

27-28 octobre 2022

- Rationale for an upgrade
- Project overview
- Activities proposed by IN2P3 labs
- Request to IN2P3

Rationale for an upgrade

- → The current VXD & known limits
- \rightarrow Requirements for an upgraded VXD
- → Belle II Schedule

Present situation

The vertex detector: VXD

- Two silicon technology system
 - SVD, short-integration (100-200 ns), strip sensors
 - => fully contributing to track finding
 - **PXD**, good granularity (55-75 µm), DEPFET pixels
 => extrapolation precision <u>after track finding</u>

- Luminosity evolution
 - June 2022, end of run 1
 - Max L_{peak} **4.7x10³⁴ cm⁻² s⁻¹**
 - Trigger rate \sim kHz
 - Hit rate on PXD ~3 MHz/cm² / occupancy ~0.2%
 - Run 2 (2023-2026?)

78 + 0.08

(expl2 proc12)

10

dimu (exp12 proc12) Bhabha (exp12 proc12)

 $p\beta(\sin\theta)^{3/2}$ [GeV/c]

d0

- Max L_{peak} **1-2x10³⁵ cm⁻² s⁻¹** still with current machine
- Trigger rate ~ 10kHz
- Hit rate on PXD ~7 MHz/cm² / occupancy ~0.5%

Very impressive start ... with challenging conditions on detectors (beam background) Limits

=> Beam background dominates occupancy of vertex detector

Known limits

- SVD & PXD max bandwidth ~3% occupancy
- Tracking performance degrades severely beyond ~4% of SVD occupancy
- Trigger rate of 30 kHz, limited by SVD-ROChip (3% dead time)

Operation at increasing luminosity

- PXD & SVD pedestal, noise increases with TID
- PXD sensor leakage increases with TID
- PXD gates and switchers damaged by beam loss events
- PXD veto mode not yet effective (also not needed)

Luminosity evolution

- June 2022, end of run 1
 - Max L_{peak} **4.7x10³⁴ cm⁻² s⁻¹**
 - Trigger rate \sim kHz
 - Hit rate on PXD ~3 MHz/cm² / occupancy ~0.2%
- Run 2 (2023-2026?)
 - Max L_{peak} **1-2x10**³⁵ cm⁻² s⁻¹ still with current machine
 - Trigger rate ~ 10kHz
 - Hit rate on PXD ~7 MHz/cm² / occupancy ~0.5%
- Run 3 (2028? + 5 years)
 - Max L_{peak} 6x10³⁵ cm⁻² s⁻¹ with "new machine" (Int.Reg.)
 - Trigger rate ~ 30 kHz
 - -Hit rate on PXD ~15 MHz/cm² / occupancy ~1%

=> Belle II motivations for an upgrade:

- improved robustness against background
- Higher radiation tolerance
- Improved physics reach per ab⁻¹

Largely unknown!

Upgrade of the Belle II vertex detector - Conseil scientifique IN2P3 - 27-28 Octobre 2022

Requirements for VXD upgrade

Vertexing & Tracking performances at least as good as current VXD

- Radius range 14 135 mm
- angle from 17 to 150 degrees
- Single point resolution $\leq 10-15 \ \mu m$
- Robust against environment for inner layer (r=1.4 cm)
 - Hit-rate ~ 120 MHz.cm⁻²
 - Total Ionizing Dose ~ 10 Mrad / year
 - NIEL fluence ~ $50x10^{12} n_{eq}.cm^{-2}$ / year

✤ Based on current extrapolation with safety factor (x5) bear In mind large uncertainties

Possibly improve performances

- Impact parameter resolution
- Tracking efficiency ($p_T < 100 \text{ MeV}$) & Fake rate
- Faster High Level Trigger
 - Simplified track pattern recognition

-total power budget < 1000 W

radius [cm]

Key sensor specifications:

- Pixel pitch 30-40 µm
- Integration time ≤100 ns
- Power dissipation $\lesssim 200 \; mW/cm^2$

Belle II schedule

- 2019: Upgrade Working Group created \rightarrow identification of potential timescales
- 2021: February, Expressions of Interest for specific detectors (various proposals for VXD) Upgrade Advisory Committee created
- 2022: Snowmass whitepaper on upgrades \rightarrow refined timescales versus detector targets (short-, mid-, long- term) =LS1 =LS1 =LS2
- 2023: Conceptual Design Report (complete draft in February, publication in June) Focus on mid-term upgrade for 6x10³⁵ cm⁻² s⁻¹ Reduced number of options for VXD
- **2024**: Technical Design Report \rightarrow construction phase

=> When can we upgrade the vertex detector? LS2 (expected 2026-27) is the first opportunity in the current plan

Current situation of concurrent proposals

Original situation & developments

• Thin strips for outer layers (radius > 4 cm)

- Driven by KEK

- \rightarrow Difficulties with SNR / radiation reauirement
- **DMAPS** pixels for all layers = VTX
 - European based
 - \rightarrow Ongoing discussion with BMBF
 - \rightarrow good momentum on (almost) all grounds
- SOI pixels for all layers
 - Driven by KEK physicist
 - Still a lot to demonstrate
- **DEPFET** pixels for inner layers (radius < 4 cm)
 - HLL-Münich
 - \rightarrow discontinued since no other support

- Present view trend for CDR
 - Thin strips considered for CDC inner layer replacement

• DMAPS-VTX as baseline option for full vertex detector upgrade

• SOI pixels has an alternative

Project overview

- → VTX with DMAPS concept
- → Performance studies
- \rightarrow Status of the R&D
- → Schedule

