

Pierre Auger Observatory

Surface Detector Electronics Upgrade AIT- AIV Plan

Abstract:

This document defines the Assembly, Integration and Test/Verification Plan for the SDEU. It develops the objectives, sequences and resources at system level.

Document written by	: P. Stassi	Agreed by:	Tiina Suomijärvi
	Project System engineer		Task Leader
Date:	28 April 2017	Date:	28 April 2017
Local Reference:	ATRIUM-4404	Project Reference:	WP10-LPSC-111

Table of Content

1.	Intro	oduction	
	1.1	Purpose and scope	5
	1.2	Documents	5
	1.2.1	1 Reference Documents	5
2.	obje	ctives	6
3.	Mod	lels phylosophy	6
	3.1	Prototype Boards (PrtB)	6
	3.2.	Pre-production Boards (PpB)	6
	3.3.	Production Boards (PB)	6
4.		ufacturing flow charts	
4	4.1	Prototype Boards	7
4	4.2	Pre-production Boards	7
4	4.3	Production Boards	
5.	Test	Tools	9
4	5.1	Tank Simulator (TS)	
	5.1.1	1 Tank Simulator Description (RD6)	9
4	5.2	Basic Test Equipment (BTE)	
4	5.3	Test PMT Equipment (TPE)	
4	5.4	Engineering Array (EA)	
6.		embly Integration and Verification flow charts	
(Prototype Boards	
(Pre-production Boards	
(Production Boards Erreur ! Sig	
7.	Test	s and Verification list	
7.	Tests 7.1	s and Verification list	17 17
7.	Tests 7.1 7.2	s and Verification list Mechanical verification Thermal verification and ageing	
7.	Tests 7.1 7.2 7.3	s and Verification list Mechanical verification Thermal verification and ageing EMC	
7.	Tests 7.1 7.2 7.3	s and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification	
7.	Tests 7.1 7.2 7.3	as and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification	
7.	Tests 7.1 7.2 7.3 7.4	as and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1	as and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification 1 Requirements Verification Matrix 2 Basic Test definition 3 Full Functional test definition	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2	as and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification 1 Requirements Verification Matrix 2 Basic Test definition 3 Full Functional test definition 4 End to End test definition	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.4 7.4.5	s and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition Full Functional test definition Electrical Functional test definition Requirements verification by testing	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5	 and Verification list	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.4 7.4.5	 and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition Full Functional test definition Full Functional test definition Requirements verification by testing Engineering Array verification Set Up Verification 	
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5	 and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition Full Functional test definition Full Functional test definition End to End test definition Requirements verification by testing Engineering Array verification Set Up Verification Trigger Verification 	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ \end{array}$
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5 7.5.1	s and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Matrix Basic Test definition Full Functional test definition Full Functional test definition Full Functional test definition Full Functional test definition Sequirements verification by testing Engineering Array verification Trigger Verification Timing Verification	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5 7.5.1 7.5.2	 and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition Full Functional test definition Full Functional test definition Engineering Array verification Set Up Verification Trigger Verification Timing Verification with muons 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.	Tests 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5 7.5.1 7.5.2 7.5.3	 and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Requirements Verification Matrix Basic Test definition Full Functional test definition Full Functional test definition Engineering Array verification Set Up Verification Trigger Verification Timing Verification with muons Large PMTs, calibration with LED 	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
7.	Test: 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6	s and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification 1 Requirements Verification Matrix. 2 Basic Test definition 3 Full Functional test definition 4 End to End test definition 5 Requirements verification by testing Engineering Array verification 1 Set Up Verification 2 Trigger Verification 3 Timing Verification 4 Large PMTs, calibration with muons 5 Large PMTs, calibration with LED 6 Performances comparison	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
7.	Test: 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.6 7.5.6	s and Verification list Mechanical verification. Thermal verification and ageing. EMC. Electrical Functional verification Matrix. 2 Basic Test definition. 3 Full Functional test definition 4 End to End test definition 5 Requirements verification by testing. Engineering Array verification 1 Set Up Verification 2 Trigger Verification 3 Timing Verification 4 Large PMTs, calibration with muons 5 Large PMTs, calibration with LED 6 Performances comparison	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
7.	Test: 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.6 7.5.6	s and Verification list Mechanical verification Thermal verification and ageing EMC Electrical Functional verification Matrix 2 Basic Test definition 3 Full Functional test definition 4 End to End test definition 5 Requirements verification by testing Engineering Array verification 1 Set Up Verification 2 Trigger Verification 3 Timing Verification 4 Large PMTs, calibration with muons 5 Large PMTs, calibration with LED 6 Performances comparison Models Verification Matrix Quality Assurance	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$
7.	Test: 7.1 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.6 7.7 ANN	s and Verification list Mechanical verification. Thermal verification and ageing. EMC. Electrical Functional verification Matrix. 2 Basic Test definition. 3 Full Functional test definition 4 End to End test definition 5 Requirements verification by testing. Engineering Array verification 1 Set Up Verification 2 Trigger Verification 3 Timing Verification 4 Large PMTs, calibration with muons 5 Large PMTs, calibration with LED 6 Performances comparison	$\begin{array}{c} 17\\ 17\\ 17\\ 17\\ 17\\ 18\\ 20\\ 20\\ 20\\ 20\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 27\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30\\ 30$

ACRONYMS

AD	Applicable Document
ADC	Analog to Digital Converter
AIT	Assembly, Integration and Tests
AIV	Assembly, Integration and Verification
BGA	Ball Grid Array
BTE	Basic Test Equipment
CDAS	Central Data Acquisition System
CPU	Central Processing Unit
CR	Configurational Requirement
DAC	Digital to Analog Converter
DC	Direct Current
DVM	Digital VoltMeter
EA	Engineering Array
EMC	Electro-Magnetic Compatibility
ESD	Electro-Static Discharge
ESS	Environmental Stress Screening
ER	Environmental Requirement
FADC	Flash ADC
FDIR	Failure Detection, Isolation and Recovery
	Failure Mode, Effects and Criticality Analysis
FMEA	Failure Mode, Effects Analysis
FPGA	Filed Programmable Gate Array
FR	Functional Requirements
GPS	Global Positioning System
HASS	Highly Accelerated Stress Screening
HSIA	Hardware Software Interaction Analysis
HV	High Voltage
H/W	HardWare
ICD	Interfaces Control Document
IR	Interface Requirements
JTAG	Joint Test Action Group
LED	Light Emitting Diode
LUD	
	Low Voltage Differential Signaling non applicable
n/a NCD	
NCR	Non Conformance Report
OR	Operational Requirements
OTG	On The Go
PB	Production Board
PBS	Product Breakdown Structure
PC	Personal Computer
PCB	printed Circuit Board
PMT	PhotoMultiplier Tube
PpB	Pre-production Board
PPS	Pulse Per Second
PR	Physical Requirements
PrtB	Prototype Board
QR	Quality Requirements
RD	Reference Document
RSS	Reliability Stress Screening
SDE	Surface Detector Electronics
SPF	Single Point Failure
SPMT	Small PMT
SR	Support Requirements

S/W	SoftWare
TBC	To Be Confirmed
TBD	To Be Defined
TBW	To Be Written
TC	Tele-Command
TM	TeleMetry
TPCB	Tank Power Control Board
TS	Tank Simulator
UB	Unified Board
UC	Upgrade Committee
USB	Universal Serial Bus
UUB	Upgraded Unified Board
UHE	Ultra High Energy
UHECR	Ultra High Energy Cosmic Ray
VM	Verification Matrix

- WCT WP Water Cerenkov Tank
- Work Package

DOCUMENT CHANGE RECORD

Issue	Revision	Issue	Changes	Modified Pages Numbers, Change
		Date	Approved by	Explanations and Status
11	А	23/03/14	P. Stassi	DRAFT
11	В	15/05/14	P. Stassi	First release
11	С	05/11/14	P. Stassi	Engineering Array verifications added
11	D	28/11/14	P. Stassi	Minor upgrade
11	Е	01/04/15	P. Stassi	Flows and test matrix update. Tests definitions
11	F	08/04/15	P. Stassi	Updated with WP designers comments
11	G	15/09/15	P. Stassi	M. Kleifges proposal integration, QA added.
11	Н	17/10/16	P. Stassi	Update before Auger prime CDR
11	Ι	28/04/17	P. Stassi	Update for Test System internal PRR

1. INTRODUCTION

1.1 Purpose and scope

This document describes the ways and means:

- To ensure the SDEU assembly and its integration,
- To ensure its verification,
- To test and/or measure its performances.

