fig. 5 shows
the effect of the algorithms, using the same plotting conventions, on three jets at nPU = 80.
We note qualitatively that PUPPIML improves on the state-of-the-art approaches, removing
some low-pT pileup particles close to the jet that PUPPI does not (dotted ellipses), and
removing some high-pT particles far away from the jet that SoftKiller does not (dashed
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Abstract: At the Large Hadron Collider, the high transverse-momentum events studied by
experimental collaborations occur in coincidence with parasitic low transverse-momentum
collisions, usually referred to as pileup. Pileup mitigation is a key ingredient of the online
and offline event reconstruction as pileup affects the reconstruction accuracy of many physics
observables. We present a classifier based on Graph Neural Networks, trained to retain
particles coming from high-transverse-momentum collisions, while rejecting those coming
from pileup collisions. This model is designed as a refinement of the PUPPI algorithm [1],
employed in many LHC data analyses since 2015. Thanks to an extended basis of input
information and the learning capabilities of the considered network architecture, we show
an improvement in pileup-rejection performances with respect to state-of-the-art solutions.
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Figure 5. Depiction of the effect of running the different pileup mitigation algorithms on three
jets at nPU = 80. Particles from the Leading Vertex are shown in orange (dark) and pileup particles
are shown in blue (light). From left to right for each jet (i.e., each row), we show the ground truth,
the jet contaminated by the parasitic interactions, and the reconstructed jet after running PUPPI,
SoftKiller and our approach, PUPPIML. PUPPIML seems to improve on PUPPI by eliminating some
of the low pT particles close to jets (dotted ellipses) and on SoftKiller by eliminating some of the
high pT pileup particles that are far away from jets (dashed ellipses). All algorithms are run after
applying CHS.

Figure 6. Jet pT resolution as a function of nPU for jets in the range 100 < pT < 150 GeV (left)
and as a function of the jet transverse momentum at nPU = 140 (right) when CHS is applied.

⇠ 15% in resolution at nPU = 20, ⇠ 25% at nPU = 80, and ⇠ 30% at nPU = 140.
Finally, in order to study the reconstruction of jet shapes, we consider the resolution

– 9 –

PUPPIML: Graph Nets for PU subtraction
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Porting Deep Learning to 
Trigger/DAQ system



๏ Looking at current tendency, we expect the 
next trigger system to be based on 
heterogenous computing, with GPUs & FPGAs 
used as accelerators to compensate 
saturation of Moore’s law 

๏ for tracking, clustering, etc 

๏ In such a system, Deep Learning inference 
could be made very fast 

๏ On GPUs, as long as batching can be 
exploited 

๏ No big gain running one inference at 
once 

๏ Gain if many “samples” are sent at 
once. Example: 1K tracks per event 

๏ If objects are made on GPUs, no need 
to move them back and forth 

๏ On FPGAs, without need of batching, as 
long as the model can fit the available 
resources (including resource recycle 
with fast access to memory)

The next HLT

 35

Patatrack project for CMS HLT on GPUs
Timing Performance on 2018 data

16

https://github.com/cms-patatrack


๏ With heterogenous hardware in place (for other 
reasons) Deep Learning inference @HLT quite easy 

๏ Example: the seed-selection for tracking I 
showed you before 

๏ 1 μsec to know if a seed is good or not 

๏ 1M seeds/event -> 1sec to process an event 
serially

Heterogeneous HLT
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High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz



๏ Situation at L1 is different, mainly due to the typical 
latency (<10 μsec) 

๏ Custom cards connected to detector electronics by optic 
links 

๏ Data flow in the cards one by one 

๏ Networks need to be implemented in FPGA firmware  

๏ advanced design by expert engineers (not common 
resource in HEP) 

๏ automatic translation tools doing the job

Deep Learning at L1
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Deep Learning at L1
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High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz

๏ Situation at L1 is different, mainly due to the typical latency 
(<10 μsec) 

๏ Custom cards connected to detector electronics by optic links 

๏ Data flow in the cards one by one 

๏ Networks need to be implemented in FPGA firmare  

๏ advanced design by expert engineers (not common resource in HEP) 

๏ automatic translation tools doing the job
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compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision 


reuse/pipeline

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware 
design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

!13

Design Exploration
๏ HLS4ML aims to be this automatic tool 

๏ reads as input models trained on standard DeepLearning libraries 

๏ comes with implementation of common ingredients (layers, activation functions, etc) 

๏ Uses HLS softwares to provide a firmware implementation of a given network 

๏ Could also be used to create co-processing kernels for HLT environments

HLS4ML

 39



Fast Decision Taking



๏ You have a jet at LHC: spray of 
hadrons coming from a “shower” 
initiated by a fundamental 
particle of some kind (quark, 
gluon, W/Z/H bosons, top quark) 