VTX general concept: "simple, robust, doable"

• 5 layers

- Same high granularity (r, φ, z, t) sensor everywhere
- Fast enough for including all layers in tracking
- Total event size ~30 kBytes, easily fit HLT budget
- Services mostly on one side (backward region)
- Ladder concept adaptable to potential change of interaction region
- Sensor = depleted MAPS (OBELIX)
- 2 ladders with radius < 3 cm
 iVTX, ~0.1 % X₀
 - 12 cm long
- 3 ladders with radius > 3 cm
 - oVTX, 0.5/0.8/0.8 % $X_{\rm 0}$ (increasing with radius)
 - 24/45/70 cm long
- Options
 - 6th layers for redundancy
 - 2 disks in forward region for soft pion acceptance

- VTX collaboration
 HEPHY, Vienna
 CPPM, Marseille
 IJCLab, Orsay
 - IJCLab, Orsay IPHC, Strasbourg University of Bonn University of Dortmund University of Goettingen KIT, Karlsruhe

Performance studies

TJ-Monopix2 lab-test results

Depleted MAPS technology choice

- Tower 180 nm modified process (full Depletion) with small diode as sensing node
- TJ-Monopix2 as forerunner of OBELIX
 - 33 µm pitch, 25 ns integration, 17x17 mm² matrix
 - 4 front-end flavours (gain, speed, depletion)
 - In-pixel detection threshold + Time-Over-Threshold (ToT)
 - Various sensing volume thickness (CZ-bulk, epi-30 µm-

Bonn, CPPM, Göttingen, Pisa, Vienna

Bdaq53 acquisition system (also baseline for OBELIX)

Characterisation on-going

- In-laboratory
 - threshold (lowest value, dispersion) / noise
 - ToT calibration
- In-beam (DESY, 5 GeV electrons)
 - With large threshold ~500 e-
 - Position resolution ~9 µm slightly better than digital resolution

OBELIX (Optimized BELle II pIXel) sensor

IPHC, CPPM, Dortmund, Vienna, Bonn

iVTX inner layer concept

Valencia, Bonn, IJClab

<u>All-silicon module < 0.15 % X_0 </u>

- Inherited from the PXD-DEPFET concept (but simpler)
- 4 contiguous sensors diced as a block from the wafer
- Redistribution layer for interconnection
- Heterogeneous thinning for thinness & stiffness

Prototyping

- With existing 10 cm² HV-CMOS ladder
 - Planarity demonstration

- On-going at IZM-Berlin with dummy Si
 - True iVTX geometry => Spring 2023
- Simulation on cooling
 - Dry air cooling 15°C
 - Assume 200 mW/cm²

oVTX outer layer concept

Long ladders

- Inherited from ALICE-ITS2
 - Carbon-fiber truss support frame
 - Cold-plate with water coolant
 - Long-flex for power & data

- L3-4, radius 4-9 cm, length < 50 cm
 - Single sensor row, ~0.5 % X_0
- L5, radius 14 cm, length 70 cm
 - Double sensor rows , ~0.8 $\%~X_0$

Pisa

Prototypes for
 Deformation &
 Max sagitta ~50
 First resonance
 Signal propago
 Cooling at T_{amb}
 Leakless water
 Heaters dissipat
 - 22°C < T_{sensors} < 26°C

VTX Schedule

An aggressive chart, set to reach installation in 2027

teek	auth teals	2	021	20	22	20)23	20	024	20	025	20	26	20	27
Lask	SUD-task	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec	Jan-Jul	Aug-Dec
	TJ-Monopix-2 test														
	OBELIX-1 (design+test)														
Sensors	OBELIX final (design+fab)														
	Sensor validation for assembly														
Ladder	Concept dvpmt														
structures &	Concept valid in beam														
cables	Production & validation														
Assembly of	Ladder procedure dvpmt														
ladders	Ladder assembly														
Assembly of	Full det procedure dvpmt														
full detector	Full det assembly (KEK)														
DAQ. electr.	Prototype for beam-test														
services	Full system														
	Cables & services in Belle II														
Installation	Full det test in Hall														
mətanation	Full det in Belle II														
	design tas	sk 🛛	validatior	n milestor	nes		productio	n task	product	ion mile	stones			conting	ency
	End c	of de	velop	omei	nt ph	nase	=>								

- Assumption/construction

 (4 days/week, 3weeks/months)
 (10 to 20% spares)
 - wafer probing ~6 months
 - 140 wafers with 1 wafer/day
 - 2 sites
 - dicing in parallel
 - iVTX ladders ~ 10 months
 - 20 ladders needed
 - 2 ladders/month
 - only at IZM
 - oVTX modules ~8 months
 - 100 modules needed
 - 3 modules/week
 - 2 sites

• oVTX ladders ~10-15 months

- 60 ladders needed
- 2 ladders/month
- 2-3 sites

Activities proposed by IN2P3 labs

- → The OBELIX sensor
- \rightarrow Data acquisition system
- → Thermo-mechanics of the beam pipe & inner layers
- → Designing & producing the VTX layers
- → Installation & running

Snapshot

Performance, reconstruction, HLT

=> Till TDR 2023

On-going activities

- Optimisation of HLT reconstruction => Effective triggering
 IJClab
- Implementation of upgraded geometries in full simulations
 - Tracking optimisation studies
 - Physics benchmark studies
 - CPPM, IPHC

Proposed activities

- Contribution to VTX reconstruction software
- Optimisation of HLT to benefit from VTX precision