It will:

- Present the general objectives of the SDEU AIT-AIV,
- Give the verification philosophy,
- Identify and describe the AIT-AIV tasks at system and sub-system level,

1.2 Documents

1.2.1 Reference Documents

- RD1 SDEU Specifications, WP10LPSC03.
- RD2 SDEU Development Plan, WP10LPSC02.
- RD3 SDEU Electrical Interfaces Control Document, WP10LPSC05.
- RD4 AUGER GAP NOTE, GAP-2002-002.
- RD5 IEC 61004, Electromagnetic compatibility (EMC) Part 4-2: Testing and measurement techniques Electrostatic discharge immunity test.
- RD6 The UUB Test System, P. Buchholz and Al, Siegen University, Jan. 28th 2015
- RD7 Design, Fabrication & Testing of the Auger Surface Detector Front End Electronics Board, Daw Don Cheam, MTU 2004.
- RD8 PAO Project Management Plan 2013-05
- RD9 SDE Quality Management Plan SDE_QMP-2002-04

2. OBJECTIVES

- Verification by means of testing of the SDEU system with respect to the specification, including operational procedures;

- Establish an integration sequence for the units;
- Identification of test activities at unit level;
- Identify the procedures for the various tests.

3. MODELS PHYLOSOPHY

3.1 Prototype Boards (PrtB)

This model is needed to test and validate the design of the SDEU. 5 plus 20 units of PrtB will be realized and tested at various plants. 10 units will be shipped to PAO site to be tested on the engineering array.

3.2 Pre-production Boards (PpB)

The PpB model is needed for manufacturer qualification. 100 units are foreseen for this purpose. Four productions sites are foreseen then the numbers of PpB will be spread among the production sites (~ 33 units per site).

3.3 Production Boards (PB)

2000 units of the PB model will be manufactured on four production sites, equally distributed. The PCB will be fabricated in one site only (TBC).

4. MANUFACTURING FLOW CHARTS

4.1 Prototype Boards PrtB

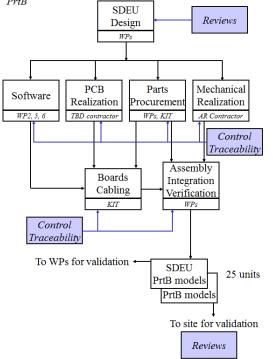


Figure 4.1a: Prototype boards manufacturing flow chart

4.2 Pre-production Boards

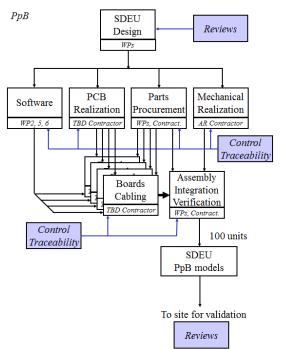


Figure 4.2a: Pre-production boards manufacturing flow chart

4.3 Production Boards

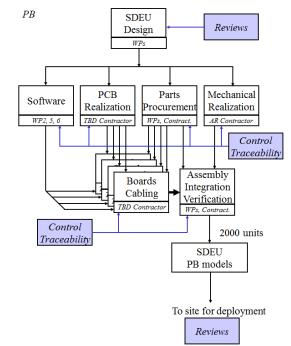


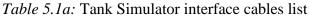
Figure 4.3a: Production boards manufacturing flow chart

5. TEST TOOLS

5.1 Tank Simulator or Test System (TS)

To verify all the requirements of the SDEU and also to be able to operate it at the various test plant, a "Tank Simulator" will be built, not only able to generate or receive and monitor signals to and from the UUB under test, but also able to have the basic behavior of the real tank and devices around.

Additionally, this kind of simulator can be easily reproduced and spread through the different partners, allowing sharing test and validation activities.


The "Tank Simulator" should be able to be used for the specification validation of the UUB but also for the functional verification, fabrication and production validation and reception, maintenance and failure detection and recovery.

5.1.1 Tank Simulator Description (RD6)

5.1.1.1 Simulation interfaces

Interfaces reproduced by the TS come as a set of 26 cables connections:

Name	Description (SDEU wise)
POWER 24VDC	Power input
EXT1	Digital LVDS I/O port
EXT2	Digital LVDS I/O port
ETH	Ethernet port
USB OTG	USB OTG port
USB SYS	USB system port
USB SC	USB slow control port
TRIG. IN	Trigger digital input
TRIG. OUT	Trigger digital output
Y/A	LED analog signal output
R	LED analog signal output
IN1	SSD detector analog input
IN2	Other detector analog input
IN3	Other detector analog input
PMT	Small PMT analog input
A1	PMT analog input
A2	PMT analog input
A3	PMT analog input
RADIO	Radio serial port
TANK CONTROL	Tank slow control port (analog & digital)
PMT1	PMT slow control port (analog)
PMT2	PMT slow control port (analog)
PMT3	PMT slow control port (analog)
PMT4	Small PMT slow control port (analog)
PMT5	SSD PMT slow control port (analog)
PMT6	Other PMT slow control port (analog)

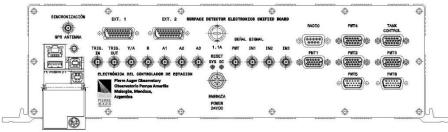


Figure 5.1b: SDEU front panel TO BE UPDATED

Mechanical, electrical aspects and content definition of these interfaces are summarized in RD1 and RD3.

5.1.1.2 Interaction schemes

The Tank Simulator is not intended for any mechanical test of its interfaces.

Electrical interactions parameters (load, impedance...) shall comply with SDEU requirements (RD1, RD3) on all interfaces.

GPS antenna signal will not be considered and simulated.

5.1.1.3 On Analog interfaces

The TS will provide realistic anode PMT signals, adjustable in amplitude and time, with all possible coincidence combination, in order to be able to test all the trigger configurations.

5.1.1.4 On power supplies interface

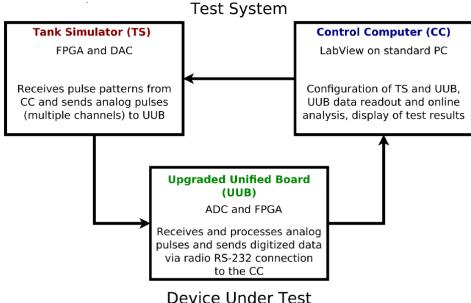
The TS will provide 24 Volts power supply, adjustable between 18 and 32 Volts (TBC), able to reproduce the real voltage variation due to day and/or seasonal sun light variations. A set of degraded interaction and fault condition schemes will be considered and implemented (TBD).

5.1.1.5 On communication interfaces

The TS will be able to communicate on each defined port of the UUB. A set of degraded interaction and fault condition schemes will be considered and implemented.

5.1.1.6 On Slow-Control interfaces

The TS will be able to emulate all sensors answer of the real tanks and monitor all PMT high voltage command send by the UUB. A set of degraded interaction and fault condition schemes will be considered and implemented.


5.1.1.7 On LED

The TS will be able to monitor the signal from the LED controller send by the UUB and emulate PMT response on generated anode signal, accordingly to the LED signal parameters (time, amplitude). A set of degraded interaction and fault condition schemes will be considered and implemented.

5.1.1.8 Setup description

The local TS setup is composed with the following items:

Device Under Test

Figure 5.1c: Tank simulator setup diagram

5.1.1.9 Application description (TBC)

The Tank Simulator applicative software allows user to:

- Generate anode PMT signals, eventually reconstructed from real signal recorded, for the 3 regular PMTs, the Small PMT and all other additional PMTs foreseen for the muon detectors upgrade.
- Generate power supply including optionally the daily and seasonal variations recorded from the real data.
- Generate environmental sensors signal recorded from the real data.
- Receive and monitor all slow control signal issued, used for PMT control and monitoring.
- Emulate all signal and protocol on digital I/O line, including, JTAG and trigger ports.
- Emulate the communication protocol used for the COMMS radio system.
- Emulate LED responses to signal emitted by UUB.

