Virgo_nEXT

Matteo Barsuglia On behalf of the IN2P3 labs

CS IN2P3 - 3/7/2023

Outline

- The context : LIGO-Virgo-KAGRA detectors and results
- Virgo_nEXT: history and sensitivity
- Why Virgo_nEXT?
 - Science case
 - Virgo_nEXT as a testbench for ET
 - Bridging the gap between Advanced Virgo+ and ET and keeping the expertise

GW detectors and observing runs

GW detectors and observing runs

The current detectors and infrastructures

LIGO Livingston

LIGO Hanford

Virgo

KAGRA

GW detectors and observing runs

Einstein Telescope and Cosmic Explorer

See Patrice Verdier talk

CS IN2P3 - July 2023

Ground based interferometric GW detectors

Dual recycled Fabry-Perot Michelson interferometers with suspended test masses and use of frequency dependent quantum squeezing

- Suspended test masses / seismic isolation
- Long arms, powerful lasers, suspended optical benches
- Quantum squeezing

Suspensions and mirrors

Noise sources

A possible classification:

- Fundamental noises (from first principles)
 - Quantum, thermal
- Technical noises
 - Laser, electronics, vacuum pressure
- Enviromental noises (from the environment)
 - Seismic, acoustic, magnetic

CS IN2P3 - July 2023

GW detectors and observing runs

GWTC-3 (2021)

The last LVK data-taking (O3)

- 6 new exceptional astrophysical systems published
- More distant sources with respect to 02 (z \sim x 2)
- New tests of general relativity (i.e. harmonics of the GW signal)
- A drastic change in slope in the number of sources
- Upper limits on several sources and physical effects (i.e. GW background, lensing, specific dark matter candidates)
- Population studies (not only study of individual events)

GW detectors and observing runs

LVK - O4 data taking

- Started on May 24th 2023
- LIGO ~ 130-150 Mpc
- KAGRA started with ~ 1 Mpc now in commissioning again
- Virgo ~27 Mpc in May \rightarrow decided to not enter officially to continue commissioning
 - Difficulties with optical configuration (marginally stable recycling cavities)
 - Problems with 2 test masses
- Advanced Virgo+ plans to enter around September, following the commissioning progress

GW detectors and observing runs

Virgo_nEXT history and schedule

- March 2021: Virgo_nEXT study initiated
- Two committees formed:
 - Committee 1: Scientific potential
 - Committee 2: Detector design
- March 2022: Virgo_nEXT Concept study released (140 pages document)
- June 2022: Virgo_nEXT presented to EGO council and French Research Ministry
- January 2023: Virgo_nEXT coordinator appointed
- January 2023: 2 committees formed to address two main points:
 - Coating options
 - Need of stable recycling cavities
- July 2023: Finalizing preliminary plan for R&D
- December 2024: Expected Virgo_nEXT Technical Design report
- 2024-2029: Virgo_nEXT R&D and components development
- 2029: end of O5 LVK data taking
- 2032-2033: Possible Virgo_nEXT first data taking

Plan for R&D in french labs being finalized

Virgo_nEXT history and schedule

- March 2021: Virgo_nEXT study initiated
- Two committees formed:
 - Committee 1: Scientific potential
 - Committee 2: Detector design
- March 2022: Virgo_nEXT Concept study released (140 pages document)
- June 2022: Virgo_nEXT presented to EGO council and French Research Ministry
- January 2023: Virgo_nEXT coordinator appointed
- January 2023: 2 committees formed to address two main points:
 - Coating options
 - Need of stable recycling cavities
- July 2023: Finalizing preliminary plan for R&D
- December 2024: Expected Virgo_nEXT Technical Design report
- 2024-2029: Virgo_nEXT R&D and components development
- 2029: end of O5 LVK data taking
- 2032-2033: Possible Virgo_nEXT first data taking

Plan for R&D in french labs being finalized

Sensitivity

Why Virgo_nEXT

- Continue Virgo's science programme in the LVK gravitational-wave detector network
- Push the potential of the existing infrastructure to its limits
- Fest the technologies used in the ET avoiding design mistakes and accelerating commissioning
- Fill a potential gap of a decade between the end of O₅ and the first ET design sensitivity
- Seep and develop the expertise of the experimental and data analysis community
- **⇄** Ensure smooth generational transition and training of new leaders