∆t Residuals

18

Sensor design & test

On-going activities

- Characterisation of TJ-Monopix2 matrix \rightarrow mid-2023 - CPPM
- Design then tests of OBELIX-1 \rightarrow early 2024 •
 - Organisation of design & submission: IPHC
 - Pixel matrix: IPHC
 - Digital control: CPPM
 - Verification: CPPM, IPHC
 - Tests: CPPM, IPHC

Proposed activities

- Design then fabrication of OBELIX-2 ٠
- Validation of OBFLIX-2 with numerous tests

Sensor planning @ CPPM & IPHC

IPHC, CPPM

\$ 18,5

RCU A&D

\$ 14,5

\$ 320

Thermo-mechanics for beam-pipe and iVTX

IJClab

On-going activities

- Improvement of current beam-pipe cooling
- Installation of PXD2 during LS1
- Simulation for iVTX air-cooling concept

Proposed activities @ IJClab

- Follow beam-pipe fabrication process
 Includes various base-materials & coatings
 - Cooling mechanism
- Development of iVTX support & cooling

Independent of technology chosen for upgrade

Integration and assembly

Know-how @ CPPM:

module handling

<u>On-going activity</u>

- Contribution to iVTX ladder R&D
 - Prototype all-silicon concept in 2023

- Proposed activities
 - Sensor probe test for production
 - Development of VTX assembly procedure

- Redistribution layer concept - Air cooling

Know-how @ IPHC: light module assembly

- Fraction (to be defined) of the ~140 wafers
 IPHC (C4Pi microtech)
 Requires new prober @ IPHC
- - Module handling, alignment and attachment to ladders/structure

- Production of modules
- Fraction (to be defined) of ~2300 sensors to modules
 IPHC (C4Pi microtech)

DAQ

IJClab, CPPM

On-going activity

• Provider of PCIe40 boards \rightarrow currently being deployed in Belle II (2021-23)

Proposed activity

- Investigate new board generation PCIe400
- Adaptation of PCIe40(0) for VTX
 - 1 board covers VTX data-throughput

Independent of technology chosen for upgrade

Proposal for installation & operation

Installation, commissioning during final year

- Assembly of VTX-shells/ladders around beam pipe/on-support
- Long-term test outside Belle II but in Tsukuba (experiment) hall
- Cabling, service installation
- Insertion of VTX into Belle II
- Commissioning tests

Start in 2026
IN2P3 contribution (size & type) will depend on person-power

Operation

• On-going contribution on SVD

Expert shifts Online sw maintenance Offline sw dvpmt

- Effort should continue for visibility
 - Slow-contribution depends on person-power granted by labs

ALL

VXD installation (2018) examples

Request to IN2P3

- → Person-power
- → Budget

Person-power

Task		FTE	IN2P3 contributors	timeline	collaboration with				
Performance	physicists	-	J.Baudot, G.Dujany, C.Finck, E.Kou, G.Mancinelli, I.Ripp- Baudot, J.Serrano, K.Trabelsi	whole project	performance	<pre>#FTE staff evolving with time</pre>			
	postdocs	-	TBD	duration	group	1			
	doc	-	TBD			In parallel with physics analysis			
Sensor	physicists	1	M.Barbero, J.Baudot, C.Finck		Bergamo, Bonn,				
(design & test)	engineers	4	P.Barillon, P.Breugnon, C.Hu, L.Federici, D.Fougeron, P.Pangaud, H.Pham, I.Valin	till end of 2024	Pavia, Dortmund, Valencia, Vienna				
	CDD	1	A.Kumar, D.Xu			1			
	doc	0.3	R.Boudegga			In parallel with other technical activities			
DAO	physicists	0.2	P.Robbe						
DAQ	engineers	0.3	D.Charlet	at least till 2027	KEK				
Pean nine	physicists	1	E.Kou, F.LeDiberder, M.Winter						
Беат-ріре	engineers	1	D.Auguste, J.Bonis, Y.Peinaud	till installation in 2027	KEK				
Accombly	physicists	0.1	M.Barbero, J.Baudot						
Assembly	engineers	1	F.Agnese, O.Claus, E.Vigeolas, C.Wabnitz	2023 to 2025	Pisa, Valencia, Vienna	Depends on accepted production volume			
	CDD	0.5	TBD						

Budget

Notes:

- estimate assumes 1USD=1EUR
- sensor invoice in USD

Overall VTX budget

Component	Development	Production	Total (k\$)
Sensors	380	920	1300
Ladders	120	730	850
Assembly	130	630	760
DAQ & services	280	1060	1340
Installation	-	100	100
Total	900	3500	4500

• Still a preliminary estimation

- Currently 5% contingency for prod. costs

- Assumptions for sensor cost:
 - 2 runs OBELIX-1 & 2
 - 50 dies/wafer, 60% yield, 20% spare
 - 2200 sensors needed => 141 wafers

Request to IN2P3

- Reflects barycentre of activities
- Cover ~1/3 of overall sensor cost

Task	Develo	pment	Production		
Task	cost (k\$)	Timeline	cost (k\$)	Timeline	
Sensors	130*	2021-23	360	2023-24	
Ladders	-	-	-	-	
Assembly	30*	2022-23	50	2024-25	
DAQ	-	-	40	2025-26	
Beam-pipe	10*	2022-23	60	2024-27	
Installation	-	-	60	2026-27	
Total	170		570		

• Support already acquired for Development: 100 kEUR from IN2P3 + 30 kEUR from Idex

Conclusion on the VTX project

- Required to achieve Belle II physics goals
- Prominent upgrade proposal for the Belle II vertex detector
- Built from and highlights expertise from IN2P3 laboratories
- Strengthens IN2P3 position in Belle II
- Brings together the IN2P3 groups
- 1st MAPS-based vertex detector on an eter collider?

