

# Phenomenology of the CMB

# Bartjan van Tent

# IJCLab, theoretical physics department, Orsay

# Conseil Scientifique de l'IN2P3 3 July 2023





# **Outline**

- 1. **The CMB** introduction, power spectrum, E & B polarization, cosmological parameters & current status, reionization, gravitational lensing
- Inflation introduction, fluctuations, primordial power spectrum & observables, predictions & constraints, isocurvature, non-Gaussianity
- Other observables number of light species, neutrino masses, SZ effect, spectral distortions
- 4. Conclusions & Targets







# 1. The CMB

The CMB (Cosmic Microwave Background):

- Formed when universe became transparent at **recombination** of  $p^+$  and  $e^-$  into neutral hydrogen.
- Very isotropic 2.73 K black-body radiation.
- Tiny fluctuations  $\mathcal{O}(10^{-5} \text{ K})$ :



2018 T map

Linearly **polarized** because of Thomson scattering



To describe temperature fluctuations in CMB:



Cosmic variance: statistical error due to having only one sky to measure. Important at low  $\ell$  where there are few  $a_{\ell m}$  per  $\ell$ .





Sachs-Wolfe plateau Scales still super-horizon at recombination  $\Rightarrow$  just primordial spectrum, without evolution (except ISW). Cosmic variance is large here, however.

- Acoustic peaks **Oscillations in baryon-photon plasma** before recomb. due to opposing forces gravity and radiation pressure. Snapshot at recomb.: certain  $\lambda$  at max or min of oscillation.
  - Silk damping Recombination not instantaneous and initial mean free path photons  $\neq 0 \Rightarrow$  photons diffuse out of overdensities on small scales and **smear out fluctuations**.





Sachs-Wolfe plateau Scales still super-horizon at recombination  $\Rightarrow$  just primordial spectrum, without evolution (except ISW). Cosmic variance is large here, however.

- Acoustic peaks **Oscillations in baryon-photon plasma** before recomb. due to opposing forces gravity and radiation pressure. Snapshot at recomb.: certain  $\lambda$  at max or min of oscillation.
  - Silk damping Recombination not instantaneous and initial mean free path photons  $\neq 0 \Rightarrow$  photons diffuse out of overdensities on small scales and **smear out fluctuations**.

Exact shape of  $C_{\ell}$  depends on matter content of universe and other parameters  $\Rightarrow$  precise determination of  $\land$ CDM cosmological parameters.

Examples: • position first peak  $\rightarrow$  spatial curvature  $\Omega_K$ ,

• height second and third peaks  $\rightarrow$  amount of baryons  $\Omega_b$  & cold dark matter  $\Omega_c$ .

$$\begin{split} \Omega_{\textit{K}} &= 0.001 \pm 0.002, \quad \Omega_{\textit{b}} h^2 = 0.0224 \pm 0.0001 ~(\textbf{0.7\%}), \\ \Omega_{\textit{c}} h^2 &= 0.120 \pm 0.001 ~(\textbf{1.0\%}) \end{split}$$

 $\Rightarrow \quad \boldsymbol{\Omega_m} \equiv \boldsymbol{\Omega_b} + \boldsymbol{\Omega_c} = 0.315 \pm 0.007, \quad \boldsymbol{\Omega_\Lambda} = 0.685 \pm 0.007.$ 

 $\label{eq:h} {\pmb h} \equiv {\it H}_0/100 = 0.674 \pm 0.005 \ ({\it 0.8\%}), \quad {\it Age} = 13.80 \pm 0.02 \ {\rm Gyr}.$ 

[Planck 2018, 1807.06209]





# **CMB** polarization

Consider for simplicity monochromatic EM plane wave propagating in *z* direction:  $\vec{E}(t, \vec{x}) = \begin{pmatrix} a_1 e^{i\theta_1} \\ a_2 e^{i\theta_2} \end{pmatrix} e^{i(\omega t - kz)}.$ 

Instead of  $a_1, a_2, \theta_1, \theta_2$  we can use 4 Stokes parameters I, Q, U, V:

 $I = a_1^2 + a_2^2$ ,  $Q = a_1^2 - a_2^2$ ,  $U = 2a_1a_2\cos(\theta_1 - \theta_2)$ ,  $V = 2a_1a_2\sin(\theta_1 - \theta_2)$ .