๏ You have a set of jet features 
whose distribution depends on the 
nature of the initial particle 

๏ You can train a network to start 
from the values of these 
quantities and guess the nature 
of your jet 

๏ To do this you need a sample for 
which you know the answer 

Example: fast inference

 41

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied
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• Groomed mass separates top, W/Z, and quark/gluon

• top/gluon have greater multiplicity than W/Z/quark

• ECF N2β=1 separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Jet Substructure Inputs
mass

ECFs

multiplicity
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𝔁1 𝔁N-1 𝔁N

๏ Simple DNN based on high-level features (jet masses, 
multiplicities, energy correlation functions)

Example: jet tagging

Javier Duarte I hls4ml !8

• Groomed mass separates top, W/Z, and quark/gluon

• top/gluon have greater multiplicity than W/Z/quark

• ECF N2β=1 separates 2 and 3-prong jets (W/Z/top) from 1-prong jets (quark/gluon)
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z log z
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Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

Jet Substructure Inputs
mass

ECFs

multiplicity



๏ Simple DNN based on 
high-level features 
(jet masses, 
multiplicities, energy 
correlation functions)
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Full model

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

Sensitivity = True Positive Rate
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CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Example: jet tagging

Better



๏ A classic Dense NN manipulates 
the inputs in three ways 

๏ multiplying by weights 

๏ adding biases 

๏ applying activation 
functions 

๏ All these operations map 
nicely into an FPGA 

๏ high IO, DSPs, LUTs, tunable 
precision

Network Operations

 44
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Neural Network

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition
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Neural Network

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

`kj = �(Wij`
k�1
i + bj)

activation function

multiplication

addition

NN = multiplications, additions, and 
pre-computed activation functions

Maps nicely onto FPGA 
resources: high IO, 

DSPs, LUTs, etc.



๏ How this works in practice 

๏ A python based library 
that takes inputs via a 
yam file 

๏ Model architecture with 
supported format  

๏ FPGA configuration 
parameters (reuse 
factor, FPGA model, 
Clock period, etc) 

๏ The library provides 
inputs for Vivado HLS 

Bring the model to FPGA

 45

Javier Duarte I hls4ml !14

Translation of ML models
python keras-to-hls.py -c keras-config.ymlTranslation

Inputs

Config

• IOType: parallelize or serialize


• ReuseFactor: how much to parallelize 


• DefaultPrecision: inputs, weights, biases

my-hls-test/:
build_prj.tcl  
firmware  
myproject_test.cpp



The full model

 46
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ML in FPGAs?
FPGA

How many resources? DSPs, LUTs, FFs? 
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64



๏ Pruning: remove 
parameters that don’t 
really contribute to 
performances 

๏ force parameters 
to be as small as 
possible 
(regularization) 

๏ Remove the small 
parameters 

๏ Retrain

Compression

 47
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

 24

- sort the weights based on the value relative to the max value of the weights in that layer

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression
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Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations
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Efficient NN design: compression

 27

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

๏ Pruning: remove 
parameters that don’t 
really contribute to 
performances 

๏ force parameters 
to be as small as 
possible 
(regularization) 

๏ Remove the small 
parameters 

๏ Retrain

Compression
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

 24

- sort the weights based on the value relative to the max value of the weights in that layer

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
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Efficient NN design: compression

 27
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss



Compression
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Compression

!16

• Big reduction in DSP usage with pruned model!


• ~15 clocks @ 200 MHz = 75 ns inference

75 ns

Xilinx Vivado 2017.2 
Clock frequency: 200 MHz 
FPGA: Xilinx Kintex Ultrascale    
           (XCKU115-FLVB2104)



COMPRESSION 18

There are many schemes for compression 
We do a simplistic, iterative version 

Training with “L1” regularization, up-weight important synapses 
Remove X% of weights and retrain 
Rinse, repeat 

Our case study: 70% network reduction with no performance loss

< total bits, integer bits >

Reaches 32-bit floating 
point performance with 
16-bit fixed point!

Distribution of 
weights in NN

๏ Quantisation: reduce the 
number of bits used to 
represent numbers (i.e., 
reduce used memory) 

๏ models are usually trained 
at 64 or 32 bits 

๏ this is not necessarily 
needed in real life 

๏ In our case, we could reduce 
to 16 bits w/o loosing 
precision 

๏ Beyond that, one would have to 
accept some performance loss

Quantisation
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Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating 

point 

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with 
multiplications and sums → we perform a scan of 
physics performance versus bit precision

• To avoid overflow/underflow of weights at 
least 3 bits needed

ap_fixed<width,integer>

weights
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In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
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integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with 
multiplications and sums → we perform a scan of 
physics performance versus bit precision

• To avoid overflow/underflow of weights at 
least 3 bits needed

ap_fixed<width,integer>

weights



Parallelisation
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Network Tuning: Parallelization

