

Experimental Reactor Physics at IN2P3

JL Lecouey¹, A Billebaud², S Chabod², X Doligez³, FR Lecolley¹, N Marie¹, G. Lehaut (<2020)¹, A Bailly (2019-2022)¹, T Chevret (2013-2016)¹

With the support of the technical staff of the laboratories

¹ LPC Caen ² LPSC ³IJCLab

Conseil Scientifique de l'IN2P3, Feb. 3rd-4th, 2022

1. ADS Physics at IN2P3: achievements

- 2. Remaining work on ADS monitoring (SPATIAL project)
- 3. A possible application: core loading monitoring (SALMON project)

1. ADS Physics at IN2P3: achievements

- 2. Remaining work on ADS monitoring (SPATIAL project)
- 3. A possible application: core loading monitoring (SALMON project)

Accelerator Driven Subcritical Reactors (ADS)

- \Rightarrow Chain reaction not self-sustained: $N_3 < N_2 < N_1 < N_0$
- \Rightarrow An external neutron source S is needed to maintain constant power
- ⇒ Coupling with a proton accelerator via a spallation source

$$P_W \propto S \times k_{eff} + S \times k_{eff}^2 + S \times k_{eff}^3 \dots = S \frac{k_{eff}}{1 - k_{eff}} \Longrightarrow P_W \propto \frac{S}{-\rho}$$

⇒ Delayed neutrons (β_{eff}) do not play any role for reactor control ⇒ Large amount of Minor Actinides (with low β_{eff}) can be loaded

TABLEAU 5 : ORDRE DE GRANDEUR DE LA CAPACITÉ DE TRANSMUTATION DES DIFFÉRENTS MODES DE TRANSMUTATION

MODE DE TRANSMUTATION	Homogène			Hétérogèr	ADS	
Teneur AM	1%	2 %	4 %	10 %	20 %	55 %
Capacité de transmutation AM (kg/TWhe)	0*	5*	14*	3,5 (-0,5*)	6à8 (2à4*)	95*

* capacité de transmutation d'actinides mineurs exogènes au réacteur

Advantages of the ADS hold only if they remain subcritical in any circumstance

It must be checked constantly that k_{eff} remains below k_{eff}^{max}

 $\Rightarrow k_{eff}$ (or $\rho = 1 - 1/k_{eff}$) must be regularly measured \Rightarrow The uncertainty on reactivity measurement must be added to the safety margins

Issues:

- Is it possible to constantly measure the ADS reactivity (monitoring)? In what conditions?
- What are the precision and accuracy?

Periodically: analysis of the neutron flux decay curve ⇒ measurement of absolute reactivity

A long story at IN2P3

• Work on ADS physics by the experimental approach on mock-up / zero power reactor:

The GUINEVERE Facility at SCK·CEN

• VENUS-F: A zero-power sub-critical fast reactor with enriched U (30%, CEA), with solid Pb(-Bi) « coolant » at SCK CEN

+

- **GENEPI-3C**: A 220-keV deuteron accelerator
- + TiT target located at core center (CNRS/IN2P3)
- ⇒ production of 14-MeV neutrons by fusion reaction $T(D,n)\alpha$

⇒ Pulsed and continuous beam (with interruptions)

Mode	Pulsed	Continuous w/ interruptions
l (mA)	20 (peak)	1
f (Hz)	10 - 5000	0 - 250
t _{on} (ms)	7×10^{-4} (σ_{pulse})	2 - 98
Number of neutrons	10 ⁶ pulse ⁻¹	10 ¹⁰ s ⁻¹

=

A unique « mock-up » of a LBE-cooled Power ADS

Experiments @ GUINEVERE

Outcomes of FREYA (2011-2016) and MYRTE (2016-2019) Euratom projects:

IN2P3

Space-energy effects beyond Point Kinetics $\Rightarrow \rho_{measured} \ge \rho_{real}$ \Rightarrow Monte Carlo Simulations \Rightarrow Space-energy factors $f_{SE} \Rightarrow \rho_{final} = f_{SE} \times \rho_{meas.} \cong \rho_{real}$

Current-to-Flux ratio: $-\rho = C\left(\frac{I_{beam}}{P_W}\right) \Rightarrow -\rho = C'\left(\frac{S}{R_{det}}\right)$

+ PNS experiments: Area method (Marie et al. 2013, Lehaut et al. 2016) and kp method (Chabod et al. 2014) Conseil Scientifique de l'IN2P3, Feb. 3rd-4th, 2022

2019

<u>a</u>

Marie et

Reactivity measurement: where do we stand?