AdV sensitivity evolution from O3 to Virgo_nEXT

The science with Virgo_nEXT compact objects

O3 (AdV) ~ O(10²) BBH /year O5 (AdV+) ~ O(10³) BBH/year

"O6" (upgraded network)

~ O(10⁴⁾ BBH/year ~ O(10³) BNS /year

Possible GW detector network after 2030 (Virgo_nEXT, A#, KAGRA)

Science case

Discovery potential

- Cosmology H₀
- Nuclear physics phase transitions
- Isolated spinning neutron stars
- Astrophysical stochastic background
- Ringdown nature of black-holes
- Post-merger signal
- Constraints (or surprises)
 - Test of general relativity
 - Dark matter
 - Black-hole distributions / population sciences
 - Supernovae
- Multi-messenger astrophysics
 - GRB, FRB, kilonovae
 - Alerts
 - Synergies with other observatories

Cosmology: Measurement of H₀

With e.m. counterpart (GW170817)

- GW gives luminosity distance
- e.m. counterpart gives redshift

Without e.m. counterpart (dark sirens) and galaxy catalogs

- Statistical analysis using redshifts from galaxies catalog
- Only with GW (spectral sirens)
 - Distribution of BH masses

Cosmology: Measurement of H₀ e.m. counterparts and galaxy catalogs

- ~ 30 BNS/year with Kilonova observed by Vera Rubin
- SNR=12

- ~ 150 BBH/year with galaxy catalogs (50%)
- Cut on localization and redshift

Cosmology: Measurement of H_0

Spectral sirens

Nuclear physics

Isolated spinning neutron stars

Stochastic background

- Results from the superposition of weak and independent sources
- Using cross correlation techniques with A#, we are ensured to detect the contribution from BBHs at a level of 5σ a in a few years with Virgo_nEXT
- Complementary to individual detections (probe the high redshift population)
- Upper limit (or detection) on a flat cosmological background (inflation, cosmic string) at the level of $\Omega \sim 10^{-10}$

Science case

• Discovery potential

- Cosmology H₀
- Nuclear physics phase transitions
- Isolated spinning neutron stars
- Astrophysical stochastic background
- Ringdown nature of black-holes
- Post-merger signal
- Constraints (or surprises)
 - Test of general relativity
 - Dark matter
 - Black-hole distributions / population sciences
 - Supernovae
- Multi-messenger astrophysics
 - GRB, FRB, kilonovae
 - Alerts
 - Synergies with other observatories

Tests of General relativity

- Parametric deviations constraints will improve with 1/SNR
- Detection of separate ringdown modes may be achievable: testing the black hole nature of the remnant
- High-SNR network detections will constrain scalar and vector polarizations

Dark matter

- GW signals from coalescence of primordial black holes or exotic objects (partly composed of DM)
 - Search for sub-solar mass compact objects with standard CBC techniques, in absence of observations, constrain DM models
- Probing DM through gravitational lensing
 - Given expected number of observation, chances are that Virgo_nEXT will bring GW lensing detections
 - Strongly lensed gravitational waves signals can probe the spatial distribution of DM
- Gravitational waves interferometers as DM detectors
 - E.g. direct searches for DM dark photons coupling to the interferometer

Distribution of BH in binaries

37

Science case

• Discovery potential

- Cosmology H₀
- Nuclear physics phase transitions
- Isolated spinning neutron stars
- Astrophysical stochastic background
- Ringdown nature of black-holes
- Post-merger signal
- Constraints (or surprises)
 - Test of general relativity
 - Dark matter
 - Black-hole distributions / population sciences
 - Supernovae
- Multi-messenger astrophysics
 - GRB, FRB, kilonovae
 - Alerts
 - Synergies with other observatories

Multi-messenger astrophysics

10³

- 5-detector network: excellent localization
- Synergies with e.m. observatories:
 - Vera Rubin
 - THESEUS
 - ATENA
- Larger distances and larger rates of events
- Importance for GRB, FRB and kilonovae