!15

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each
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Resource Usage and Timing

!18

reuse = 1 
<16, 6> bits BRAM DSP FF LUT

Total 13 954 53k 36k

% Usage ~0% 17% 3% 5%

time
15 clocks [75 ns]

16 × 64 
64 × 32

32 × 32
32 × 5

softmax (5)

Parallelisation
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Parallelisation

 53

TIMING 23

Behavior of pipeline 
interval controlled well 

by the reuse factor

Additional latency 
introduced by reusing 

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor  
will reduce the DSP usage

Foreseen architecture (FPGAs) will handle these networks 
Inference-optimized GPUs could break the current paradigm 
Looking forward to R&D projects with nVidia & E4 on this



Javier Duarte I hls4ml

• HLS estimates are conservative compared to final 
implementation 

• No spikes in LUTs at the DSP precision transitions in 
implementation

HLS vs. Implementation

!22 Note: different model 

๏ HLS gives us a conservative estimate of the resources needed 

๏ It actually seems to give estimates close to the back-of-
the-envelope optimal estimate 

๏ Real life much more “smooth” than emulation: no spikes 
observed for LUTs

Implementing HLS Design

 54



๏ HLS4ML supports Xilinx FPGAs from 
beginning 

๏ Working to extend the package to 
work with Altera 

๏ Work in progress 

๏ Technical complications slowed 
us down (software licences, 
Quartus HLS version @ CERN, etc) 

๏ First results encouraging (based 
on emulation. To be confirmed with 
actual deployment on card)

Altera Support
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Deep Learning on the 
Cloud



Inference on the cloud
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๏ In the (near) future, DAQ/HLT farms will be based on 
heterogenous computing 

๏ CPU+GPU / CPU+FPGA 

๏ Mainly to accelerate slow algorithms (e.g., tracking) 
through parallelisation 

๏ Also useful for ML inference 

๏ R&D on heterogeneous environments on commercial clouds 

๏ provides easy-to-use CPU+FPGA (or GPU) ecosystem 

๏ allows further R&D: inference on demand from the CPU-based 
HLT farm to the FPGAs/GPUs on the cloud



Microsoft Brainwave
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Microsoft Brainwave: A Seminal Result

5Kevin PedroECoM2X

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Catapult_ISCA_2014.pdf

Fun facts (anonymous source)

1. First implementations used BDTs
2. This triggered the Intel purchase of Altera
3. MS was using exclusively using Altera 

FPGAs until a week ago (now Xilinx?)

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

Microsoft Brainwave: A Seminal Result

5Kevin PedroECoM2X

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Catapult_ISCA_2014.pdf

Fun facts (anonymous source)

1. First implementations used BDTs
2. This triggered the Intel purchase of Altera
3. MS was using exclusively using Altera 

FPGAs until a week ago (now Xilinx?)

Trigger



Brainwave At Scale

6Kevin PedroECoM2X

• Provides a full service at scale
(more than just a single co-processor)

• Multi-FPGA/CPU fabric, accelerating 
both compute and network

¾ Demonstrated large improvements in 
processing time for Bing searches

• Caveat: only selected pre-trained 
DNN models currently available

Brainwave at scale

 59



Pros & Cons
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๏ Commercial clouds focus on what is 
sellable 

๏ supports computing-vision off-
the-shelf networks (ResNet50, 
ResNet512, DenseNet121, VGGNet16 

๏ (for now) reduced flexibility: 
doesn’t allow customised 
architectures. Input has to be 
an image 

๏ (longer term) more architectures 
will become available 

๏ As long as one of these networks 
is good for the problem at hand, 
implementation is optimized 
(beyond what HLS might do)

• ResNet50: 25M parameters, 7B operations

• Examples of large networks used in CMS:

o DeepAK8, 500K parameters, 15M operations

o DeepDoubleB, 40K parameters, 700K operations

Size of DNNs

8Kevin PedroECoM2X

arXiv:1605.07678

DeepAK8

• ResNet50: 25M parameters, 7B operations

• Examples of large networks used in CMS:

o DeepAK8, 500K parameters, 15M operations

o DeepDoubleB, 40K parameters, 700K operations

Size of DNNs

8Kevin PedroECoM2X

arXiv:1605.07678

DeepAK8



๏ SONIC (a Services for 
Optimized Network Inference on 
Coprocessors) is a framework 
to exploit cloud resources for 
on-demand inference 

๏ CPU runs “locally” (for us at 
FNAL) and sends data to the 
cloud system 

๏ FPGAs there set to run our 
inference problems 

๏ answer communicated back via 
gRPC protocol (driven by 
Microsoft infrastructure 
boundaries)