	FREYA WP1	FREYA WP2	MYRTE WP5	MYRACL
MYRRHA-like core	×			$10^{-7} \underbrace{U5(1,-5) \\ U8^{+++}(-4,-4) \\ U5(-3,1) \\ 10^{-1} \\ U5(-3,1) \\ 10^{-1} \\ 10^$
U5 FCs in MYRRHA-like positions				
High source duty cycle				
U8 FCs in MYRRHA-like positions	×	×		Time (ms)
Large reactivity range tested		×	×	10 ²
Low source duty cycle	×	×	×	10 III
Effects of random beam trips	X	X	×	0 20 40 60 80 100 Time (ms)

(Some) outcomes of MYRACL (2017-2020):

 $\rho_{final} = f_{SE} \times \rho_{meas.} \cong \rho_{real}$

With SEF \Rightarrow good estimate of ρ

Without SEF, ρ is underestimated !

Shortcomings of past experiments at GUINEVERE

- Space-energy effects hindering reactivity measurements seem under control, but:

- Space-wise:
 - most detectors in similar locations
 - almost no detector in the fuel zone
- Energy-wise, it is even worse:
 - no threshold FC in fuel zone
 - only one threshold nuclide used (²³⁸U)

- Full space-energy effects probed mostly in MYRACL
 ⇒ Complex interplay between absorbent, graphite and ²³⁸U as FC deposit
- Important case because ²³⁸U is envisioned for MYRRHA
- Worrisome: reactivity underestimation never seen before, not expected and not understood in details yet

⇒ If space-energy effects are not fully understood in VENUS-F, the reliability of transposition of the results to power ADS is doubtful

Although the overall impact of neutron source energy is ≈ 0 in the core, simulations show that it
might not be true for reactivity measurements with threshold detectors, especially for ²³⁸U!

no alternative threshold detectors ever tested

• Obviously there is no fuel evolution in VENUS-F (≈15 W) ≠ power ADS (≈100 MW)

The impact of spallation energy spectrum, fuel burn-up, specific designs in power ADS on reactivity measurement remain to be studied using simulations

ADS Physics at IN2P3: achievements Remaining work on ADS monitoring (SPATIAL project)

3. A possible application: core loading monitoring (SALMON project)

SPATIAL project, axis 1: Traverses during transients at GUINEVERE

- Comprehensive experimental study of space-energy effects beyond Point Kinetics during reactor transients
- $\Rightarrow \text{ Ideally: measurement of } \phi(\vec{r}, \vec{\Omega}, E, t) \quad \forall \vec{r}, \vec{\Omega}, E, t !$
- ➡ Impossible!
- \Rightarrow In practice, we can:
 - reduce the positions to a traverse thanks to reactor symmetries
 - use spectral indices with various threshold deposits to probe indirectly energy spectrum variations:

$$\frac{F\mathbf{z}\mathbf{a}}{F\mathbf{25}}(\vec{r},t) = \frac{\int dE \,\sigma_f \binom{AA\mathbf{a}}{Z\mathbf{z}} X \phi(\vec{r},E,t)}{\int dE \,\sigma_f \binom{235}{92} U \phi(\vec{r},E,t)}$$

Measurement of fission rates of various deposits in calibrated FCs as a function of time during transients, in a few positions in the core and in the reflector, in a few VENUS-F configurations

Fission thresholds: Np7 < Pu2 < Am1 < U8

Expected outcome

Transients: 100-Hz periodic beam interruptions

 $\frac{F\mathbf{37}}{F\mathbf{25}}(\vec{r},t) = \frac{\int dE \ \sigma_f \left(\frac{237}{93}Np\right)\phi(\vec{r},E,t)}{\int dE \ \sigma_f \left(\frac{235}{92}U\right)\phi(\vec{r},E,t)}$