Additionally, the Tank Simulator should monitor and evaluate (automatically or not) all signal incoming from the UUB under test, to perform a kind of failure detection

Moreover, the Tank simulator should be able to emulate the basic behavior of a real tank, for example, an increase of the command voltage of the HV bias on a PMT should result to a realistic increase of the anode pulse signal amplitude.

Additionally, to facilitate software adjustment and modification by user people, the TS applicative software interface shall be developed in graphical programming language, LabVIEW[®].

5.2 Basic Test Equipment (BTE)

Beside the TS equipment, a Basic Test Equipment set up is defined and described below. This equipment can be used as an alternative of the TS to perform the basic test procedure for the production and pre-production models (TBC).

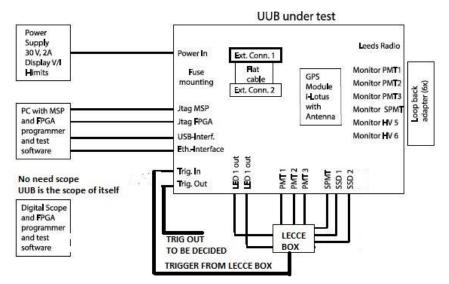


Figure 5.2a: BTE setup diagram

The Basic Test Equipment consists of:

- a power supply (30V, 2A) with current limitation and display for current and voltage
- a computer (under Linux) with test software and programmer for microcontroller and
- FPGA; USB, Ethernet and JTAG cables to connect the PC with the UUB
- a fast digital oscilloscope (< 2chn., GHz sampling)
- an active splitter (Lecce Box) to fed the signals from the LED pulser into the PMT inputs; Alternatively a signal generator can be used.
- 6 test adapters (emulating feedback loops) for the HV monitoring outputs
- a special 26-pol flat cable to interconnect the external connectors 1/2 (for feedback loop)

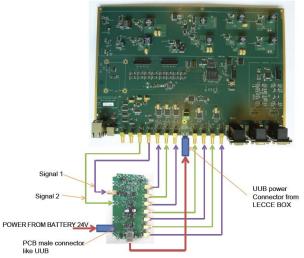


Figure 5.2b: Lecce Box usage

5.3 Test PMT Equipment (TPE)

Associated with other measurement equipment, the Test PMT Equipment generates real PMT signal toward the analog inputs of the UUB, triggered by the onboard LED controller. The PMT polarization high voltage is provided from the UUB PMT slow control connector, through a dedicated commercial HV module (CAEN):

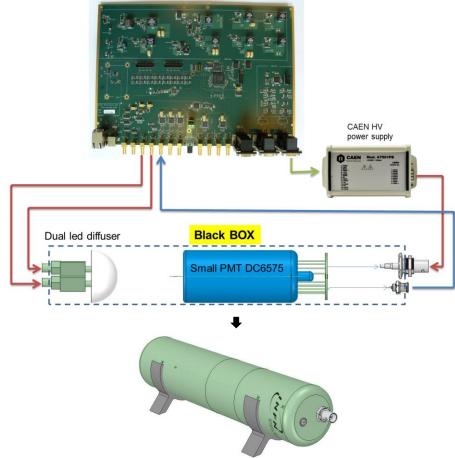


Figure 5.3a: TPE setup diagram

This configuration, used to pre-prototypes and prototypes models, allows the verification and the measurement of the analog "Front End" parameters:

- Digitalization
- Analog and digital dynamic ranges
- Linearity
- Acquisition rate

Moreover, the TPE could also being used for some trigger configuration tests and PMT slow control algorithm.

5.4 Engineering Array (EA)

A small area, including a set of an array of 7 Water Cerenkov Tanks (WCT) equipped with new SSD setup, dedicated for test and validation will be setup in a place of the SD area (see map below).

These Engineering Array WCTs will be equipped with the power supply system, and the whole communication setup. Large and small PMTs and LED flasher will be also installed.

The EA purpose is to complete the validation of the design and to verify the performances of the SD equipped with SDD and UUB, in situ.

Figure 5.4a: Engineering Array location

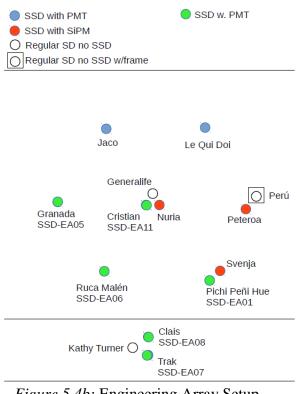


Figure 5.4b: Engineering Array Setup

6. ASSEMBLY INTEGRATION AND VERIFICATION FLOW CHARTS

6.1 Prototype Boards

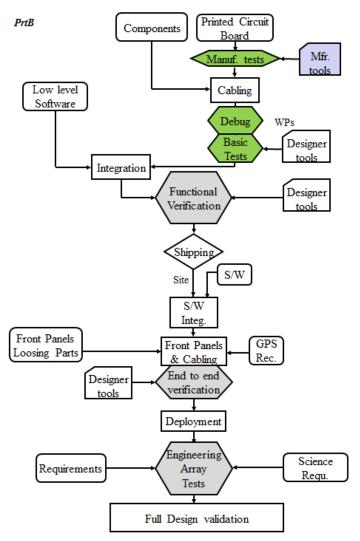


Figure 6.1a: Prototype boards AIV flow chart

Procurement Integration, Shipment and Deployment activities Testing and Verification activities Testing tools

The design will be validated on the prototype boards by the WP designers and the results of the engineering array tests on site.

ESD (EMC) test are also included in the electrical verification process, but only on the prototype model (PrtB).

6.2 Pre-production and production Boards

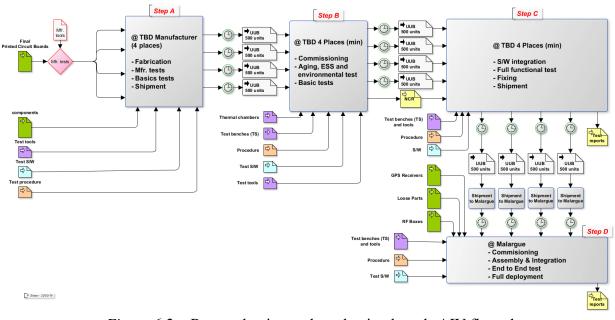


Figure 6.2a: Pre-production and production boards AIV flow chart

The flow is adapted to the 4 productions sites (TBC). The S/W integrated should include a part dedicated to test, activated with on board micro-switches. Four sites at the minimum are foreseen for the ESS and Burning tests.

The validation of the manufacturers' process will occur after the pre-production deployment on site.

The production and test plan can be described in 4 steps (RD2):

- **Step A**, board manufacturing. Several places are foreseen, depending of the contribution policy in the collaboration. However one unique manufacturer (subcontractor) is recommended. Only one manufacturer for the PCBs is foreseen.
- **Step B**, several place are foreseen for the commissioning, ageing and environmental tests. These places are chosen within the institutes of the collaboration.
- **Step C**, several place are foreseen for the S/W integration and full functional tests. These places are chosen within the institutes of the collaboration.
- On institute is responsible for the UUB shipment to the PAO site
- **Step D**. PAO Site, commissioning, integration, end to end tests and deployment.

7 TESTS AND VERIFICATION LIST

7.1 Mechanical verification

The goal of SDEU mechanical verification is essentially focused of the board dimensions, regarding the reused metallic housing and the front panel connector holes, regarding the positions of the implemented connectors on the UUB PCB. These verifications can be realized by review of design.

7.2 Thermal verification and ageing

Due to long operational life required, in a difficult environmental stress (daily thermal cycling with a minimum of -15 degrees and a maximum of +55 degrees Celsius) and also to eliminate youth default, we need an environmental stress screening and a Burn-in procedure to enhance the reliability of each UUB.

