

CMS Experiment at the LHC, CERN Data recorded: 2022-Nov-18 15:50:14.858368 GMT Run / Event / LS: 362293 / 24480852 / 27

Heavy ions w/CMS @ the HL-HLC: Assessment & Prospects

Matthew Nguyen Conseil Scientifique IN2P3 February 6th, 2023

Heavy ion program in CMS

Several of the most 'iconic' heavy-ion results from the LHC:

Conceived to profit from CMS's

- High rate
- Large acceptance
- High B field / precision tracking

Anomalous dijet imbalance, w/ highly quenched recoil jets

Long range ridge correlations, showing flow effects in small systems

"Melting" of quarkonium states, w/ characteristic binding energy dependence

PRC 84 (2011) 024906

JHEP 09 (2010) 091

PRL 109 (2012) 222301 2

Some historical perspective

High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

Main concern for heavy ions w/ CMS: High occupancy in first layer of strip tracker

Figure 3.1: Channel occupancy in the barrel region as a function of tracker detector layer: 1–3 are pixel layers; 4–7 are inner strip layers; and 8–13 are outer strip layers [165].

CMS Physics Technical Design Report: Addendum on High Density QCD with Heavy Ions

D. d'Enterria , M. Ballintijn , M. Bedjidian ¹ , D. Hofman , O. Kodolova , C. Loizides , I. P Lokthin , C. Lourenço , C. Mironov , S. V Petrushanko , C. Roland , G. Roland , F. Sikler , G. Veres Details I IPNL - Institut de Physique Nucléaire de Lyon The strip tracker occupancy & large material budget is one of the main drawbacks → To this day, our charged hadron tracking efficiency is typically limited to around 75% (This will improve for Run 4)

Low p_T tracking

CERN-LHCC-2007-009

Figure 3.3: Acceptance (left) and efficiency (right) as a function of $p_{\rm T}$, for tracks in the rang $|\eta| < 1$. Values are given separately for pions (circles), kaons (triangles) and (anti)proton (squares).

A recent analysis

- Below about 1 GeV, better performance is achieved using pixel-only tracks than using the full pixel+strip tracker
- Ideally, hadrons reach the outer pixel layer down to ~ 100 MeV, but a bit worse in practice due to energy loss
- CMS publishes results with pixel tracks down to 300 MeV; 200 MeV might be feasible w/ some effort

A "heavy-ion upgrade": Level-1 calo trigger

UE subtraction at L1 (hardware-level) was driven in part by heavy-ion program We would not be able to record the full rate of high p_T jets without this upgrade

Recent contributions from LLR

J/ψ-in-jets Jet quenching w/ quarkonium

PRL 128 (2022) 252301

Heavy ion program for CMS

Expect to augment our AA and pA data by a factor of 3 in Run 3

Similar luminosity again in Run 4, but with a vastly upgraded detector

Phase 2 upgrades of CMS

Designed for pile-up of 200 \rightarrow similar multiplicity to central PbPb collisions Features larger rapidity coverage, better precision & higher rate

Goal: Record all PbPb events (<50% in Run 3)			
Subdetector	CMS present	CMS Phase II	
L1 bandwidth	30 kHz for PbPb	750 kHz (all PbPb events)	
DAQ throughput	6 GB/s	60 GB/s	
Inner tracker	$ \eta < 2.4$	$ \eta < 4$	
	$100 \times 150 \ \mu m^2$ pixels	$50 \times 50 \ \mu m^2$ pixels	
Endcap calorimeter	Low granularity	High granularity	
Muon system	$ \eta < 2.4$	$ \eta < 2.8$	
Time-of-flight	N/A	PID for $\eta < 3$	

Tracker upgrade

Complete replacement of pixel and strip tracker

100 x 150 \rightarrow 50 x 50 μ m² pixel size Tracking out to $|\eta| < 4 !!$

MIP timing detector (MTD)

p [GeV]

LGAD is a novel technology,

PID coverage

Large acceptance PID: $|\eta| < 3$

Complementary w/ ALICE & LHCb

Experiment	η coverage	r (m)	σ _τ (ps)	r/σ _τ (x100)
CMS	η < 3.0	1.16	30	3.87
ALICE	η < 0.9	3.7	56	6.6
STAR	η < 0.9	2.2	80	2.75

Combined with dE/dx from pixel detector, $\pi/K/p$ coverage down $p_T = 300$ MeV!