New data on space energy effects with much more emphasis on energy spectrum variations

- ⇒ unfolding of the various spatial effects at work
- ⇒ data analysis using « smart » approaches like modal approaches
- \Rightarrow by-product:
 - modal basis: faster re-calculations of space-energy factors after reactor operation changes

$$\Phi(\mathbf{r}, E, \mathbf{\Omega}, t > t_{BI}) = \sum_{i} T_i(t_{BI}) \exp(\alpha_i t) \varphi_{\alpha_i}(\mathbf{r}, E, \mathbf{\Omega})$$

- test of other threshold deposits as potential detector deposits (²³⁷Np)
- A new, complete set of data for constraining kinetic models more accurate than Point Kinetics, ultimately needed for reactor transients in ADS and critical reactors!

SPATIAL project, axis 2: transposition

GUINEVERE : P ≈ 15 Wth

- No MA
- 10¹⁰ 14-MeV neutrons/s

MYRRHA : **P ≈ 100 MWth** EFIT

- No MA
- 10¹⁷ spallation neutrons/s

EFIT : **P ≈ 400 MWth**

- Core loaded with MA
- 10¹⁷ spallation neutrons/s

Heavy simulation work needed to study, in the light of the experiments performed at the zeropower GUINEVERE facility, the impact of:

- spallation energy spectrum
- fuel evolution and reactor cycle

on space-energy effects and reactivity monitoring

⇒ Quantification of precision and accuracy of reactivity measurement in future power ADSs

SPATIAL in practical

- Measuring Spectral Indices along a traverse
 ⇒ small FCs
 - ⇒ Very intense and stable external neutron source
 - ⇒ The GENEPI-3C must be modified to meet these requirements

Duoplasmatron source: Pulsed, continuous with interruptions

⇒ Modification of target cooling + beam diagnostic

- Very ambitious program
- Project submitted in Nov. 2021 to « Banque Publique d'Investissement », in the framework of a call partially devoted to « Search for alternatives to deep geological storage », to get 4year funding (2022-2026)
- ⇒ Project currently under scrutiny by BPI

1. ADS Physics at IN2P3: achievements

- 2. Remaining work on ADS monitoring (SPATIAL project)
- 3. A possible application: core loading monitoring (SALMON project)

Fuel loading incident at Dampierre

A. Verdier, « Evaluation de la sous-criticité lors des opérations de chargement d'un réacteur REP », thèse 2005

- Two ex-core proportional counters with enriched boron
- ⇒ Evolution of detector count rates is monitored during loading
- ⇒ Mixture of independent neutron sources and multiplication neutrons
- ⇒ Lack of correlation between count rates and sub-criticality

A. Verdier, PhD thesis 2005

- Much more information expected with the use of a known time-dependent (pulsed) neutron source
- ⇒ Can correlation between Area method's reactivity and actual reactor reactivity be expected to hold for detectors located in the outer reflector, during loading?
- ⇒ Can safety of core loading be improved?

The SALMON (Subcritical Approach for core Loading MONitoring) project: test in VENUS of a subcritical approach with reactivity measurement at several steps thanks to GENEPi-3C in pulsed mode.

- 1. Small fast SALMON phase at VENUS-F:
 - Taking advantage of VENUS-F unloading at the end of MYRACL
 - Few unloading steps of VENUS-F with GENEPI-3C in pulsed mode
 ⇒ *done 2019*
- 2. Small thermal SALMON phase at VENUS-T (water-cooled thermal VENUS)
 - integrated in the more general, innovative project SUCRE (CNRS-CEA-IRSN) within the framework of NEEDS-V2 (French CNRS program for nuclear energy and related topics)
 - any thermal core at use for SCK customers as a starting point
 - short experimental program with GENEPI in pulsed mode
 - \Rightarrow originally planned 2021-2022
- 3. Results of these two exploratory phases would help:
 - building a larger scale project in VENUS-T
 - convincing potential funders
 - (and help involving miniature neutron source manufacturers)
 - Not programmed yet