SUPPLEMENTARY SLIDES

SuperKEKB

SuperKEKB collider

Instant. Lumi. (cm⁻² s⁻¹)

~6x10³⁵

& specific beam crossing features Crossing angle (83 mrad) + crab waist (80%)

	Positron	damping ring	linear a	ccelerator
	VEVD		SuperKEKB	
	NEND	2022	pre-LS2	post-LS2
nergy (GeV) LER/HER	3.5 / 8		4 / 7	
Current (A) LER/HER	1.6/1.2	1.4/1.1	2.5 / 1.8	2.8 / 2/0 ?
8 _v * (mm)	5.9	1.0	0.6	0.3 ?

4.7x10³⁴

2.8x10³⁵

2.1x10³⁴

Revisit QC1P modification

Current Belle II

Tracking at Belle II

- Average track multiplicity for Y(4S) is about **11 tracks**.
- Most of the particles that are visible in the detector have similar momentum ranges and distributions.
- Many tracks are at low momentum.
 → multiple scattering, curling tracks.

- Sizeable beam-induced background.
- High occupancy of background: 11 tracks = 10^2 signal hits vs 10^4 beam background hits.
- Random hit combinations, clone tracks.

The Belle II detector

The inner region

Beam-pipe details

Total radiation length = $0.8 \% X_0$

- 2×0.5 mm berilium walls = 0.3 %
- 1 mm paraffin = 0.15 %
- 10 μ m gold coating = 0.3 %

Radii: inner = 10 mm, outer 12 mm

The current VXD

Two technology system

• SVD = Double-Sided Strip Detector

- Read-out sensor connected on sensor = Origami
- Hit time-stamping $\sigma_t \sim$ 2-3 ns
- Spatial resolution $\sigma_{s.p.} \sim$ 20 μm

- PXD = DEPFET sensors
 - Very low material budget 0.2 % X_{\rm o} / layer
 - Small first layer radius = 1.4 cm
 - Long integration time 20 µs / trigger rate & injection bkg

PXD1 was incomplete

- only 10/20 ladders (8/8 inner, ½ broken, 2/12 outer) installed
 on t enough good modules available pre-2018
- good vertexing performance so far
- but not guaranteed for higher future lumi ⇒ higher backgrounds
- suffered significant damage due to uncontrolled beam losses

ongoing efforts to install 2nd, complete PXD2 = LS1

- The plan is successful so far with occupancy < 1 %
- At nominal luminosity, tracking at ~3% occupancy

PXD in Belle II

PXD assembly

- 2 PXD modules glued together ("ladder")
- 2 half shells mounted on Support and Cooling Blocks (SCBs)
- provide cooling via 2-phase CO₂ and forced N₂ flow

L2 029

Installation 2018 at KEK

- PXD + BP + SVD marriage
- VXD installation in Belle II

From A.Boltz, <u>CEPC 2022 workshop</u>

DESY.

11

SVD in a nutshell

- 4 layers of Ladders mounted on end rings supported by carbon fiber structures, covering polar angle θ region from 17° to 150°
 - Barrel shape in L3
 - Lantern shape in L456 (slanted FW sensors) to reduce material
- Signals from each sensors connected with flex circuits to frontend ASICs mounted on the ladder
 - chips outside active area for L3, chip-on-sensor for L456 long ladders
- Evaporative CO2 cooling (-20°C) with thin stainless steel pipes
- Total material budget 0.7% per layer Total Silicon area 1.2 m²

Layer	ladders	sensors	Radius (mm)
L3	7	2	39
L4	10	3	80
L5	12	4	104
L6	16	5	135

6

From G.Rizzo, Vertex 2020 workshop

Construction, assembly, installation

- Sep 2008: First Chip-on-sensor Origami concept
- Oct 2010: Belle II Technical Design Report
- May 2015: first completed Layer 5 ladder
- Feb/Jul 2018: first/second SVD "half shell" assembled
- Nov 2018: Installed in Belle II
- Mar 2019: First collision data with complete detector

9/29/20

G. Rizzo – The Belle II Silicon Vertex Detector - VERTEX 2020

From G.Rizzo, Vertex 2020 workshop

Example of VXD re-installation procedure

From K.Nakamura October 2022

PLUME for BEAST (1st MAPS on e+e- collider)

Upgrade of the Belle II vertex detector - Conseil scientifique IN2P3 - 27-28 Octobre 2022

. \$000 -

2775 A

2550 - 0

<u>වි</u> 1325 ලූ

DAQ/Trigger/HLT system overview

Limits

Detector	BG rate limit	Measured BG
Diamonds	$1-2 \mathrm{rad/s}$	$< 125\mathrm{mrad/s}$
PXD	3%	0.11%
SVD L3, L4, L5, L6	4.7%,2.4%,1.8%,1.2%	< 0.22%
CDC	$200\mathrm{kHz/wire}$	$27\mathrm{kHz}/\mathrm{wire}$
ARICH	$10 \mathrm{MHz}/\mathrm{HAPD}$	$0.5\mathrm{MHz}/\mathrm{HAPD}$
Barrel KLM L3	$50\mathrm{MHz}$	$3.8\mathrm{MHz}$
	non-luminosity BG luminosity BG	
	before LS1 after LS1 per 10^{35} cm ⁻² s ⁻¹	
TOP ALD	3 MHz/PMT 5 MHz/PMT 0.9 MHz/PMT	$2\mathrm{MHz}/\mathrm{PMT}$