Components are more likely to fail within the early and late life part of a device, in consequence, the life-time reliability characteristic looks like a 'Bath-Tub'. (RD4).

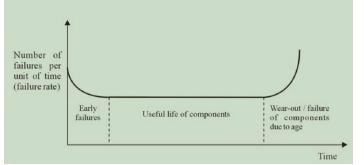


Figure 7.2a: The 'Bath-Tub' life-time reliability characteristic

Environmental stress screening (ESS), also known as Reliability Stress Screening (RSS), is used in industry both at the design and the production level to minimize failure of equipment in the field.

Design level testing is used to locate inherent faults and weaknesses within a design before full-scale production is undertaken. Production level screening is used to locate faulty components and manufacturing defects that would create equipment failures in the field environment

The ESS of electronic assemblies is used to provide initial thermal ageing of devices before delivery i.e. to accelerate the ageing of an assembly to pass through the initial high-failure period, principally by revealing manufacturing defects.

ESS procedure is only used to provide initial ageing of devices (HASS: Highly Accelerated Stress Screening). The objective is to detect the weakest points.

Process constraints to be used during the environmental stress screening and Burn-in, in order to release a full HASS and to simulate usage in the field:

- The UUB is powered on, and the basic functionality should be performed.
- Failures appearing in hot temperature conditions are different of those appearing in cold temperature conditions. Indeed 80% of failures (physical) occur in cold conditions (contraction effect).
- During the ESS, the power supply voltage should be chosen for the worst conditions.

- Environmental conditions: humidity is between 5 to 100%, sand presence < 300 mg/m³, salt fog is moderated.
- Temperature should be reached within 30 minutes but no faster than 10 minutes to avoid thermal shock effects.
- Check of the cold/hot start capability (applying electrical stimulus: powered off during a specified time and powered up at each extreme temperature).
- We need to provide an electrical test before and after ESS and Burn-in, and a full functional test after, using the Tank Simulator.
- The feedback of the last years of electronic industry indicates that the use of Burn-in is not as efficient as ESS (The Burn-in submits the boards to hot temperature conditions during a specified time). Using a calibration procedure (see below) we plan to mix an ESS with a Burn-in; First, we begin with a cold cycle, and next a Burn-in session at +70 Deg.C (16 to 40 hours, for ageing), then ESS session (10 cycles from -20 Deg.C to +70 Deg.C.; 6 Deg.C. by minute and 10 minutes extreme steps time)

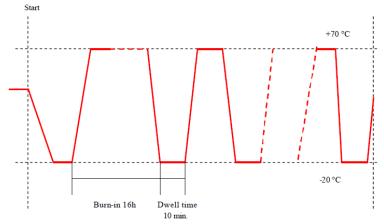


Figure 7.2b: ESS and Burn-in temperature profile

7.3 EMC

EMC verification will follow the RD5 document, IEC61000, part 4-2, *Testing and measurement techniques - Electrostatic discharge (ESD) immunity test.*

This standard relates to equipment, systems, subsystems and peripherals which may be involved in static electricity discharges owing to environmental and installation conditions, such as low relative humidity, use of low-conductivity (artificial-fiber) carpets, vinyl garments, etc., which may exist in all locations classified in standards relevant to electrical and electronic equipment.

Contact discharge is the preferred test method. Air discharges shall be used where contact discharge cannot be applied. Voltages for each test method are given in Table 7.3a. The voltages shown are different for each method due to the differing methods of test.

Table 7.3b shows the application of the test levels related to environmental (installation) classes.

For air discharge testing, the test shall be applied at all test levels in Table 7.3a up to and including the specified test level. For contact discharge testing, the test shall be

applied at the specified test level only unless otherwise specified by product committees.

	Contact discharge		Air discharge	
Level	Test voltage	Level	Test voltage	
Level	kV		kV	
1	2	1	2	
2	4	2	4	
3	6	3	8	
4	8	4	15	
х ^а	Special	хa	Special	

a "x" can be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification. If higher voltages than those shown are specified, special test equipment may be needed.

Class	Relative humidity as low as	Antistatic material	Synthetic material	Maximum voltage
	%			kV
1 2 3 4	35 10 50 10	x x	x x	2 4 8 15

Table 7.3b: Guideline for the selection of the test levels

For the SDEU ESD tests, taking into account the PAO environment, the class 4 and level 4 should be considered.

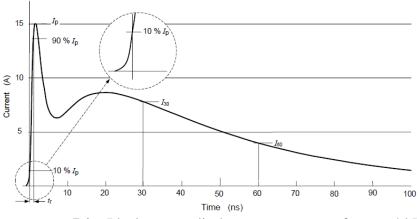


Figure 7.3c: Ideal contact discharge current waveform at 4 kV

7.4 Electrical Functional verification

7.4.1 Requirements Verification Matrix

The method and level for the requirements verifications are described in the following matrix (see RD1 for a description of the requirements):

Four methods are used to verify the requirements:

- **Inspection (I)**. The requirement implementations are verified by a visual inspection of the system and its sub systems.
- **Review of Design (R)**. The requirement implementations are verified by a review of the design documents (schematics, reports, pictures, etc.) of the system and its sub systems.
- **Analysis** (A). The requirement implementations are verify through analysis reports, showing result on mathematical or software models of the sub system concerned.
- **Test (T)**. The requirement implementations are verified through test reports showing results on test procedures applied on the system and its sub systems.

The verifications can be performed at two levels, **System** (S) or **Sub System** (SS) or **Both** (B)

	Verification Matrix		
Requirements			cation
ID	Text	Metho d	Level
FR11	The UUB shall processes analog anode signals from the three PMTs. A low and high gain signal for each PMT shall be conditioned and digitized.	Т	В
FR12	The total RMS integrated noise at the ADC input shall not exceed 0.5 LSB.	R	SS
FR13	The UUB shall digitize the PMTs anode signals at a sampling frequency of 120 Msp/s with a resolution of 12 bits minimum with the adapted conditioning and gain circuitry.	R	В
FR14	Adapted anti-aliasing filters shall be implemented for each PMT signal inputs (60Mhz at -3dB, TBC) (<5% single time bin aliasing noise)	Т	В
FR15	The UUB shall process analog signals from additional detectors	R	SS
FR16	The high gain/low gain ratio shall be of 32.	Т	SS
FR17	The UUB shall processes analog anode signals from the fourth small additional PMT (the purpose is to increase the overall energy dynamic range).	R	SS
FR21	The trigger/memory circuitry shall evaluate the high-gain output of each PMT every 8.3 ns for interesting trigger patterns (see FR26), store the data in buffer and inform the micro-processor circuitry.	R	s
FR22	The trigger/memory circuitry shall generate a first level trigger based upon hardware analysis of the high gain PMT channel waveforms. The UUB micro-processor software shall imposes additional constraints to generate a level 2 trigger signal.	Т	в
FR23	The goal of the first level trigger shall be to trigger efficiently on UHE cosmic ray air showers of energy >1019eV, while simultaneously rejecting lower energy showers and minimizing composition dependent trigger biases, within a rate constraint of 100 Hz.	Т	в
FR24	The level 1 trigger shall be designed to be flexible and eventually modifiable in the future	R	SS
FR25	The level 1 trigger shall start waveforms recording during 19.2 µs	R	SS
FR26	The triggers to be implemented are: etc (see RD1)	R-T	В
FR27	The level 1 trigger shall provide signal to Time-Tagging circuitry allowing time step of trigger and determination of absolute time of each ADC bin.	Т	s
FR31	The UUB shall able to time tag each events, using the information given by a commercial GPS unit and a logic circuitry (in FPGA) based on the existing design.	Т	В
FR32	The time tagging unit shall have a resolution of 4 ns or better, stable in temperature better than 5%.	Т	В
FR41	The UUB shall have a micro-processor able to perform the following tasks: - Level 2 Trigger - Data acquisition and event building with double buffering and recording - Calibration process including analog inputs base line monitoring - Data compression to fit the communication flux limit - Communication with the slow control management unit.	R	S
FR51	The UUB shall have a slow control unit, allowing measurement and monitoring of at least 64 x 0 to 5 Volts analog input signals coded over 12 bits (can be multiplexed) and 8 logic inputs. Number of channel shall accommodate the designs for additional muon detector.	R	SS