SALMON phase one: unloading of SC11

Strong correlation between area result and reactivity kept throughout unloading for all detectors

Conseil Scientifique de l'IN2P3, Feb. 3rd-4th, 2022 Area method:

Feasibility of next phases

Phases 2 and 3 need to turn VENUS-F back to thermal, water-cooled VENUS-T ⇒ initially planned in 2020-2021, thermal VENUS-T has been postponed indefinitely

- \Rightarrow two alternatives to be studied:
 - Test experiment with a neutron generator at another facility
 - « Thermal VENUS-F » with Pb-Bi replaced by polythene in assemblies (SUCRE)

SALMON Phases 2 and 3 at VENUS are obviously incompatible with the SPATIAL project ⇒ Ideally, SPATIAL first, then SALMON-2 and 3, could be performed at VENUS

Conclusion

GUINEVERE is a unique facility for studying fast lead (and Pb-Bi) ADS, which exists thanks to SCK CEN, CNRS and CEA

- Large set of reactor experiments performed in 15 years
- Research programs mostly funded by external resources (Euratom, SCK,...)
- Strong involvement of CNRS/IN2P3 teams in reactivity measurement studies (know-how, leadership and initiatives)

 \Rightarrow ρ can be measured in a « MYRRHA-like zero-power ADS at start-up and in operation » within $\approx 4\%$

A strong and fruitful collaboration between SCK CEN and CNRS/IN2P3 for the last 15 years ⇒ Despite difficulties specific to the nuclear reactor field, the CNRS/IN2P3 teams feel encouraged to propose new ambitious projects to take advantage of the GUINEVERE facility:

- SPATIAL: a comprehensive and thorough study of space-energy effects during reactor transients and their impact on reactivity monitoring, especially in power ADS
- SALMON: study of reactor core (re)loading monitoring
- ⇒ Both projects bear interests beyond pure ADS studies
- ⇒ Both projects would deliver new data of interest for the CNRS project of « common digital framework »

Presentation ends here

A long terme (t > 100 ans), les AM contribuent le plus à la radiotoxicité du combustible usé (une fois le Pu recyclé...)

10000 Wigeland et al., Nucl. Tech. 154 (2006) 95 50 GWd/MTIHM Spent PWR Fuel Watts / MTIHM 1000 Fission Actinide and Fission Product Decay Heat Products Total 137mBa Decay I 100 ²⁴¹Am 137Cs ⁹⁰Sr 240Pu 10 -10 100 1000 10000 Time after Discharge, (Years)

A long terme (t > 100 ans), l'américium est responsable de la majeure partie de la chaleur émise

- ⇒ Incinération (fission) des AM dans un réacteur nucléaire
- ⇒ Réduction de la radiotoxicité des entreposages et augmentation de la capacité de stockage

The MYRRHA project

Reactivity measurement in PNS experiments

Very good agreement between reference values and Area results

Méthode kp

Chabod et al., PHYSOR 2014

Une estimation de réactivité robuste requiert :

- FSE peu sensibles à la géométrie du modèle
- Un moyen d'annuler la dépendance des FSE à la réactivité du modèle
- \Rightarrow Double test :
- Variations de géométrie
- Variations de réactivité du modèle
- ➡ Bootstrapping
- ⇒ Propagation correcte des erreurs expérimentales
- Tous les modèles donnent des FSE compatibles

MCNP model	bt4f	btsc4	bt4e	bts4u	btcy4
Core geometry	ore geometry heterogeneous		homogeneous	homogeneous	
Data libraries	JEFF 3.1	JEFF 3.1	ENDF-B/VI	JEFF 3.1	JEFF 3.1
U enrichment (%)	30	30	30	28.8	30
Model $\beta_{\rm eff}$ (pcm)	742(4)	742(4)	746(4)	745(4)	748(4)
Model ρ (\$)	-15.0(1)	-16.5(1)	-15.2(1)	-19.4(1)	-17.7(1)

Fission cross-sections vs SC11 spectrum

Strong variations of energy spectrum in the SC11-like configuration of VENUS-F ⇒ strong variations of spectral indices as a function of position expected