- ▶  $I \rightarrow$  total intensity,  $V \rightarrow$  left/right-handed circular polarization,
- ▶  $Q \rightarrow$  horizontal/vertical linear polarization,  $U \rightarrow \pm 45^{\circ}$  linear polarization.
- *V* is not produced by Thomson scattering and is **absent in CMB**.

Of course CMB is not monochromatic plane wave  $\Rightarrow I, Q, U$  depend on  $\vec{x}$  and  $\omega$ .





# **CMB** polarization

Consider for simplicity monochromatic EM plane wave propagating in *z* direction:  $\vec{E}(t, \vec{x}) = \begin{pmatrix} a_1 e^{i\theta_1} \\ a_2 e^{i\theta_2} \end{pmatrix} e^{i(\omega t - kz)}.$ 

Instead of  $a_1, a_2, \theta_1, \theta_2$  we can use 4 Stokes parameters I, Q, U, V:

 $I = a_1^2 + a_2^2$ ,  $Q = a_1^2 - a_2^2$ ,  $U = 2a_1a_2\cos(\theta_1 - \theta_2)$ ,  $V = 2a_1a_2\sin(\theta_1 - \theta_2)$ .

- ▶  $I \rightarrow$  total intensity,  $V \rightarrow$  left/right-handed circular polarization,
- ▶  $Q \rightarrow$  horizontal/vertical linear polarization,  $U \rightarrow \pm 45^{\circ}$  linear polarization.

*V* is not produced by Thomson scattering and is **absent in CMB**. Of course CMB is not monochromatic plane wave  $\Rightarrow I, Q, U$  depend on  $\vec{x}$  and  $\omega$ .

*I* (and *V*) invariant under rotations, not *Q* and *U*.  $\Rightarrow$  Use *E* (gradient) and *B* (curl) to describe linear polarization instead (invar. but non-local):

$$\boldsymbol{Q} \pm i\boldsymbol{U} = -\sum_{\ell,m} (\boldsymbol{E}_{\ell m} \pm i\boldsymbol{B}_{\ell m}) \pm_2 Y_{\ell m}$$

with  $\pm 2Y_{\ell m}$  spherical harmonics of spin  $\pm 2$ .

Finally, 
$$E = \sum_{\ell,m} E_{\ell m} Y_{\ell m}$$
 and  $B = \sum_{\ell,m} B_{\ell m} Y_{\ell m}$ 





 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 

Bartjan van Tent

# Status current measurements of $C_{\ell}^{TT}$ , $C_{\ell}^{EE}$ , $C_{\ell}^{BB}$ : (not shown: TE cross spectrum)



- ► TT: we have **perfect measurements** (cosmic variance limited).
- ► EE: measured, but to be improved with next generation (especially low-*ℓ*).
- BB: unmeasured (primordial), holy grail for next generation of experiments.





Image credit: Roen Kellv/Discover magazine

After recombination: universe no longer ionized. But star formation partially **reionizes** universe  $\Rightarrow$  rescattering of CMB photons.

- **Reduces** existing CMB power spectrum  $\propto e^{-\tau}$ .
- Polarizes CMB through Thomson scattering → "reionization bump".

Optical depth to reionization  $\tau = \int_{t_{rin}}^{t_0} \sigma_T n_e(t) c dt$  determines both.





# Gravitational lensing

# Matter distribution in late universe has impact on CMB via gravitational lensing.

- + Allows determination total matter distribution.
- Contamination of CMB spectrum (reduction peaks by smoothing).
- Creates B-polarization from E, much larger than primordial B.







 $\Rightarrow$  Solves horizon & flatness problems and creates seeds for structure formation:

- 1. Very rapid expansion: actual horizon much larger than observable universe;
- 2. Quantum fluctuations inflated to macroscopic classical perturbations.

# Constraints on inflation models:

- Ad 1. At least 60 e-folds of inflation;
- Ad 2. Inflationary fluctuation properties have to match CMB observations.
- $\Rightarrow$  Observational constraints on underlying high-energy theories.