Beam induced background

Beam-induced background

• Touschek ← intra-beam scattering

 $-\operatorname{rate} \propto \frac{I_{bunch}^2 N_{bunch}}{(\sigma_x \, \sigma_y) \, E_{beam}^3} = \frac{I_{beam}^2}{(\sigma_x \, \sigma_y) \, E_{beam}^3 N_{bunch}}$

- Beam gas ← vacuum residues
 - $-\operatorname{rate} \propto I_{\operatorname{bunch}} \times N_{\operatorname{bunch}} \times P(I)$
 - Dynamic pressure $P(I) = (p_0 + p_1 I_{beam})$
- Synchrotron radiation \leftarrow magnet bending
 - -rate $\propto I_{beam}$

Beam-beam effects (QED)

• rate \propto Luminosity

Operational Challenges

Backgrounds: injection

- SuperKEKB is operated in top-up mode: continuous injection up to 50 Hz
 - at design luminosity, Touschek effects limit beam lifetime to few mins 0
 - injected bunches produce high background rates, damping takes few ms 0
 - mitigation: full veto (all BII detectors) + gated veto (all but PXD) 0
- PXD cannot halt data collection (default operation):
 - 20 μ s integration time vs 10 μ s beam revolution time 0
 - injection spikes can saturate DAQ \rightarrow not yet critical (partial data loss at sub-permille level)

Injection trigger vetoes: (on ECL occupancy)

PXD Occupancy: vetoless runs during injection

Background estimate

Parameter	Setup-1	Setup-2	Setup-3
Date	Jan 2023	Jan 2027	Jan 2031
$\beta_{\rm y}^{*}({\rm LER}/{\rm HER})$ [mm]	0.8/0.8	0.6/0.6	0.27/0.3
$\dot{\beta_{\rm x}^{*}}$ (LER/HER) [mm]	60/60	60/60	32/25
${\cal L}~[imes 10^{35}~{ m cm}^{-2}{ m s}^{-1}]$	1.0	2.8	6.3
I(LER/HER) [A]	1.66/1.20	2.52/1.82	2.80/2.00
$BD_{\mathrm{int}} \; [\mathrm{kAh}]$	10	45	93
$\overline{P}(\text{LER/HER})$ [nPa]	93/23	48/17	33/15
n_b [bunches]	1370	1576	1761
$\varepsilon_{\rm x}({\rm LER/HER})$ [nm]	4.5/4.5	4.6/4.5	3.3/4.6
$\varepsilon_{\rm y}/\varepsilon_{\rm x}({\rm LER/HER})$ [%]	1/1	1/1	0.27/0.28
$\sigma_{\rm z}({\rm LER/HER})$ [mm]	7.58/7.22	8.27/7.60	8.25/7.58
CW	ON	ON	OFF

About upgrades

 \rightarrow mid-, short-, long-term

Subdector	Function	upgrade idea	time scale
PXD	Vertex Detector	2 layer installation	short-term
		new DEPFET	medium-term
SVD	Vertex Detector	thin, double-sided strips, w/ new frontend	medium-term
PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term
		all-pixels: DMAPS CMOS sensors	medium-term
CDC	Tracking	upgrade front end electronics	short/medium-term
		replace inner part with silicon	medium/long term
		replace with TPC w/ MPGD readout	long-term
TOP	PID, barrel	Replace conventional MCP-PMTs	short-term
		Replace not-life-extended ALD MCP-PMTs	medium-term
		STOPGAP TOF and timing detector	long-term
ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term
		replace HAPD with Large Area Picosecond Photodetectors	long-term
ECL	$\gamma, e \text{ ID}$	add pre-shower detector in front of ECL	long-term
		Replace ECL PiN diodes with APDs	long-term
		Replace CsI(Tl) with pure CsI crystals	long-term
KLM	$K_L,\mu{ m ID}$	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term
		on-detector upgraded scintillator readout	medium/long-term
		timing upgrade for K-long momentum measurement	medium/long-term
Trigger		firmware improvements	continuos
DAQ		PCIe40 readout upgrade	ongoing
		add 1300-1900 cores to HLT	${ m short/medium}$ -term

Table 1: Known short and medium-term Belle II subdetector upgrade plans, starting from the radially innermost. The current Belle II subdetectors are the Silicon Pixel Detector (PXD), Silicon Strip Detector (SVD), Central Drift Chamber (CDC), Time of Propagation Counter (TOP), Aerogel Rich Counter (ARICH), EM Calorimeter (ECL), Barrel and Endcap K-Long Muon Systems (BKLM, EKLM), Trigger and Data aquistion (DAQ). DAQ includes the high level trigger (HLT).

Impact on performance & physics

Belle II

=> Snowmass Belle II : <u>arXiv 2203.11349</u>

Topic	VXD	CDC	PID	ECL	KLM	
Low momentum track finding	\checkmark	\checkmark				
Track p, M resolution		\checkmark				Topic
IP/Vertex resolution	\checkmark					$\mathcal{B}(B o au u, B o K^{(*)} u ar{ u})$
Hadron ID		\checkmark	\checkmark			${\cal B}(B o X_u\ell u)$
$K_{ m L}^0$ ID				\checkmark	\checkmark	$R, $ Polarisation $(B \rightarrow D^{(*)} \tau R)$
Lepton ID		\checkmark		\checkmark	\checkmark	FEI
π^0,γ				\checkmark		$S_{ m CP}, C_{ m CP}(B ightarrow\pi^0\pi^0, K_S^0\pi^0)$
Trigger	\checkmark	\checkmark				$S_{ m CP}, C_{ m CP}(B o ho \gamma)$
						$S_{ m CP}, C_{ m CP}(B ightarrow J/\psi K_{ m S}^0, \eta' K$