Charm measurements w/ PID

CMS-DP-2021-037

Charm and beauty hadron measurements over six units of pseudorapidity ($|\eta| < 3$) Λ_c and D mesons down to $p_T = 0$ in the η range not covered by other experiments

<u>CMS-DP-2021-037</u>

p/|charge| [GeV]

PbPb (5.5 TeV)

 $|\eta| < 1.5$

Pythia8 Gun + Hydjet

Simulation Preliminary

CMS Phase-2

2.5⁴He

2

1/β

Light nuclei production in PbPb

Light nuclei are sensitive probes of statical hadronization and flow

Combination of MTD + pixel dE/dx can identify d, t, $He^3 \& He^4$

Relies on pixel dE/dx to separate deuteron from ⁴He by their charge

Light nuclei in high-luminosity pp

PRD 97 (2018) 103011

Korsmeier et al,

14

High multiplicity trigger in small systems

MTD information is accessible to the high-level trigger \rightarrow select high multiplicity collisions Turn-on of nuclear effects can be explored w/ precision in small systems

Projections for Run 3+4 exist, but primarily focused on statistical gain <u>CMS-PAS-FTR-17-002</u>

Besides the MTD, full heavy-ion simulations of the CMS Phase 2 detector have not yet been carried out

However, one can look at the 200 pile-up studies to anticipate performance improvements in heavy ions

Jets

Tracker + HGCAL = Full particle flow for high precision jets out to $|\eta| \approx 3$ (from 2.4)

<u>CMS-TDR-019</u>

Isolated photons to $|\eta| = 2.8$

(currently limited to $|\eta| < 1.44$ in heavy ions)

Improved b-tagging,

larger coverage ($|\eta| < 2 \rightarrow |\eta| < 3 \text{ or } 4$)

Quarkonia

Low $p_T J/\psi$ reconstruction

- Improved mass and lifetime resolution w/ the new tracker
- Modest acceptance increase ($|\eta| < 2.4 \rightarrow |\eta| < 2.8$), but in region where low p_T reach is the best
- Speculative: "Calorimeter muon" identification w/ HGCAL to improve low p_T muon reach?

Hadronic channels w/ MTD

Zero degree calorimeters

- ZDCs are an essential part of the HI program
 - Crucial part of heavy-ion min. bias trigger from Run 3 onwards
 - Used to identify & characterize ultra-peripheral collisions
 - ^o Bias estimation for centrality, especially in small systems
 - Exclusively HI detector (removed for high-lumi pp)
- Joint ATLAS & CMS effort: radiation-hard ZDCs for Run 4
- Reaction Plane Detector (RPD), rxn plane & directed flow

Beyond Run 4

The focus is currently on the Phase II upgrades, but CMS will continue to record HI data in Run 5+

Light-ion collisions featured in long term plan

- \rightarrow System scans of nuclear effects
- \rightarrow BSM searches

Magnetic monopole search

an iBTL at r=0.2 m using (AC-)LGADs?

Extending low p_T reach of CMS could be a possibility, if there is a community behind it to build the case

- Add'l PID inside the tracker region down to p = 400 MeV?
- Dedicated low B field run? → Simulations could be done now, but requires personpower

R. Bruce et al 2020 J. Phys. G 47 060501

Summary

- CMS will record large datasets in Runs 3 & 4, increasing our integrated luminosity by nearly an order of magnitude
- The Phase II upgrades will be highly beneficial for the HI program

 Even larger acceptance: Full particle flow (i.e., all subsystems) out to η ≈3
 Lighter tracker: better tracking efficiency, mass & lifetime resolution, etc.
 New PID capabilities: particularly useful for heavy flavor and light nuclei
 - 0...
- The prospects for CMS at the HL-HLC have not yet been fully explored