	Verification Matrix	Verifi	
	Requirements		
ID	Text	Metho d	Level
FR52	The UUB shall have a slow control unit able to generate at least 8 x 0 to 2.5 Volts analog buffered output	R	SS
TKJ2	signals coded from 12 bits and 8 logic buffered outputs.	К	66
FR53	The UUB shall have a slow control unit able to monitor internal parameters to perform a failure detection, isolation and recovery (FDIR) process on onboard power supplies and batteries voltage protection over 35 V	Т	S
1105	and under 22 V)	-	5
FR54	The UUB slow control unit shall be able to manage all existing SDE environmental sensors and additionally,	Т	SS
1101	a water temperature sensor and an atmospheric pressure sensor. The UUB shall have a light generator unit (LED controller) able to generate two adapted signals with at least	-	00
FR61	amplitude of 20 Volts towards the two foreseen light devices (LED driver). The signal shall be controlled in	т	S
11101	time with a resolution of 4 ns and shall be synchronized to the time tagging signal (1PPS)		
FR62	The light devices (LED driver) shall have at least the same specifications of the existing device	R	SS
FR63	The light generator unit (LED controller) and light devices (LED driver) shall measure the linearity of the SD photomultipliers (PMTs) over the full dynamic range of their acquisition channels, using the "two LEDs	Т	S
1105	technique"	1	5
FR64	The light generator unit (LED controller) and light devices (LED driver) shall measure the amplification ratio	Т	S
inor	between overlapping acquisition channels, low and high gain of the SD PMTs	-	Б
	The light generator unit (LED controller) and light devices (LED driver) shall be able to create artificial EAS events of different topology on the ground SD array in order to:		_
FR65	- check the ACQ response for different event pattern,	Т	S
	- check the event reconstruction		
FR71	The UUB shall include communication capabilities adapted to the existing unit (see Interfaces Requirements section) based on serial links	R	S
FR72	The UUB shall include Ethernet communication capability.	R	S
FR73	The UUB shall include USB and USB OTG communication capability.	R	S
FR74	The UUB shall include digital communication capability for other detector systems, including	Т	S
	synchronization signal. The UUB shall be able to produce all needed internal power supplies, regulated and stabilized, filtered and		
FR81	protected, from a single input of 24 Volts nominal but varying from 18 to 30 Volts.	Т	В
FR82	The UUB internal power supplies shall be voltage monitored by the slow control unit (FR53).	R	S
CR01	Each part of the UUB shall be contained in a single printed circuit board, excepted for the commercial GPS	Ι	S
CR02	board, light generators (LED controller shall be on UUB PCB) and the mechanical housing. The SDEU shall be composed at the minimum of the following components:	R	S
CR11	The PMTs signal conditioning unit shall be composed of analog discrete components to perform the low	I	B
CKII	noise amplification and filtering functionalities from the actively split PMT anode signals.	1	D
CR21	The Digitizer unit shall be composed of a number of commercial ADC equivalents to the number of analog inputs or split inputs (dual ADC chips with LVDS outputs are recommended).	R	S
CDA1	The Digital Trigger unit shall be implemented in the unique FPGA component, following the architecture		
CR31	described in figure 2.2.4.a below:	R	В
CR32	External input and output Trigger signal shall be implemented (see Interfaces Requirements).	I	S
CR33	Memory minimum size requirements shall follow the values described in the table 2.2.4.b of the RD1 The Processing unit shall be composed of a hardcore processor in the unique FPGA component, with adapted	R	S
CR41	circuitry and memories	R	S
CR42	The Processing unit shall have an adapted random access memory size of 512 Mo at the minimum	R	S
CR43	The Processing unit shall have an adapted flash memory	R	S
CR44	The Processing unit shall works under a micro-Linux operating system	R	S
CR45	The Processing unit shall have the adapted interfaces to be able to communicate with the other UUB units and the external world.	R	S
CD51	The Slow Control unit shall be composed of separate (from the main processor) micro controller, ADCs,	р	р
CR51	DACs and associated circuitry on the UUB board	R	В
CR52	The Slow Control unit shall have analog inputs with 10 Kilo-Ohms impedance	Т	SS
CR53	The Slow Control unit shall include the water temperature and atmospheric pressure sensors and all existing sensors.	R	S
CR54	The Slow Control unit shall have a direct USB communication link (see Interface Requirements)	R	S
CR61	The Calibration unit shall include a light generator unit (LED controller) implemented on the UUB PCB, able	Т	S
	to provide 20 Volts amplitude pulses, controlled directly by the processing unit (FPGA).	_	1
CR62	The Calibration unit shall include an external dual light device adapted for PMT calibration purpose (LED driver)	R	S
CP71	The Time Tagging unit shall be composed of a commercial, timing dedicated, GPS board and a time tagging	р	ę
CR71	algorithm implemented in the unique FPGA.	R	S
CR81	The UUB shall be able to manage at least 1 serial connection RS-232 type to communicate with the BSRU	R	S
CR82	(radio). The UUB shall be able to manage one Ethernet connection.	R	S
CI104	The UUB shall be able to manage 2 USB (2.0) and one USB-OTG connection.	R	S
CR83 CR84	The UUB shall be able to manage 2 digital connections for other detector systems, including synchronization signal, slow control and 24V power supply (CR93)	R	S

Verification Matrix Requirements Verific			
	Requirements		
ID	Text	Metho d	Level
	The power supplies unit shall be composed of adapted to design DC to DC converters with the following		
CR91	requirements: - Efficiency better than 80% (90% recommended)	Ът	S
CR91	- Large input range, from 18 to 30 Volts (24V nominal)	R - T	5
	- Low ripple noise, less than 20mV		
CR92	The 12V power supplies for PMTs bases and BSRU (radio) shall be separated (to avoid eventual failure	R	S
CR93	propagation). 24 Volts, filtered, non-regulated and controlled shall be provided on the extensions connectors	T	~ S
CR95	The mechanical housing shall be composed of an aluminum extruded RF proof box, identical to the existing	1	5
CR101	design (the existing box can be reused) and a metallic front panel, adapted to the new connectors type and	I	S
	their disposition.		
IR11	All the electrical interfaces between the UUB and the PMTs shall be identical to the electrical interfaces of the existing UB (excepted for the dynode connectors).	R	S
ID 10	All the electrical interfaces between the UUB and the Radio module shall be identical to the electrical	m	a
IR12	interfaces of the existing UB.	Т	S
IR13	All the electrical interfaces between the UUB and GPS antenna and the tank control (from TPCB) shall be	Т	S
	identical to the electrical interfaces of the existing UB All additional the electrical interfaces between the UUB and external world are described in the 2.3.1.a table		
IR14	in the RD1.	R	S
	The UUB shall provide external LVDS connection (EXT 1 and EXT 2) for other detector systems, including		_
IR15	synchronization signal. The front panel connectors pin out for those extension connections, are described in the table 2.3.1.b. of the RD1	R - T	S
IR21	The UUB mechanical interfaces shall be identical to the mechanical interfaces of the existing UB.	R	S
IR22	The UUB mechanical front panel shall have the same external dimensions of the existing UB front panel.	R	ŝ
IR23	All UUB new electrical connection toward the inner tank shall use the existing feed through (hatch cover	R	S
	design document).		~
PR1	The cabled PCB of the UUB shall be within the following dimensions:	I	S
PR2	The complete mass of the UUB shall not exceed 10 Kg.	I	S
PR3	The UUB PCB shall have at least six layers minimum, with one layer for ground plane and one layer for	I	S
1103	power supplies. Class VI, minimum isolation distances 0.12mm	-	
	The UUB shall be able to resist in operation to a temperature range from -20 to +70 degrees Celsius and in		
ER1	storage from -40 to +80 degrees Celsius. Other parts of the SDEU (located in the tank) shall be able to resist	Т	В
55.4	to a lower temperature range, -50 degrees Celsius	_	~
ER2	The UUB shall be able to resist in operation to an average hygrometry between 30 and 80% The UUB system shall include all necessary electrical protection for internal (over current) and external	Т	S
ER3	surges.	Т	S
ER4	The UUB shall be able to resist in operation to storm lightning occurring at a distance of 1 km.	Т	S
ED.5	The UUB shall not exhibit any malfunction, degradation of performance or deviation from specified	т	G
ER5	indications when test spikes are applied to the dc power input leads or electromagnetically coupled into the equipment wiring.	Т	S
ER6	The UUB shall resist, out of operation, to long distance cargo flight and dirty road transportation, with an	Т	S
EKO	adapted packaging.	1	3
OP 1	The LILID system shall be included in the systema Auger Observatory Quality Assurance Disp	р	D
QR1	The UUB system shall be included in the overall Pierre Auger Observatory Quality Assurance Plan. The UUB system shall follow policies and procedure described in the Pierre Auger Observatory Surface	R	В
QR2	Detector Electronics Quality Management Plan.	R	В
ODI	The UUB system shall be entirely autonomously powered through the existing power system. In the scope of	T	D
OR1	a further extension, the total consumption shall not exceed 10W, including existing BSRU (radio, 1.1W average, 3.6W peak) and PMT Bases (1.5W)	Т	В
0.0.2	The UUB system shall be entirely controlled and monitored through the main radio communication system	T	G
OR2	(BSRU).	Т	S
OR3	The UUB system shall be able to detect major failure and send alarm and/or initiate a recovery process with	Т	S
677.	an internal monitoring system The software used in the UUB system shall be written in a standard language and widely documented to	-	
OR4	allow modification by people not involved in the primary design phase	R	В
OR5	The software used in the UUB system shall be easily downloadable through the main radio communication	Т	В
OR6	system and from maintenance device (computer) connected on site The UUB shall be able to be in operation 24 hours over 24 hours, during 15 years.	A	B
010	The CCD shall be uple to be in operation 24 nours over 24 nours, during 15 years.		
SR1	The UUB system shall be designed to limit onsite maintenance at the maximum	R	В
SR2	Hardware and software tools and test benches shall be developed and provided to facilitate the onsite support	R	В
SR3	of the UUB system Adequate quantity (15%) of spare of the major elements of the SDEU (UUB, light generators, GPS boards,	I	B
513	Anequate quantity (1570) of spare of the major elements of the SDEO (UUD, fight generators, OPS Doards,	1	D