Topic	VXD	CDC (incl. Trigger)	PID	$PID(\Omega ext{ coverage})$	ECL	KLM
$\mathcal{B}(B \to \tau \nu, B \to K^{(*)} \nu \bar{\nu})$	\checkmark			\checkmark	\checkmark	\checkmark
$\mathcal{B}(B o X_u \ell u)$	\checkmark		\checkmark	\checkmark		\checkmark
$R, $ Polarisation $(B \to D^{(*)} \tau \nu)$	\checkmark				\checkmark	
FEI	\checkmark	\checkmark		\checkmark		
$S_{ m CP}, C_{ m CP}(B ightarrow \pi^0 \pi^0, K^0_S \pi^0)$	\checkmark	\checkmark			\checkmark	
$S_{ m CP}, C_{ m CP}(B o ho \gamma)$		\checkmark	\checkmark		\checkmark	
$S_{ m CP}, C_{ m CP}(B ightarrow J/\psi K_{ m S}^0, \eta' K_{ m S}^0)$	\checkmark	\checkmark				
Flavour tagger	\checkmark		\checkmark			
$ au { m LFV}$		\checkmark			\checkmark	
Dark sector searches		\checkmark			\checkmark	\checkmark

Physics benchmarks expected for CDR

Section

- 1) Tracking
 - 1.1) Tracking efficiency
 - 1.2) Low momentum tracking efficiency
 - 1.3) V0 reconstruction
 - 1.4) Vertexing resolution

2) PID

2.1) dE/dx resolution2.2) TOP and ARICH performance2.3) acceptance

3) Neutrals

- 3.1) γ efficiency and resolution 3.2) π^0 efficiency and resolution 3.3) K^0_{L} reconstruction efficiency
- 4) Triggers for low multi. final states

Benchmark channels

 $\begin{array}{l} B^{\scriptscriptstyle +} \rightarrow \tau^{\scriptscriptstyle +}\nu, \, B \rightarrow D^{(\ast)}\tau \ \nu, \, B^{\scriptscriptstyle +} \rightarrow D^0(K_{_S}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}) \, K^{\scriptscriptstyle +} \\ B \rightarrow D^{\ast}\tau \ \nu \\ B^0 \rightarrow K_{_S}\pi^0, \, \text{long lived DS particles} \\ B^0 \rightarrow J/\psi \, K_{_S} \end{array}$

 $B \rightarrow KKK$ $B \rightarrow K\pi, B \rightarrow (K^*/\rho) \gamma$ (any of the above)

Already addressed by VTX collaboration

$$\begin{array}{l} \tau \rightarrow \mu\gamma, D^{0} \rightarrow \gamma\gamma, B^{+} \rightarrow \tau^{+}\nu B \rightarrow D^{(*)}\tau \ \nu \\ B^{0} \rightarrow \pi^{0}\pi^{0}, B^{0} \rightarrow K^{0}_{S}\pi^{0}, B^{0} \rightarrow \eta' K^{0}_{S} \\ B^{0} \rightarrow J/\psi \ K^{0}_{L}, \ inclusive \ V_{ub} \ analyses \end{array}$$

 $\tau \ \rightarrow \ \mu \gamma$, single or multi- γ final state DS

- Lapis 0.2 µm FD-SOI technology
 - Wafer: High-resistivity FZ silicon
 - CMOS circuit is separated from the wafer with BOX.
 - (Almost) no limitation in the circuit design
 - Pinned well structure (PDD), similar to that of DMAP, is used for the efficient and fast charge collection.
 - Small sensor capacitance: $C_{det} = 3$ fF.
- DuTiP pixel sensor designed for the Belle II upgrade
 - ALPIDE type frontend (modified for faster response) is adopted for the low power consumption
 - The hit signal is delayed with two timers and coincidence with the Belle II global trigger is taken: Background reduction
 - The hit occupancy can be reduced < 0.1% under the 113 MHz/cm2 background hit condition.
 - Smooth data transfer with the two stage FIFO.

Talk by Akimasa Ishikawa (25 Oct 16:00)

2022/10/24

T. Tsuboyama @ Vertex2022 conference at Tateyama Japan

From Vertex 2022 workshop

TFP Thin fine-pitch DSSD

- TFP aims the replacement of the current silicon strip layers.
- Lower material thickness using thin (150 μm thick) DSSD sensors
- A new binary readout chip SNAP128A
 - Front end optimized for 150µm double sided sensor
 - Fast shaping time
 - p/n signal flip
 - Fast strip "OR" signal for trigger generation
 - Digital pipeline: Level-1 trigger latency > 8 µs

5.945 mm x 6.12 mm

The performance is presented by Zihan Wang (Next Talk)

Prototype 59mmx52.6mm 0.15mm (Micron (UK))

From Vertex 2022 workshop

On the VTX project

Requirements: reminder from July 2019

From: <u>BELLE2-NOTE-TE-2019-011.pdf</u>

Requirements on sensor 1/2

Pixel pitch

- Spatial resolution for tracking
 - Current SVD σ ~15-20 μ m \Rightarrow pitch < 50 μ m
- Spatial resolution for impact parameter
 - Actually limited by beam pipe material budget (0.8% X_0)
 - From parametric estimation \Rightarrow improvements expected for $\sigma\text{--}7\text{--}10\,\mu\text{m}$
 - Benefiting $\sigma{\sim}5\,\mu m$ would require thinner/smaller-radius beam pipe
- Occupancy \Rightarrow no real constraint on pitch (< 100 µm)