#### Phenomenology of the CMB - 2. Inflation



Quantum fluctuations completely change behaviour when inflated to  $\overline{\lambda} \gtrsim (aH)^{-1}$  (comoving Hubble length): instead of oscillations  $\rightarrow$  growing (or constant) and decaying mode. When decaying mode negligible  $\rightarrow$  fluctuations classical (squeezing).





### Phenomenology of the CMB - 2. Inflation



Quantum fluctuations completely change behaviour when inflated to  $\overline{\lambda \gtrsim (aH)^{-1}}$  (comoving Hubble length): instead of oscillations  $\rightarrow$  growing (or constant) and decaying mode. When decaying mode negligible  $\rightarrow$  fluctuations classical (squeezing).

Single-field slow-roll inflation:

Scalar (~ energy density) fluctuations: power spectrum  $P_s(k) = A_s(k/k_0)^{n_s-1}$ with amplitude  $A_s = \frac{\hbar G}{\pi c^5} \frac{H_{k_0}^2}{\epsilon_{k_0}}$  and spectral index  $n_s - 1 = -6\epsilon_{k_0} + 2\eta_{k_0}$ 

*H*<sup>2</sup><sub>k<sub>0</sub></sub> ≈ <sup>8πG</sup>/<sub>3c<sup>2</sup></sub> *V*<sub>k<sub>0</sub></sub> energy scale of inflation (at horizon exit of CMB pivot scale k<sub>0</sub>),

 *ϵ*<sub>k<sub>0</sub></sub> ≈ <sup>c<sup>4</sup></sup>/<sub>16πG</sub> (*V*' / *V*)<sup>2</sup><sub>k<sub>0</sub></sub>, *η*<sub>k<sub>0</sub></sub> ≈ <sup>c<sup>4</sup></sup>/<sub>8πG</sub> (*V*'' / *V*)<sub>k<sub>0</sub></sub> slow-roll parameters ≪ 1.

 $A_s$  and  $n_s$  well measured, but degeneracy because two observables depend on three inflationary variables.





**Tensor** (gravitational wave) **fluctuations**: power spectrum  $P_t(k) = A_t(k/k_0)^{n_t}$ with **amplitude**  $A_t = \frac{16\hbar G}{\pi c^5} H_{k_0}^2$  and **spectral index**  $n_t = -2\epsilon_{k_0}$ 

Instead of  $A_t$  we use **r**, tensor-to-scalar ratio:  $r \equiv A_t/A_s = 16\epsilon_{k_0} = -8n_t$ 

# Scalar fluctuations cannot create B-polarization, only tensor fluctuations can.

 $\Rightarrow$  If we can measure primordial B-modes, we will know r.

This breaks degeneracy so that we learn

- energy scale of inflation (at horizon exit of CMB pivot scale),
- first and second derivatives of inflaton potential there (if single field).
- In many models r directly gives lower bound on field excursion ("Lyth bound"):  $\Delta \phi/M_P \gtrsim 10\sqrt{r} \sqrt{c^3/\hbar}$ . [Lyth, hep-ph/9606387]
- If we can also measure nt we will test single-field slow-roll consistency relat.

# Current constraints:

 $\ln(10^{10} A_s) = 3.04 \pm 0.01 \ (0.5\%), \quad n_s = 0.965 \pm 0.004 \ (0.4\%),$ 

*r* < 0.032 (95% CL)

[Planck 2018, 1807.06209] and for r [Tristram et al., 2112.07961]





## Forecasts and predictions for r:



While *r* could be much smaller, there are **important targets** in region  $r \gtrsim 0.001$ :

- Popular Starobinsky R<sup>2</sup>/Higgs inflation models;
- More generally, any single-field monomial/plateau/hilltop potential with super-Planckian characteristic scale/field excursion.