SONIC

 61

Cloud vs. Edge

9Kevin PedroECoM2X

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of “HLT-like” performance

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW

Trigger system

• Factors affecting speed of inference:

o Processor generation, clock speed, TF version, # cores

CPU Timing

13Kevin PedroECoM2X

CPU comparison:

• Intel i7 3.6 GHz (8 core, TF v1.10) ~ 180 ms

• Intel i7 3.6 GHz (1 core, TF v1.10) ~ 500 ms

• Intel i7 3.6 GHz (1 core, TF v1.06) ~ 1.2 s

• Intel Xeon 2.6 GHz (1 core, TF v1.06) ~ 1.75 s
[what we are running on cmslpc]



Testing SONIC
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Logarithmic x-axis Linear x-axis

• Good performance in initial tests
o “remote”: cmslpc @ FNAL to Azure (VA), ‹time› = 56 ms
o “onprem”: run CMSSW on Azure VM, ‹time› = 10 ms

(~2 ms on FPGA, rest is classifying and I/O)
o CPU (cmslpc): 1.75 sec

(6 min to load ResNet50 session)
¾ More than order of magnitude improvement!

Testing SONIC

12Kevin PedroECoM2X



Using GPUs instead
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CPU

GPU from .pb file

(s
ec
on
ds
)

• Benchmark: Nvidia GTX 1080 (GPU), Intel i7 3.6 GHz (CPU)
• All tests use .pb file with Brainwave version of ResNet50
• Using classic ResNet50 implementation w/ CuDNN: faster on GPU by 5–10×

Comparison to GPU

14Kevin PedroECoM2X



Comparison to GPUs and CPUs
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Brainwave w/ SONIC
• Featurizer: 1.8 ms (FPGA)
• Classifier: 2 ms (CPU)
• Infrastructure: 6 ms (trying to improve)
• Transit time: 10 ms (speed of light, Chicago to Virginia)

+ network switching, etc.
• Total: ~10 ms (onprem), ~56 ms (remote)

Performance Summary

15Kevin PedroECoM2X

CPU
• 1.75 s (cmslpc CPU)
• 500 ms (new CPU, TF version)

GPU
• 100 ms (batch 1)
• 15 ms (batch 10)



Jet Tagging with ResNet on Cloud
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Preliminary result w/ small dataset

• Use feature set generated by ResNet50, train new fully-connected classifier

o Brainwave accelerates training
(heaviest component is evaluating ResNet50 to produce feature set)

• CNNs have been used in jet image classification: arXiv:1709.04464

• Proposed “realistic” test:

o Compute jet discriminator values
(q, g, W, Z, t)

o Run module in miniAOD sequence

• Can also be used for other experiments

o e.g. NOvA: identify neutrino events

Transfer Learning

16Kevin PedroECoM2X



๏ HLS4ML aims to be a flexible tool to implement your home-made NN in a 
trigger/DAQ system where low latency matters 

๏ Now works with TensorFlow and PyTorch for Dense Neural networks 

๏ Working to support ONNX format 

๏ Working on new architecture support 

๏ Boosted Decision Trees 

๏ Convolutional NNs (1D & 2D) 

๏ Recurrent NNs (GRUs, LSTMs, etc) 

๏ Graph Networks 

๏ Extra functionalities added 

๏ New activation functions 

๏ Batch Normalization 

๏ Layer concatenate 

๏ Max Pooling 

๏ …

Outlook

 66

https://onnx.ai


Backup



Detector Monitoring



๏ When taking data, >1 person watches 
for anomalies in the detector 24/7 

๏ At this stage no global processing of 
the event 

๏ Instead, local information from 
detector components available (e.g., 
detector occupancy in a certain time 
window)

Data Quality Monitoring

 69
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A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The chamber
shown in (B) su↵ers of a region of layer 1 with lower e�ciency,
which should be identified as anomalous. The plot in figure
(C) instead shows regions of low occupancy across the 12
layers and should also classified as faulty. According to the
run log, this e↵ect was induced by a transient problem with
the detector electronic.

use of layer by layer one dimensional linear interpo-
lation to match the size of the smallest layer s in
dataset, where ↵ is an interpolation point:

↵ = j
ni

ns

x̃i,j = frac(↵)(xi,b↵c+1 � xi,b↵c) + xi,b↵c

– smoothing: according to CMS DT experts, misbe-
having channels are problematic only when a cluster
of them, spatially contiguous, is observed. Instead,
isolated misbehaving channels are not considered a
problem. To account for this caveat the one dimen-
sional median filter was applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– normalization: the occupancy of the chambers in the
input dataset depends on the integration time and
on the LHC beam configuration and intensity i.e.
on the number of LS spanned when creating the
image and corresponding luminosity. The normal-
ization strategy depends on the need of comparing
data across chambers or across runs: the precise pro-
cedure used in the two approaches is described in
Sections 4 and 6 respectively.