Verification Matrix					
Requirements			Verification		
ID	ID Text				
	small PMT & bases, sensors) shall be procured and stored to facilitate onsite maintenance, in addition of the attrition (2 to 3%) for the part procurement	u			
SR4	The UUB system design shall allow people not involved in the design performing general maintenance operations, after a short training	Ι	В		
SR5	All support operation on the UUB system shall be completely documented, traced and recorded	Ι	В		

Table 7.4a – SDEU Verification Matrix

7.4.2 Basic Test definition

The Basic Test is a verification process performed at the manufacturer plant, using a manufacturer tool or the Basic Test Equipment and/or the Tank Simulator equipped with reduced functionalities software (see sections 6.1, 6.2 and 6.3). The main goal of this test is to verify the good manufacturing of the board, find faulty components, bad soldering and the basic functions up to the connectors.

Additionally, the Basic test is a provision to verify quality assurance allowing a feedback to the production process when performed during the earlier phase.

The table below shows the requirements which has to be tested and verified during the Basic Test:

#	R equirement to be verified					
	Functional Requirements					
FR53	The UUB shall have a slow control unit able to monitor internal parameters to perform a failure detection, isolation and recovery (FDIR) process on onboard power supplies and batteries voltage protection over 35 V and under 22 V)					
FR54	The UUB slow control unit shall be able to manage all existing SDE environmental sensors and additionally, a water temperature sensor and an atmospheric pressure sensor.					
FR81	The UUB shall be able to produce all needed internal power supplies, regulated and stabilized, filtered and protected, from a single input of 24 Volts nominal but varying from 18 to 30 Volts.					
CR91	The power supplies unit shall be composed of adapted to design DC to DC converters with the following requirements: - Efficiency better than 80% (90% recommended) - Large input range, from 18 to 30 Volts (24V nominal) - Low ripple noise, less than 20mV					
CR93	24 Volts, filtered, non-regulated and controlled shall be provided on the extensions connectors					
IR12	All the electrical interfaces between the UUB and the Radio module shall be identical to the electrical interfaces of the existing UB.					
IR13	All the electrical interfaces between the UUB and GPS antenna and the tank control (from TPCB) shall be identical to the electrical interfaces of the existing UB					
ER3	The UUB system shall include all necessary electrical protection for internal (over current) and external surges.					
OR1	The UUB system shall be entirely autonomously powered through the existing power system. In the scope of a further extension, the total consumption shall not exceed 10W, including existing BSRU (radio, 1.1W average, 3.6W peak) and PMT Bases (1.5W)					

The low level S/W, integrated at this level and the micro-controller S/W (Slow Control) should contain auto test algorithm allowing too perform the following tests:

- Voltage and current measurement from the Slow Control
- Micro-controller inputs/outputs verification
- FPGA inputs/outputs verification:
 - To all memories
 - To communication interfaces
 - o To ADCs
 - To LED controller
 - To micro-controller
- All channel analog chain behavior, from analog connectors to the ADC inputs. This need to provide a simple stimulus signal at the analog inputs (sinus or square waveform)

The results of these tests can be monitored on the two Console System USB connectors (FPGA and Micro-controller)

See in annex, the detailed Basic Test procedure.

7.4.3 Full Functional test definition

The full functional test will include all the test process listed in the section 7.4.5, using the Tank Simulator and its complete S/W (except requirement verification involving the GPS receiver data). The main goal is to verify all the board functionalities in a unitary way (unit tests).

This test process shall also include:

- The Basic Tests (see 7.4.2)
- Digital connectors inputs/outputs verification (need a basic configuration in the S/W)
- LED Controller outputs verification
- PMTs slow control verification
- Communication test with GPS board (TBC)

7.4.4 End to End test definition

The End to End Test is a verification process performed on site before deployment, using the Tank Simulator equipped with the appropriate functionalities software (see sections 6.1, 6.2 and 6.3). The main goal is to verify all the functionality of the system in a global way, almost in final situation, before deployment on site. The process includes the Basic Test and additional requirement verification. See table below:

#	Requirement to be verified				
	Functional Requirements				
FR11	The UUB shall processes analog anode signals from the three PMTs. A low and high gain signal for each PMT shall be conditioned and digitized				
FR16	The high gain/low gain ratio shall be of 32.				
FR27	The level 1 trigger shall provide signal to Time-Tagging circuitry allowing time step of trigger and determination of absolute time of each ADC bin.				
FR31	The UUB shall able to time tag each events, using the information given by a commercial GPS unit and a logic circuitry (in FPGA) based on the existing design.				
FR53	The UUB shall have a slow control unit able to monitor internal parameters to perform a failure detection, isolation and recovery (FDIR) process on onboard power supplies and batteries voltage protection over 35 V and under 22 V)				
FR54	The UUB slow control unit shall be able to manage all existing SDE environmental sensors and additionally, a water temperature sensor and an atmospheric pressure sensor.				
FR61	The UUB shall have a light generator unit (LED controller) able to generate two adapted signals with at least amplitude of 20 Volts towards the two foreseen light devices (LED driver). The signal shall be controlled in time with a resolution of 4 ns and shall be synchronized to the time tagging signal (IPPS)				
FR63	The light generator unit (LED controller) and light devices (LED driver) shall measure the linearity of the SD photomultipliers (PMTs) over the full dynamic range of their acquisition channels, using the "two LEDs technique"				
FR64	The light generator unit (LED controller) and light devices (LED driver) shall measure the amplification ratio between overlapping acquisition channels, low and high gain of the SD PMTs				
FR65	The light generator unit (LED controller) and light devices (LED driver) shall be able to create artificial EAS events of different topology on the ground SD array in order to: - check the ACQ response for different event pattern, - check the event reconstruction				
FR74	The UUB shall include digital communication capability for other detector systems, including synchronization signal.				
FR81	The UUB shall be able to produce all needed internal power supplies, regulated and stabilized, filtered and protected, from a single input of 24 Volts nominal but varying from 18 to 30 Volts.				
CR91	The power supplies unit shall be composed of adapted to design DC to DC converters with the following requirements: - Efficiency better than 80% (90% recommended) - Large input range, from 18 to 30 Volts (24V nominal) - Low ripple noise, less than 20mV				
CR93	24 Volts, filtered, non-regulated and controlled shall be provided on the extensions connectors				
IR12	All the electrical interfaces between the UUB and the Radio module shall be identical to the electrical interfaces of the existing UB.				
IR13	All the electrical interfaces between the UUB and GPS antenna and the tank control (from TPCB) shall be identical to the electrical interfaces of the existing UB				
IR15	The UUB shall provide external LVDS connection (EXT 1 and EXT 2) for other detector systems, including synchronization signal. The front panel connectors pin out for those extension connections, are described in the table 2.3.1.b. of the RD1				
ER6	The UUB shall resist, out of operation, to long distance cargo flight and dirty road transportation, with an adapted packaging.				
OR1	The UUB system shall be entirely autonomously powered through the existing power system. In the scope of a further extension, the total consumption shall not exceed 10W, including existing BSRU (radio, 1.1W average, 3.6W peak) and PMT Bases (1.5W)				
OR2	The UUB system shall be entirely controlled and monitored through the main radio communication system (BSRU).				
OR3	The UUB system shall be able to detect major failure and send alarm and/or initiate a recovery process with an internal monitoring system				
OR5	The software used in the UUB system shall be easily downloadable through the main radio communication system and from maintenance device (computer) connected on site				