Timing

Driven by hit rate using 120 MHz/cm2 gives us safety factor 5 / today's predictions

- Trigger rate 30 kHz and latency 5.5 µs
 - to separate 99% of triggers \Rightarrow sensitive window < 300 ns
- Occupancy for data acquisition bandwidth
 - Sensitive window 100 ns \leftrightarrow 6 Gbps
- Occupancy for tracking
 - See E.Paoloni's talk at 2019 CERN workshop ⇒ 50 ns range for sensitivity
- Recovery time wrt injection
 - Depends on trigger veto length \Rightarrow signal cleared < 1 μ s

The fastest the better ⇒ <u>Event</u> sensitive window 50-100 ns

Pitch ~ 30-40 µm

(already take into account possible necessity to group 2 sensor-windows)

Requirements on sensor 2/2

Belle II

Radiation tolerance

- Total Ionizing Dose (TID) ⇒100kGy/SNyear
- Non-Ionizing Energy Loss $\Rightarrow 5x10^{12} n_{eq}/cm^2/SNyear$
- Synchrotron radiation
- Stormy events ⇒ needs dedicated tests

Dimensions

- Thickness for material budget \Rightarrow 50 μm
- Width (z) & height (r $\phi)$ constraint by technology
- Large area beneficial for integration / material budget
 - Inner layers ⇒ 12 cm length allows single output at ladder-end
 - Outer layers \Rightarrow the longer, the better

Power budget

- Stay within few kW cooling capacity (over ~1m²) \Rightarrow < 300 mW/cm²
- Service simplification ⇒warm temperature operation

With large security factor 1 MGy & 10¹⁴ n_{eq}/cm²

Addition to 2020/12 talk:

- Ability to provide trigger welcome
- "fast" OR from all pixels should be good enough
- (but what is fast?)

VTX simulated tracking performances

=> <u>https://doi.org/10.5506/APhysPolB.52.909</u>

TJ-Monopix2 test beam results

- **DESY 5 GeV electron beam**
 - Telescope extrapolation σ ~3.5 µm
 - Large team getting experienced: hw+sw

Bonn, CPPM, Göttingen, Pisa, Vienna

DUT residuals for all clusters Results with threshold 500 e-0007gt 0.99 Detection efficiency 99.020 ± 0.040 % ਹੁੱ 6000 0.98 Position resolution ~9 µm etticency 0.96 -<u>ප</u>්5000 (< digital resolution) ₹4000 3000 Simulation 0.94 2000

Tuning of model in BASF2

TJ-Monopix in Tower 180 nm process

2x2 pixels

Pixel matrix read-out architecture

- Collaboration: Bonn, CERN, CPPM, CEA-IRFU
- Modified process for radiation tolerance DOI: 10.1016/j.nima.2020.164403
- Column-drain read-out Inherited from ATLAS FE-I3
- Capable to handle >100 MHz/cm²
 - Fired pixel address moves fast down to periphery

LAB Silizium Labor Bonn TJ-MONOPIX1 EFFICIENCY AFTER MODS

- Measured 10¹⁵ neq cm⁻² irradiated chips in 5 GeV electron beam at DESY
- Efficiency improvement in epi chip from 69 % to 87 % due to sensor modifications
- More sensitive volume and therefore more charge leads to full efficiency after irradiation

S

UNIVERSITÄT BONN

VTX sensor requirements

	Belle-II VTX
Spatial res.	< 10-15 µm
Mat. Budget inner-outer layers	0.1-0.8 % X ₀ /layer
Hit rate	<120 MHz/cm ²
Time precision	<100 ns
Trigger (freq) (delay)	30 kHz 5-10 ns
Rad.hard. (TID) 10years (fluence)	<100 kGy <10¹⁴ n _{eq} /cm²

	Belle-II CMOS-MAPS	TJ-Monopix2	MIMOSIS-1	
Sensitive area	~30x17 mm ²	17x17 mm ²	31.0x13.5 mm ²	
Sensitive thickness	~30 µm	25-100 µm	25-50 µm	
Pitch	30 to 40 µm	33 µm	30.2x26.9 µm ²	
Signal digits	1 to few bits	7 bits ToT	1 bit	
Integration time	25 to 100 ns	25 ns	1-5 µs	
Hit memory for trigger	< 100 kb			
Power	<200 mW/cm ²	200 mW/cm ²	<100 mW/cm ²	
TID fluence	<100 kGy < 10 ¹⁴ n _{eq} /cm ²	100 kGy 10 ¹⁵ n _{eq} /cm ²	50 kGy < 10 ¹⁴ n _{eq} /cm ²	

Chosen as forerunner for OBELIX sensor

OBELIX size

Tower Jazz 180 nm time response simulations

Initial guess for event size & bandwidths

Assumptions

- "worst" case scenario / hit rate
- Geometry presented by Benjamin used for full simulation with current VXD acceptance
- Sensitive window = 100 ns
- 40 bits per pixel value
- 30 kHz average trigger

layer #	1	2	3	4	5	TOTAL	
radius (cm)	1.4	2.2	3.9	9	14		
hit rate (MHz/cm ²)	156.6	51.6	6.4	2.1	1.2		
#ladders	6	10	8	18	28	70	
#chips	24	40	128	576	1232	2000	
Data size (kbits) per trigger	71.5	40.2	16.3	25.6	47.1	201-	
bandwidth (Mbits/s)	2183	1228	499	781	1439	6130	
Total bandwidth for the whole VXD volume < 10 Gbits/s links							