A

B

Fig. 5 Example of two kinds of input sample preprocesing.
(A) reshaping each layer directly from acquired (raw) values
using linear interpolation. (B) smoothing the raw data with
median filter before reshaping. The isolated low-occupancy
spot in layer 1, corresponding to a dead channel, is discarded.

3 Machine learning for DQM Anomaly

Detection

Machine learning techniques present several advantages
over the currently adopted procedure. The high data
dimensionality precludes simple parametric density es-
timation of the normal behavior; and statistical testing
is not su�cient, as faulty data must be singled out.
This leaves us with an extremely wide range of meth-
ods, that we will briefly discuss here in the light of both
the operational condition and the a priori knowledge of
the data (for a general survey see [5]).

Anomaly detection techniques usually make at least
one of the two following assumptions: rarity of abnor-
mal events, which are considered outliers with respect
to the normal generating process; and/or partial or
complete lack of representative examples of all type
of behaviors. If such representative examples are avail-
able, anomaly detection reduces to binary classification
(supervised learning), with possibly the help of various
resampling methods [6] or reformulation of the objec-
tive function [7] for dealing with class imbalance. In our

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 3

Fig. 2 View on wheel positioning in the detector.

Fig. 3 Numbering schema of the Drift Tube sectors and sta-
tions.

CMS data are organized in acquisition runs (or just
runs in CMS jargon), corresponding to homogeneous
conditions both of the CMS detector and of LHC ac-
celerator. Runs are denoted as integers, with increasing
numbering along time. Their duration is varying from
as little as few seconds to as much as several hours.

Each of them is divided into luminosity sections
(LSs), a time interval corresponding to a fixed beam or-
bits in the LHC and amounting to approximately 23 s.
LSs are numbered progressively from 1 at the start of
each run. A single LS can be identified univocally by
specifying the LS number and the run number.

Runs are grouped together when corresponding to
the same fill, i.e. the time interval between two proton
injections into the LHC. A fill can last for as much as
tens of hours. During the fill, the number of protons in
the beam reduces, due to proton collisions happening
at four interaction points along the ring. As a result of
that, the beam intensity (also referred as luminosity)

decreases along the fill as well as the absolute number
of events.

For each chamber k and each run, the current DQM
infrastructure, [4], records an occupancy plot matrix Ck,
which is the total number of electronic hits at each read-
out channel. The occupancy plot matrix can be viewed
as a varying size two-dimensional array organized along
layer (row) and channel (column) indexes:

Ck = {xk
i,j ; 1  i  l, 0  j < ni},

where l = 12 is the number of layers and ni is the
number of channels in layer i. Formally we should index
the chambers and their components e.g. Ck and xk

i,j but
wherever the discussion concerns a single chamber, we
drop the k index for clarity until Section 6. Figure 4
shows examples of occupancy plot matrices.

In this work we look for an algorithm that identi-
fies faulty chambers. Only data collected during LHC
collision runs, and acquired during year 2016 and 2017
have been used in this study. The dataset is composed
of 21000 chamber samples collected during 84 runs. We
consider two complementary approaches to the prob-
lem:

– Local approach: data collected in each layer is treated
independently from the other layers. The domain
experts regard chambers which have occupancy of
the hits with small variance between neighboring
readout channels as expected behavior. Chambers
which have dead, ine�cient or noisy regions, are
considered problematic, (see figure 4 for reference).
We explore this approach in Section 4.

– Extended local approach: data collected in each cham-
ber is treated independently from the other cham-
bers. We extend the local approach to account for
failures spotted only when the information about all
layers within one chamber is present. We exploit this
approach in the algorithm described in Section 6.

– Global approach: we use the information of all the
chambers for a given run. The geographical infor-
mation in the CMS detector (wheel, station or sec-
tor) impacts the occupancy distribution of the chan-
nel hits. We exploit this information in the test de-
scribed in Section 7.

Regardless of the strategy, the data need to be pre-
processed. Three steps are performed (for visual inter-
pretation, see figure 5):

– standardization of the chamber data: the number of
readout channels in a layer (corresponding to one
row of channels in a muon chamber) varies not only
within the chamber but also depends on the cham-
ber position in the detector. This quantity falls be-
tween 47 and 96. In order to have fixed input di-
mensionality, the matrices were composed with the



๏ Given the nature of these 
data, ConvNN are a natural 
analysis tool. Two 
approaches pursued 

๏ Classify good vs bad 
data. Works if failure 
mode is known 

๏ Use autoencoders to 
assess data “typicality”. 
Generalises to unknown 
failure modes 

Two approaches
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This choice scaled the original 21000 chambers to 228480
samples.