# **Isocurvature**

If multiple-field inflation  $\rightarrow$  possibility of **relative fluctuations** between components: **isocurvature modes**, parametrized by  $\beta_{iso} = A_{iso}/A_s$ . **Current constraints**:

 $\beta_{iso}(CDM) < 0.039, \ \beta_{iso}(\nu \text{ density}) < 0.089, \ \beta_{iso}(\nu \text{ velocity}) < 0.058 (95\% \text{ CL})$ 





# **Isocurvature**

If multiple-field inflation  $\rightarrow$  possibility of **relative fluctuations** between components: **isocurvature modes**, parametrized by  $\beta_{iso} = A_{iso}/A_s$ . **Current constraints**:

 $\textbf{\beta}_{\text{iso}}(\text{CDM}) < 0.039, \ \textbf{\beta}_{\text{iso}}(\nu \text{ density}) < 0.089, \ \textbf{\beta}_{\text{iso}}(\nu \text{ velocity}) < 0.058 \ (95\% \text{ CL})$ 

[Montandon et al., 2007.05457]

# Non-Gaussianity

Since gravity **non-linear**, fluctuations not exactly Gaussian  $\Rightarrow$  information beyond power spectrum in higher correlators like **bispectrum**  $B(k_1, k_2, k_3)$  (3-point corr.).

- ► Parametrized by  $f_{NL} \sim B/P_s^2$  (different  $f_{NL}$  for different bispectrum shapes).
- Single-field slow-roll inflation: f<sub>NL</sub> ~ 0.01.
   Other models predict larger f<sub>NL</sub>; important observational target: f<sub>NL</sub> ~ 1.
- Multiple-field inflation: local bispectrum template; Single-field with non-standard kinetic terms: equilateral & orthogonal.

# Current constraints:

$$\label{eq:floc} {\it f_{\rm NL}^{\rm loc}} = -0.9 \pm 5.1, \quad {\it f_{\rm NL}^{\rm equ}} = -26 \pm 47, \quad {\it f_{\rm NL}^{\rm ort}} = -38 \pm 24$$

[Planck 2018, 1905.05697]





# **Isocurvature**

If multiple-field inflation  $\rightarrow$  possibility of **relative fluctuations** between components: **isocurvature modes**, parametrized by  $\beta_{iso} = A_{iso}/A_s$ . Current constraints:

 $eta_{
m iso}(
m CDM) < 0.039, \ eta_{
m iso}(
u \ 
m density) < 0.089, \ eta_{
m iso}(
u \ 
m velocity) < 0.058 \ (95\% \ 
m CL)$ 

[Montandon et al., 2007.05457]

# Non-Gaussianity

Since gravity **non-linear**, fluctuations not exactly Gaussian  $\Rightarrow$  information beyond power spectrum in higher correlators like **bispectrum**  $B(k_1, k_2, k_3)$  (3-point corr.).

- ► Parametrized by  $f_{NL} \sim B/P_s^2$  (different  $f_{NL}$  for different bispectrum shapes).
- Single-field slow-roll inflation: f<sub>NL</sub> ~ 0.01.
   Other models predict larger f<sub>NL</sub>; important observational target: f<sub>NL</sub> ~ 1.
- Multiple-field inflation: local bispectrum template; Single-field with non-standard kinetic terms: equilateral & orthogonal.

# Current constraints:

$$f_{\text{NL}}^{\text{loc}} = -0.9 \pm 5.1, \quad f_{\text{NL}}^{\text{equ}} = -26 \pm 47, \quad f_{\text{NL}}^{\text{ort}} = -38 \pm 24$$

[Planck 2018, 1905.05697]

# Features

Some inflation models predict **features** (like oscillations) correlated between power spectrum (T+E) and bispectrum. See e.g. [Achucarro et al., 2203.08128]





# 3. Other observables







# Number of light species

Energy density relativistic species:  $\rho_B = \left(1 + N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$ 

- If 3 neutrinos fully decoupled before electron-positron annihilation:  $N_{\text{eff}} = 3$ .
- In fact not fully decoupled, hence SM prediction: N<sub>eff</sub> = 3.046.
- Other light particles, like sterile neutrinos or axions, would increase N<sub>eff</sub> ⇒ change expansion history, transition radiation to matter domination ⇒ impact on evolution CMB high-ℓ modes that reentered horizon early.





des 2 Infinis Irène Joliot-Curie

# Number of light species

Energy density relativistic species:  $\rho_R = \left(1 + N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right) \rho_{\gamma}$ 

- If 3 neutrinos fully decoupled before electron-positron annihilation:  $N_{\text{eff}} = 3$ .
- In fact not fully decoupled, hence **SM prediction**:  $N_{\rm eff} = 3.046$ .
- Other light particles, like sterile neutrinos or axions, would increase N<sub>eff</sub>  $\Rightarrow$  change expansion history, transition radiation to matter domination  $\Rightarrow$  impact on evolution CMB high- $\ell$  modes that reentered horizon early.