7 layers & disks scenarii in backup

Details of the 5 layer VTX geometry

VTX 5 layers

Layer	no.	1	2	3	4	5
Radius (mm)	14.1	22.1	39.1	89.5	140.0
# Ladd	ers	6	10	8	18	26
# Sens per lad	ors der	4	4	8	16	24

VTX by numbers

	option	5 layers VTX						
layer #		1	2	3	4	5	TOTAL	
radius (cm)		1.4 2.2 3.9 9 14						
Length for acce	eptance (cm)	7.0 11.0 19.5 45.0 70.0						
Length using c	hip count (cm)	11.8	11.8	23.7	47.3	71.0		
hit rate (MHz/ci	m2)	156.6	51.6	6.4	2.1	1.2		
#ladders		6	10	8	18	28	70	
	#chips/ladder	4	4	16	32	48		
#chips	#chip/ ladder width	1	1	2	2	2		
	total #chips	24	40	128	576	1344	2112	
area using chip	o count (cm2)	108.7	181.1	579.5	2607.8	6084.9	9562	
Max data size	per ladder (kbits)	11.8	4.0	2.0	1.4	1.7		
Max data size per trigger	total (kbits)	71.5	40.2	16.3	25.6	47.1	201	
Required	per ladder (Mbps)	360	121	61	43	51		
bandwidth	total (Mbps)	2183	1228	499	781	1439	6130	
	on ladder	1	1	1	1	1		
# 1 GHz cables	for layer	3	2	1	1	2	7	
#Boards								
	per ladder	4.5	4.5	18.1	36.1	54.2		
Power budget	total	27.1	45.2	144.5	650.2	1517.1	2384	
()	per sensor	1.129	1.129	1.129	1.129	1.129	-	

Detailed preliminary budget

task	item	# units	unit cost	develpmt	production	TOTAL	comment
	masks	1	300	300	300	600	two runs (dypmt + prod)
	wafers	141	3	20	423	443	assume 60% yield + 20% spare & 50 dies/wafer
Sensors	handling / thinning	141	1	30	141	171	
1	charac. & validation equipment			25	50	75	
-			sub-total	375	914	1289	
		1	1				
Laddar	inner layers (frame + cable)	16	10	50	160	210	
structures &	outer layers (ladder + flex + cable)	54	10	50	540	590	
cables	characterisation / metrology			20	30	50	
			sub-total	120	730	850	
	tools for ladders			30	300	330	
Assembly	tools for full det			50	200	250	
Assembly	sub-total			80	500	580	
			Jub-totai				
	beam pipe						common to all proposals
Mechanical	end wheels	2	50	50	100	150	
structures	supports for boards, cables,				30	30	
	sub-total			50	130	180	
		1	1				
	Boards inside BII			20	60	80	
	Environmental monitoring			50	150	200	
DAQ,	Boards & crates outside BII			50	200	250	
electronics,	cables (all types from end wheel)			50	200	250	Can be decreased by re-use of existing sytems
services	powering system			50	150	200	
	cooling system			60	300	360	Assume partial re-use
sub-total				280	1060	1340	
			400	400			
Installation				U	100	100	
	TOTAL for 5 layers			905	3434	4339	kUSD
	C	ontingency	0.05	905	3605.7	4510.7	kUSD
							1

VTX organisation

Currently in the R&D phase

- Global level: Carlos Marinas (IFIC Valencia)
- Optimisation: Benjamin Schwenker (Uni. Göttingen)
- Sensor: Jérôme Baudot (IPHC Strasbourg)
- Integration: Stefano Bettarini (INFN Pisa)

Proposed coordination at IN2P3

- Scient. Jérôme Baudot + Tech. to be defined
- Sensor: Hung Pham, Patrick Pangaud
- Assembly: Marlon Barbero, eric Vigeolas
- DAQ: Patrick Robbe, Daniel Charlet
- Therm-mech: Emi Kou, Julien Bonis
- Installation: to be defined when needed

=> Complete collaboration structure to be finalised in 2023s

Miscellaneous

_	
ALICE-ITS3 & Belle II-VTX simultaneously @ C4Pi

=> Detailed project planning for C4Pi under discussion with IPHC directorate, to be validated by COPIL – March 2023

About timeline: the ALPIDE-ITS case

Chip Development Design team from CERN, INFN, CCNU, YONSEI, NIKHEF, IRFU, IPHC 20 µm x 20 µm and 30 x 30 µm pixels (analogue readout) 2012 Explorer 1.8 x 1.8 mm², study of pixel geometry, starting material, radiation Matrix with 64 columns x 512 rows, 22 µm x 22 µm pixels, 11 x pALPIDEss-0 2013 1.8 mm², in-pixel discrimination and buffering, zero suppression First full scale prototype! 28 µm x 28 µm pixels, 15 x 30 mm², pALPIDE-1 2014 four sectors with variants, 1 register/pixel, no final interface Full scale prototype, four sectors with variants, optimisation of pALPIDE-2 8/2015 circuits, integration in modules, no high speed serial output Full scale prototype, eight sectors with variants, all pALPIDE-3 10/2015 communincation features, no ADC, no temperature sensor) ALPIDE 8/2016 Final chip CERN February 22, 2018 **P.Riedler CERN, PSI Seminar**

~4 years from tech-proto to final sensor

Few remarks

- TJ180 nm exploration started in 2011
- This is not a small team

```
+3 years for assembly
ALICE-ITS2 ~10 m<sup>2</sup> / Belle II-VTX ~1m<sup>2</sup>
```