Hit counts in a layer are normalized to a [0, 1] range,
dividing them by the maximum of the absolute occu-
pancy value in the layer:

zi,j =
x̃i,j

max(Xi)
,

The need for normalization comes form the intrinsic
variation of the occupancy depending on the spatial
position of the chamber, that will be described in more
details later (Section 6).

The primary goal of this first experiment is to eval-
uate the potential of the various flavors of Machine
Learning methods. We compare:

– supervised learning, with a) a fully connected neu-
ral network (DNN), and b) a convolutional neural
network (CNN), [16];

– semi-supervised learning, with a) Isolation Forest,
and b) µ-SVM.

– unsupervised with a) a simple statistical indicator,
the variance within the layer, and b) an image pro-
cessing technique, the maximum value of the vector
obtained by the application of a variant of an edge
detection Sobel filter [17]: Si = max(

⇥
�1 0 1

⇤
⇤Xi).

The ground truth has been established on a ran-
dom subset of the dataset, by visually inspecting the
input sample before any processing: 5668 layers have
been labeled as good and 612 as bad. The 9,75% fault
rate is representative of the real situation. With this ra-
tio, both anomaly and outlier detection approach can
be considered. Out of this sample 1134 of good and
123 of bad, corresponding to 20% of the labeled layers,
were reserved to compose the test set. The rest of the
samples were used for training and validation for the
semi-supervised and supervised methods.

The Isolation Forest and µ-SVM were cross-validated
using five consecutive, stratified dataset folds to search
for their corresponding optimal hyper-parameters. Sub-
sequently, the Isolation Forest was retrained using those
hyper-parameters on the full unlabeled dataset, while
µ-SVM was retrained using only negative class.

The architecture of the CNN model with one di-
mensional convolution layers used for this problem is
shown in figure 6. The hidden layers use rectified lin-
ear unit as activation while the final output layer uses
softmax function. We have not applied smoothing pre-
processing step, described in Section 2, allowing the
model to learn its filters. CNN [16] was trained us-
ing Adam [18] optimizer and early stopping mechanism
with patience set to 32 epochs. The model was imple-
mented in Keras [19], using TensorFlow [20] backend.

Fig. 6 Convolutional Neural Network model architecture
used to target local strategy.

Additionally we have weighted our samples to account
for class imbalance. The weight � for a sample in class
 2 {0, 1} is equal to:

� =
|S|

2 · |S |

S = S0 [ S1

The DNN was primary used to benchmark the con-
volution kernels. Similarly to CNN it has one hidden
fully-connected layer with 8 units using rectified linear
unit as activation and a softmax function on the output
layer.

5 Detecting unusual behavior within a chamber

5.1 Motivation

This section presents an experiment focusing on the
extended local approach based on the assumption that
the occupancy pattern within a chamber depends on
the layer information. This strategy aims, for example,
at detecting voltage related problems when a hit oc-
cupancy decreases uniformly in a specific part of the
subdetector e.g. a layer or a group of layers.

5.2 Dataset and methods

As a preliminary step, the chamber occupancy data
in the input dataset were evaluated by the convolu-
tional model presented in Section 4. All chambers with
any layer labeled as faulty were discarded from train-
ing. For simplicity, due to a lack of the middle group
of four layers, chambers located in station 4 were dis-
carded as well. The above changes e↵ectively narrowed
the training dataset to 8452 matrices. The samples were
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A

B

Fig. 7 Example of impact of layer voltage on hit counting.
(A) Operating at 3200 V. (B) Operating at 3450 V. Both
examples should be regarded as anomalies.

composed by concatenating smoothed and standardized
layers within the same chamber C̃ creating matrices of
shape 12⇥46. The hit occupancy within one layer were
normalized using min-max scaler:

Ĉ =
C̃ �min(C̃)

max(C̃)�min(C̃)

This normalized values to [0, 1] range and retained re-
lations between the layers.

In order to evaluate the model, we use a subset of
the data (runs 304737, 304738, 304739, 304740) during
which layer 9 were operating at a di↵erent voltage in
a fraction of the chambers, see figure 7. During runs
304737, 304738, 304739, 304740 at 3450 V, and dur-
ing run 302634 at 3200 V. Due to the physics of gas
ionization by radiation, this results in an absolute dif-
ference in hit counting, which globally a↵ects the de-
tector. As we pointed out in Section 4 a local model
was not trained to detect such behavior as it regards
only 6% of those layers as faulty. The part of the test
set regarded as good chambers is corresponding to a
run 304736 where voltage problem was not present. Fi-
nally, we discard all chambers from good subset having
at least one layer problem according to our local algo-
rithm and finally we visually inspected them to seed
out any type II errors from the test set.

As the cost of labeling samples increases with re-
spect to local approach, we compared only semi-supervised
deep learning methods, including:

– simple bottleneck auto-encoder,
– convolutional auto-encoder,
– denoising auto-encoder,
– auto-encoder with sparsity regularization in hidden

layers.