In this test process, one shall be able to generate a fake event on the system, using the analog inputs (TS) and monitor the behavior of the board, reading returned data.

This need to use a system able to decode received data (a fake CDAS) which can be connected to the Ethernet interface (the RS232 radio interface can be tested separately with a dedicated protocol). The on board S/W should contain appropriate routines allowing the use of the Ethernet interface.

7.4.5 Requirements verification by testing

All SDEU the requirements which can be verified by testing shall be verified and validated at system level as described in the following verification matrix (detailed test procedure are in separate documents):

#	Requirement to be verified How to verify		With	Expected response			
	Functional Requirements						
FR11	The UUB shall processes analog anode signals from the three PMTs. A low and high gain signal for each PMT shall be conditioned and digitized	Calibrated pulses send to analog input and compared to pulse reconstructed from digital responses	Tank Simulator Engineering Array	Pulses sent en received are identical			
FR14	Adapted anti-aliasing filters shall be implemented for each PMT signal inputs (60Mhz at -3dB, TBC) (<5% single time bin aliasing noise)	Variable frequency sine signal send to analog input and compared to signal reconstructed from digital responses. Tank Simulator - no frequency scan - only fixed frequencies - frequencies TBD		Frequency response is within filter specification.			
FR16	The high gain/low gain ratio shall be of 32.	Calibrated pulses send to analog input and compared to pulse reconstructed from digital responses	Tank Simulator	Gain measurement ratio is 32			
FR22	The trigger/memory circuitry shall generate a first level trigger based upon hardware analysis of the high gain PMT channel waveforms. The UUB micro-processor software shall imposes additional constraints to generate a level 2 trigger signal.	Calibrated pulses send to analog input and compared to pulse reconstructed from digital responses	Tank Simulator (no readback of the trigger signal) Engineering Array	Trigger signal behavior regarding the constraints is correct			
FR23	The goal of the first level trigger shall be to trigger efficiently on UHE cosmic ray air showers of energy >10 ¹⁹ eV, while simultaneously rejecting lower energy showers and minimizing composition dependent trigger biases, within a rate constraint of 100 Hz.	TBW	Engineering Array	TBW			
FR26	The triggers to be implemented are: etc (see RD1)	Calibrated pulses send to analog input and compared to pulse reconstructed from digital responses	Engineering Array	Trigger signal behavior regarding the constraints is correct			
FR27	The level 1 trigger shall provide signal to Time-Tagging circuitry allowing time step of trigger and determination of absolute time of each ADC bin.	TBW	Engineering Array	TBW			
FR31	The UUB shall able to time tag each events, using the information given by a commercial GPS unit and a logic circuitry (in FPGA) based on the existing design.	Trigger signals are generated at known time interval.	Engineering Array	Generated time interval is reproduced at TBD % in the taime tagging in event files			
FR32	The time tagging unit shall have a resolution of 4 ns or better, stable in temperature better than 5%.	Test to be performed at sub-system level	Thermal chamber TBD test system				
FR53	The UUB shall have a slow control unit able to monitor internal parameters to perform a failure detection, isolation and recovery (FDIR) process on onboard power supplies and batteries voltage protection over 35 V and under 22 V)	Voltage variations are generated	Tank Simulator (16V to 34V)	Expected foreseen behavior of SC software			
FR54	The UUB slow control unit shall be able to manage all existing SDE environmental sensors and additionally, a water temperature sensor and an atmospheric pressure sensor.	Sensor stimuli is generated	Tank Simulator (for PMT only) Engineering Array	Expected foreseen behavior of SC software			
FR61	The UUB shall have a light generator unit (LED controller) able to generate two adapted signals with at least amplitude of 20 Volts towards the two foreseen light devices (LED driver). The signal shall be controlled in time with a resolution of 4 ns and shall be synchronized to the time tagging signal (1PPS)	Commands to generate LED signal with time and amplitude variation are send. The LED signal output are monitored	Engineering Array	The LED signal behavior is conform to requirements			

#	Requirement to be verified	How to verify	With	Expected response	
FR63	The light generator unit (LED controller) and light devices (LED driver) shall measure the linearity of the SD photomultipliers (PMTs) over the full dynamic range of their acquisition channels, using the "two LEDs technique"	PMT linearity measurement process performed	Engineering Array	PMT linearity measurement data recorded and analyzed. Normal behavior expected	
FR64	The light generator unit (LED controller) and light devices (LED driver) shall measure the amplification ratio between overlapping acquisition channels, low and high gain of the SD PMTs	PMT linearity measurement process performed	Tank Simulator (with analog output) Engineering Array	PMT linearity measurement data recorded and analyzed. Normal behavior expected	
FR65	The light generator unit (LED controller) and light devices (LED driver) shall be able to create artificial EAS events of different topology on the ground SD array in order to: - check the ACQ response for different event pattern, - check the event reconstruction	Commands to generate LED signal with time and amplitude variation are send.	Engineering Array	Expected fake EAS are observed in the PAO monitoring	
FR74	The UUB shall include digital communication capability for other detector systems, including synchronization signal.	Digital messages are send and read on EXT ports	Engineering Array	Digital communications are conform	
FR81	The UUB shall be able to produce all needed internal power supplies, regulated and stabilized, filtered and protected, from a single input of 24 Volts nominal but varying from 18 to 30 Volts.	Input voltage variations are generated following a TBD timeline. SC monitoring voltage values are read	Tank Simulator	Internal power supplies behavior are conform to requirements	
CR61	The Calibration unit shall include a light generator unit (LED controller) implemented on the UUB PCB, able to provide 20 Volts amplitude pulses, controlled directly by the processing unit (PPGA).	Commands to generate LED signal with time and amplitude variation are send.	Engineering Array	The LED signal behavior is conform to requirements	
	The power supplies unit shall be composed of adapted to design DC to DC converters with the following requirements:				
CR91	 Efficiency better than 80% (90% recommended) Large input range, from 18 to 30 Volts (24V nominal) 	Input voltage variations are generated following a TBD timeline. SC monitoring voltage values are read	Slow control UUB readout	Internal power supplies behavior are conform to requirements	
CR93	Low ripple noise, less than 20mV 24 Volts, filtered, non-regulated and controlled shall be provided on the extensions connectors	24V on EXT ports are monitored. Switch commands are send	Voltmeter	24V on EXT is conform to requirements	
				•	
IR12	All the electrical interfaces between the UUB and the Radio module shall be identical to the electrical interfaces of the existing UB.	Emulated radio protocol communication is performed and responses are monitored. Real radio is connected on COMM port	Engineering Array	Radio communication behavior is conform to requirements	
IR13	All the electrical interfaces between the UUB and GPS antenna and the tank control (from TPCB) shall be identical to the electrical interfaces of the existing UB	See FR54	Engineering Array	See FR54	
IR15	The UUB shall provide external LVDS connection (EXT 1 and EXT 2) for other detector systems, including ynchronization signal. The front panel connectors pin out for hose extension connections, are described in the table 2.3.1.b. f the RD1		TBD	See FR74	
ER1	The UUB shall be able to resist in operation to a temperature range from -20 to +70 degrees Celsius and in storage from -40 to +80 degrees Celsius. Other parts of the SDEU (located in the tank) shall be able to resist to a lower temperature range, -50 degrees Celsius	A basic functional test is performed under temperature variation	Thermal Chamber Engineering Array	UUB behavior is conform to requirements	
ER2	The UUB shall be able to resist in operation to an average hygrometry between 30 and 80%	SDEU is connected to PAO array	Engineering Array	SDEU behavior is conform to requirements	
ER3	The UUB system shall include all necessary electrical protection for internal (over current) and external surges.	SDEU is connected to PAO array	Engineering Array	SDEU behavior is conform to requirements	