 10^{0} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 2D sky location 90% credible region [deg²]

Median: 80 deg²

Events
VRO FoV

O3 (AdV) ~ O(10²) BBH /year O5 (AdV+) ~ O(10³) BBH/year

- "O6" (upgraded network)
- ~ O(10⁴⁾ BBH/year
- ~ O(10³) BNS /year

Why Virgo_nEXT

- Continue Virgo's science programme in the LVK gravitational-wave detector network
- Push the potential of the existing infrastructure to its limits
- Fest the technologies used in the ET avoiding design mistakes and accelerating commissioning
- Fill a potential gap of a decade between the end of O₅ and the first ET design sensitivity
- Seep and develop the expertise of the experimental and data analysis community
- **⇄** Ensure smooth generational transition and training of new leaders

Detector concept

Main Virgo_nEXT parameters

Parameter	O4 high	O ₄ low	O5 high	O ₅ low	VnEXT low
Power injected (W)	23 W	40 W	60 W	80 W	277 W
Arm power	120 kW	190 kW	290 kW	390 kW	1.5 MW
PR gain	34	34	35	<u>3</u> S	39
Finesse	446	446	446	446	446
Signal recycling	Yes	Yes	Yes	Yes	Yes
Squeezing type	FIS	FDS	FDS	FDS	FDS
Squeezing (db)	3	4.5	4.5	6	10.5
Payload type	AdV	AdV	AdV	AdV	Triple
ITM mass (kg)	42	42	42	42	105
ETM mass (kg)	42	42	103	103	103
ITM beam radius (mm)	49	49	49	49	49
ETM beam radius (mm)	58	38	91	91	91
Coating losses ETM	2.37e-4	2.37e-4	2.37e-4	7.90e-5	6.2e-6
Coating losses ITM	1.63e-4	1.63e-4	1.63e-4	5.40e-5	6.2e-6
Reduction NN	None	1/3	1/3	1/5	1/5
Technical noise	"high"	"low"	"low"	None	None
BNS range (Mpc)	90	115	145	260	500

Stable cavities

Recycling cavities

Power recycling cavity: increase

Gaussian beams

$$E(r,z) = \psi(r,z)e^{-ikz} = E_0 \frac{w_0}{w(z)} \exp\left(i\eta(z) - \frac{ikr^2}{2R(z)} - \frac{r^2}{w^2(z)} - ikz\right)$$

TEM00

TEM00

Stable vs marginally stable cavities

Problems with marginally stable cavities

- The high-order modes (HOMs) resonant in the recycling cavities create optical offsets on the error signals used to control the interferometer.
- The different degrees of freedom are more coupled, which increases the complexity of the controls
- The quantity of the HOMs changes during a thermal transient just after the lock of the interferometer
- The HOMs present on the output port of the detector are amplified in the signal recycling cavity, which degrade the contrast defect
- The losses due to the HOMs create optical losses and degrade the squeezing performances.
- The simulations are also more complex and less reliable

Why Virgo_nEXT

- Continue Virgo's science programme in the LVK gravitational-wave detector network
- Push the potential of the existing infrastructure to its limits
- Fest the technologies used in the ET avoiding design mistakes and accelerating commissioning
- Fill a potential gap of a decade between the end of O₅ and the first ET design sensitivity
- Seep and develop the expertise of the experimental and data analysis community
- **⇄** Ensure smooth generational transition and training of new leaders

Virgo_nEXT vs Einstein Telescope

ET-high-frequency: longer arms, underground with Virgo_nEXT technologies

ET-low-frequency: cryogenic, low frequency technical noises similar to the Virgo_nEXT ones

See Edwige's presentation

CS IN2P3 - July 2023

Why Virgo_nEXT

- Continue Virgo's science programme in the LVK gravitational-wave detector network
- Fest the technologies used in the ET avoiding design mistakes and accelerating commissioning
- Fill a potential gap of a decade between the end of O₅ and the first ET design sensitivity
- Keep and develop the expertise of the experimental and data analysis community
- ➡ Ensure smooth generational transition and training of new leaders

GW detectors and observing runs

Extra slides

AdV+ sensitivity possible evolutions

CS IN2P3 - July 2023