Similarly to local approach we trained the auto-encoders
using Adam optimizer and early stopping mechanism

A

B

Fig. 8 Simple, denoising, sparse (A) and convolutional (B)
auto-encoder models architecture used to target contextual
strategy.

with the patience set to 32 epochs. Again, the imple-
mentation was prepared using Keras library with Ten-
sorFlow backend. The architecture of the model is shown
in figure 8. A simple, denoising and sparse auto-encoders
share similar architecture with parametric rectified lin-
ear unit as activations, while the convolutional auto-
encoder had a dedicated architecture. All models was
instructed to minimize the mean squared error ✏ be-
tween original, x, and reconstructed, ẍ, samples:

✏ =
1

k

X

k

X

i,j

(xk
i,j � ẍk

i,j)
2

6 Detecting unusual behavior using global

information

6.1 Motivation

This section presents a concept focusing on the global

approach based on the assumption that the occupancy
pattern depends on the chamber position in the detec-
tor, given the cylindrical symmetry of the LHC physics.
For instance the expected hit occupancy of chambers in
wheel 0 (closer to the collision point) will be lower than
chambers in the outer wheels (sitting far from the col-
lision point and protected by more material), whereas
chambers in wheels �2 and +2 are expected to show
similarities, due to the detector and collider symmetry.

A. Pol et al., to appear soon
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Generalises to unknown 
failure modes 
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Additionally, the experts expect chambers to behave
alike in the context of whole subdetector across di↵er-
ent runs.

The problem is clearly contextual, in the sense that
important explanatory attributes are not part of the
basic data features. Conditional anomaly detection [21]
has been proposed to deal with such situations when
the relevance of external attributes is unknown: for in-
stance, if a set of environmental or technical attributes
were monitored that could impact the behavior of the
detector components. In our case, the spatial position
of the chambers are both our only external attribute,
and their impact is assured. Thus, we are back to a
point anomalies problem.

6.2 Methods

In this approach we have used auto-encoder setup equiv-
alent to a simple bottleneck auto-encoder presented in
Section 5 with the change of the size of a latent layer,
which was decreased to 3 units for visualization pur-
poses.

Global faults were not tracked before by DT experts.
Hence, we are left only with unsupervised methods.

7 Results and Discussion

7.1 Local approach

The performance of the trained models on a held out
test dataset can be seen in figure 9. Due to the simplic-
ity of the model, the training converges to a satisfac-
tory result, despite the small size of the training sam-
ple. As shown in the score distribution of figure 10, the
proposed architecture separates anomalous from nor-
mal layers significantly. Model’s working point was cho-
sen at 0.5 not favoring specificity nor sensibility. When
the cost of type 1 and type 2 errors is defined, the
acceptable range of the working point could be any-
where in [0.1, 0.9] range. Compared to statistical, im-
age processing or other machine learning based solu-
tions, supervised deep learning clearly outperforms the
rest. Although the Area Under Curve (AUC) of the
fully-connected deep neural network is comparable to
the one of CNN, requiring maximum specificity and
sensibility makes it a favorable solution. The relatively
good performance of the basic and unsupervised vari-
ance method, compared to the poor results of the filter,
and the near optimal performance of the DNN, show
that the features to learn are not simple contrasts, al-
though the superior performance of the CNN demon-
strate that the initial edge detection layer is useful.

Fig. 9 ROC and AUC of respective algorithms used in local
approach

Fig. 10 Distribution of scores in local approach

The limited performance of Isolation Forest is likely
to come from the violation of its fundamental assump-
tion, that faults are rare (remember that the fault rate
is in the order of 10%) and similar (masking). The infe-
rior performance of the typical semi-supervised method
(SVM) illustrates the well-known smoothness versus lo-
cality argument for deep learning [13,12]: the di�culty
to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

The algorithm currently implemented in DQM sys-
tem targets a specific failure scenario and evaluates
samples per chamber, unlike our per layer approach.
Although it quantifies severity of the fault, it does not
identify specific layers with problems. Based on the la-
beled data we were able to construct a per-chamber
score to benchmark the algorithm i.e. if it indicates
there is at least one faulty layer in a chamber. While the
algorithm’s specificity was 91%, its sensitivity was only
26%. This appalling hit rate is not surprising as the test
was only targeting identification of dead regions.

Another drawback of the DQM algorithm is its per-
formance in low statistics region i.e. beginning of the
run. As seen in figure 11, convolutional model gradu-
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Fig. 11 Stability of proposed model and the algorithm cur-
rently implemented in production. The three lines correspond
to results based on data from runs 306777, 306793, 306794.

ally adds alarms until reaching stability. The produc-
tion test is doing the opposite, generating a substantial
fraction of false alarms in the early stages of the run.