#	Requirement to be verified	How to verify	With	Expected response	
ER4	The UUB shall be able to resist in operation to storm lightning occurring at a distance of 1 km.	SDEU is connected to PAO array	Engineering Array	SDEU behavior is conform to requirements	
ER5	The UUB shall not exhibit any malfunction, degradation of performance or deviation from specified indications when test spikes are applied to the dc power input leads or electromagnetically coupled into the equipment wiring.	the dc power input leads or IEC61000 test procedure is applied SDEU is connected to PAO array		SDEU behavior is conform to requirements	
ER6	The UUB shall resist, out of operation, to long distance cargo flight and dirty road transportation, with an adapted packaging.	UUB shall resist, out of operation, to long distance cargo ht and dirty road transportation, with an adapted SDEU is transported and connected to PAO array		SDEU behavior is conform to requirements	
OR1	The UUB system shall be entirely autonomously powered through the existing power system. In the scope of a further extension, the total consumption shall not exceed 10W, including existing BSRU (radio, 1.1W average, 3.6W peak) and PMT Bases (1.5W)	Power is monitored	Tank Simulator Engineering Array	Power values are within specifications	
OR2	The UUB system shall be entirely controlled and monitored through the main radio communication system (BSRU).	Communications under PAO protocol are emulated or performed on COMM port	Engineering Array	SDEU behavior is conform to requirements	
OR3	The UUB system shall be able to detect major failure and send alarm and/or initiate a recovery process with an internal monitoring system	Generate power modification (variation, suppression) and monitor voltages values with the SC system	Engineering Array	SDEU behavior is conform to requirements and FDIR	
OR5	The software used in the UUB system shall be easily downloadable through the main radio communication system and from maintenance device (computer) connected on site	Software download is performed through real or emulated radio port. Checksum are monitored	Engineering Array	SDEU behavior is conform to requirements	

Table 7.4b – SDEU Requirements testing Matrix

7.4.6 Engineering Array verification

(From Golden meeting notes, June 20, 2014)

7.4.6.1 Set Up Verification

- Set up gains of the large PMTs with rate-based method
- Set up small PMT with LED, not possible with rate method
- Noise level measurement using random triggers

7.4.6.2 Trigger Verification

- Trigger rate scans over trigger parameter space
- Compare downscale trigger to old 40 MHz trigger in triplets
- Fake event generation
- Muon decay trigger and calibration
- Rates for the new 120 MHz triggers

7.4.6.3 Timing Verification

- Check timing with twins
- Use fake events to test time jitter

7.4.6.4 Large PMTs, calibration with muons

- Muon pulse shape
- VEM calibration
- A/P calibration
- Cross calibration with small showers
- Muon decay calibration

7.4.6.5 Large PMTs, calibration with LED

- Cross-calibration of the three gain ranges
- Linearity calibration with LED

7.4.6.6 Performances comparison

- Comparison with actual electronics

7.5 Models Verification Matrix

The following matrix shows the distribution of the different verifications in function of the models.

	Verification Matrix							
Feasibility	Electrical Verification	Functional	Performance	Physical Properties	Thermal & Ageing	ESD	Engineering Array	
PrtB	PrtB	PrtB	PrtB (partly)	PrtB	*	PrtB	PrtB	
	PpB	PpB	PpB	PpB	PpB			
	PB	PB	PB	PB	PB			

Table 7.6a – Models Verification Matrix

* This process can be validated with the PrtB model

7.8 Quality Assurance

According to the SDE Quality Assurance Plan (RD9) and the Pierre Auger Observatory Quality Assurance Plan (RD8), any test activities should be tracked in individual form sheet (physical or electronic) and documented in test report document. Test result should be recorded in a data base for further usage.

Any detected non conformity, founded during any test activity shall be recorded in a standard Non Conformance Report (NCR) form sheet. The NCR procedure shall be then processed.

8 ANNEX

8.1 Detailed Basic Test procedure (TBC)

The basic Test procedure consists of the steps below which have to be followed and documented by the responsible person:

a) Each UUBs will be labeled with a 4 digit serial number (with a laser or a simple sticker). Each production site uses a predefined range of serial numbers (e.g. 0001...099 = preproduction, 0100...999 = KIT, 1001...1999 = Grenoble, ...); each serial number can be used only one time.

b) All UUB will be visually checked on top and bottom side. Are there components missing? Anything unusual? Bad soldering? In case of abnormality, the board has to be repaired first (an NCR should be issued).

c) The UUB will be connected to the test equipment according to Figure 1. A fuse of (xx A slow) will be connected by screws. Now the power supply will be turned on and the voltage will be increased up to its nominal value (TBD). During the voltage ramp-up the current must remain below xx ampere.

d) The microcontroller will be programmed with a dedicated test program via the JTAG connector and software of the PC. After start of that software all digital and analog voltages are turned off.

e) The USB cable is connected and the communication with the microcontroller is started. In case a communication is possible, the voltages are turned on in a predefined sequence. The presence of every voltage at the associated test point has to be verified with the DVM and documented. If a voltage is missing, the test has to be aborted until the source of the problem has been identified and the error is fixed.

f) Start a test program on the microcontroller which automatically tests the DB15 interfaces (HV monitor); test adapters need to be connected during the test.

g) Test of overvoltage and undervoltage detection by MSP. (more TBW)

h) The digital voltages for the ZYNQ FPGA are switched on via USB commands to microcontroller; voltages and currents are verified by DVM and compared with microcontroller measurement. The FPGA is programmed from the PC via JTAG connector. The code is flashed into memory; after a power cycling a test program is loaded from there (details to be defined).

i) Test of the Ethernet connection; is a login into Peta Linux possible? If not, stop further steps; otherwise download some test programs as needed.

j) Login to the FPGA via Ethernet and start the "Production Test" software. This software allows following tests to be performed either as manual test or as part of a test sequence:

a. parameterization of ADC parameters and internal self-test of the ADCs

b. memory test (simple test and more complex ones on demand)

c. test of external digital interface using the flat cable (via loop back test)

d. test of LED driver interface: (i) setting of DC levels (e.g. a saw tooth ramp), verification by scope and (ii) production of trigger pulses with certain frequencies

e. use an external pulse generator or feed the LED driver pulses through the splitter to the ADC inputs. Verify by reading out same traces that all analog channels and ADC are working correctly.

f. readout the serial number from the GPS and start a GPS self-test to verify the functionality of the GPS interface (TBC)

- g. loop back test of the trigger-in/ trigger-out connectors
- h. test of communication between FPGA and microcontroller via I2C (TBD)
- i. test of reset push-button and watch-dog
- j. (More TBW)

If all tests are successful, mark the board with a "green" point and fill the test sheet tracking form; if needed load "regular" software of microcontroller and FPGA. If the test procedure was aborted, because some tests failed, mark the boards with a red "sticker" and provide comments on the problem on an NCR form sheet. These boards have to be kept separately for investigation by an engineer.

End of document