# Neutrino masses



# Sunyaev-Zel'dovich effect

**Thermal SZ effect:** Inverse Compton scattering of CMB photons by hot electrons in **galaxy clusters** <u>distorts CMB</u> frequency spectrum non-thermally, conserving photon number density.

$$\begin{split} & \Delta T_{\text{TSZ}}(\nu) / T_{\text{CMB}} = g(\nu) y \\ & \text{with Compton parameter } y = \int \sigma_T n_e \frac{k_B T_e}{m_e c^2} \, dl \\ & \text{and } g(\nu) \left\{ \begin{array}{l} < 0 & \text{if } \nu < 217 \text{ GHz} \\ > 0 & \text{if } \nu > 217 \text{ GHz} \end{array} \right. \end{split}$$

 $\Rightarrow$  Used to identify clusters, study cluster physics and galaxy formation.



[Carlstrom et al., astro-ph/0208192]

**Kinetic SZ effect**: Additional <u>thermal distortion</u> due to peculiar velocities of galaxy clusters (Doppler effect)  $\Rightarrow$  Determine <u>cluster velocities</u>.





# Sunvaev-Zel'dovich effect

Thermal SZ effect: Inverse Compton scattering of CMB photons by hot electrons in galaxy clusters distorts CMB frequency spectrum non-thermally, conserving photon number density.

 $\Delta T_{\text{TSZ}}(\nu)/T_{\text{CMB}} = g(\nu)\gamma$ with Compton parameter  $y = \int \sigma_T n_e \frac{k_B T_e}{m_c c^2} dl$ and  $g(\nu)$   $\begin{cases} < 0 & \text{if } \nu < 217 \text{ GHz} \\ > 0 & \text{if } \nu > 217 \text{ GHz} \end{cases}$ 

 $\Rightarrow$  Used to identify clusters, study cluster physics and galaxy formation.



<sup>[</sup>Carlstrom et al., astro-ph/0208192]

**Kinetic SZ effect:** Additional thermal distortion due to peculiar velocities of galaxy clusters (Doppler effect)  $\Rightarrow$  Determine cluster velocities.

# **Spectral distortions**

Many other sources of spectral distortions exist, both before and after recomb.

- y-type: distortions similar to thermal SZ (conserve  $n_{\gamma}$ ).
- $\blacktriangleright$   $\mu$ -type: early energy injections, partially thermalized  $\rightarrow$  behave like chem. pot.

Huge discovery potential: information not probed in other ways, and no new measurements since COBE satellite.

See e.g. [Chluba et al., 1903.04218]





# 4. Conclusions & Targets

- There is a wealth of information in the CMB.
- The temperature power spectrum has been well measured, but upcoming experiments will improve measurements of E-polarization and B-polarization, and hopefully detect the primordial B-modes.
- Scientific CMB-related targets for the next 15 years:
  - Measure (or constrain) r to learn more about inflation.
  - Improve constraints on (or detect!) other inflationary observables:
     f<sub>NL</sub>, β<sub>iso</sub>, oscillations.
  - Improve error bars on  $\tau$  and learn more about **reionization**/first stars.
  - Improve knowledge of **neutrino**/light particle sector:  $N_{\text{eff}}$ ,  $\sum m_{\nu}$ .
  - Improve error bars on all cosmological parameters.
  - Reconstruct matter distribution through lensing: growth of structure.
  - Better measurements SZ effects: cluster physics, galaxy formation.
  - Learn more about **dark matter** and **dark energy** through the above.
  - Discovery potential beyond-SM physics (cosmic birefringence, ...).
- Other targets CMB missions: galactic science, mapping microwave sky.
- Scientific CMB targets for later: n<sub>t</sub>, spectral distortions, ...