7.2 Extended local approach

To judge the performance of the auto-encoders, we have
used model’s mean squared error between original sam-
ple and its reconstruction in layer 9 of each chamber
in the test set (see figure 12) as an anomaly indica-
tion. Additionally this error could be quantified with
the severity of the problem as shown in figure 13. Fig-
ure 12 shows good performance of all models, especially
sparse auto-encoder. Although the AUC is not as high
as in local approach it is exclusively because of cham-
bers with layers operating at 3450 V which are di�-
cult to spot using only the occupancy data even with a
visual inspection. The chambers with layers operating
at lower voltage are having clear error separation from
good chambers as seen in figure 13.

As part of the experimental setup we accounted this
approach could cover the local anomalies as well. How-
ever, all the models were not able to find those kind of
anomalies better than a random guess, indicating that
we can get best results when applying both models in
a pipeline.

7.3 Global approach

Global approach is able to spot unusual behavior of
DT chambers taking into account the geographical con-
strains and paves the way to more flexible assessment
by scoring per detector region.

Figure 14 shows an example of latent representa-
tion of the chamber data clustering depending on the
chamber position in the detector. Additionally, while

Fig. 12 ROC and AUC of respective auto-encoders used in
contextual approach

Fig. 13 Mean squared error distribution for auto-encoder
with sparsity regularization.

Fig. 14 Latent representation of the chamber-level data. The
samples cluster according to position in the detector. Here
depending on the station, which correspondns to a distance
to collision point.

investigating latent representation for only one cham-
ber across di↵erent runs in figure 15, the latent rep-
resentation tends to cluster depending on the number
of problematic layers. We believe that this method will
help experts detecting previously unknown failure sce-
narios and with maintaining the list of transient issues.

A. Pol et al., to appear soon



๏ Autoencoder-based 1-class approach 
generalises to later stages of quality 
assessment 

๏ after reconstruction of the events, 
event reconstruction allows a global 
assessment (w.g., looking at 
electrons, muons, etc rather than 
hits in the detector) 

๏ A global autoencoder can spot all 
these features 

๏ Monitoring individual contributions 
to loss function (e.g., MSE) one can 
track the problem back to a specific 
physics object/detector component

Data Quality Certification
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After adding L2 kernel regularizer to the AE

ROC_AUC increased from ~0.9735 to ~0.9782 and this plot also shows 
we are going the right direction 20

Normal lumisection example (good classified as good)

Note the scale! Maximum of ~3 versus 70-100 for upcoming problems. 
22

F. Široký  et al., to appear sooner or later



HL4ML: FPGA details
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STUDY DETAILS

Xilinx Vivado 2017.2 
Results are slightly different in other versions of Vivado 

e.g. 2016.4 optimization is less performant for Xilinx ultrascale FPGAs 

Clock frequency: 200 MHz 
Latency results can vary (~10%) with different clock choices 

FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104) 
Results are slightly different in other FPGAs  

e.g. Virtex-7 FPGAs are slightly differently optimized 

25



๏ Neural network can model non linear functions 

๏ the more complex is the network, the more functions it can approximate 

๏ Neural network are faster to evaluate (inference) than typical reco 
algorithm.  

๏ This is the speed up we need 

๏ Neural Networks (unlike other kind of ML algorithms) are very good with raw 
(non-preprocessed) data (the recorded hits in the event) 

๏ could use them directly on the detector inputs

Why Deep Learning

 74

(pT, η, φ, E)OFFLINE = 𝑓( (pT, η, φ, E)ONLINE ) 

(pT, η, φ, E)OFFLINE = 𝑔( Event hits ) 

One would have to 
learn 𝑓 and 𝑔 to 
evaluate them at 

trigger. Online 
processing is 

replaced by offline 
training



๏ Approach works in principle 

๏ Can identity easily 2 of the 3 models 

๏ With enough statistics, could see the third 

๏ Might not work in absolute 

๏ encoder based on physics motivate quantities which 
are not model-agnostic 

๏ Use deep:learning: train on raw data directly. To be 
be done next

Beyond the toy-model
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Prelim
inary

Prelim
inary

Prelim
inary



Kinematic Bias?
๏ With 99% signal efficiency, bias on kinematic variables within the 
uncertainty of a trigger-efficiency measurement



TOPCLASS: do we kill New Physics?
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Figure 9: Selection efficiencies of different BSM models using 99% TPR working point as functions
of lepton pT , ST , and E

miss
T . 11
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Figure 9: Selection efficiencies of different BSM models using 99% TPR working point as functions
of lepton pT , ST , and E

miss
T . 11
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The network is learning  some physics… 
• tt events are more crowded that W events 
• leptons in W and tt events are isolated from 

other particles

Selection performances(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ⇠ 690 Hz, more than a factor
two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ⇠ 280 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
large that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:
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