

Heavy Ion Physics with LHCb

LHCb « Heavy Ion » activities at IN2P3

 Study of strong interaction and QCD via the measurement of heavy flavour (charm and beauty) production in various environments at the LHC

History of the project (1)

- Since the preparation of data taking (~2005), the LAL group is strongly involved in the study of heavy flavour production.
- Two main highlights:
 - <u>B</u>_c production:
 - ANR and FCPPL grants since 2006,
 - 5 publications (B_c cross-section, B_c mass, B_c branching fractions)
 - Several PhD theses and post-docs working on the subject
 - Charmonium production:
 - Leading first J/ψ measurement with 7 TeV data in 2011
 - One of the first LHCb publication
 - Continuing now with study of charmonium decays to pp

B_c production [PRL 109 (2012) 232001]

J/ψ production [EPCJ71 (2011) 1645]

History of the project (2)

- Active groups in the Orsay area studying feasibility and physics reach of a fixed target experiment at the LHC.
- Lead by several IN2P3 physicists including Jean-Philippe Lansberg at IPNO and Frederic Fleuret at LLR, in the AFTER project for example.
- It was quickly realized that using an existing detector was the most effective solution, Patrick Robbe at LAL helped studying the feasibility
- LHCb has the ideal geometry for it.
- Merging the two efforts, the natural extension of the heavy flavour production measurements was to look at other collision systems, including a fixed target setup

The LHCb experiment

[JJMPA 30 (2015) 1530022] [JJNST 3 (2008) S08005]

Muon system

 μ identification $\epsilon(\mu \rightarrow \mu) \sim 97 \%$, mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1-3 \%$

Why LHCb?

- LHCb is specialised in heavy flavour precision physics, beauty and charm:
 - Optimised for low pile-up collisions (ie low multiplicity):
 - Precise reconstruction of production and decay vertices: time dependent CP violation
 - · Correlations between particles: flavour tagging
- Some characteristics of the experiment make it attractive for measurements in Heavy ion physics too:
 - Instruments fully the forward region: 2<η<5
 - <u>Precise vertexing</u>: separation of prompt production from B decay products
 - Precise tracking: reconstruction down to $p_T=0$
 - Particle identification: full reconstruction of hadronic decays of charm or beauty, such as $D^0 \rightarrow K\pi$

LHCb operation modes

Heavy Ion Physics with LHCb

• Proton-nucleus collisions

- Serve as a baseline for nucleus-nucleus collisions
- Nuclear parton distribution function (nPDF), nuclear absorption, saturation, energy loss...
- Unique capabilities with LHCb in the heavy flavor sector to constraint nPDF at very small (pPb collisions – charm and beauty) and large (fixed target - charm) Bjorken-x

• Nucleus-nucleus collisions in FT mode

- 2.75 TeV Pb beam on fixed target: √s_{NN}~71 GeV (close to the 17 GeV regime reached at SPS)
 - · Investigate the color screening
 - Thanks to unique capabilities, LHCb offers new opportunities in the charm sector: J/ψ, ψ', χ_c, D⁰, D^{+/-}, D^{*}, Λ_c... (in the 90's the NA50/SPS experiment measured only J/ψ and ψ' in PbPb @ 17 GeV)
- Accessing similar energy density regime than SPS: operate PbAr@71 GeV, lower multiplicity than PbPb collisions, central events should be accessible

Bjorken-x = fraction of the nucleon momentum carried by a parton

	System \ centrality	60 – 100%	40 – 50%	20 – 30%	0 – 10%		
 	PbNe – 71 GeV	108.6	392.5	814.5	1494.9		
	PbAr – 71 GeV	123.6	496.5	1228.3	2372.7		
<u>.</u>	PbKr – 71 GeV	196.9	919.1	2205.5	4084.3		
SPS	PbPb -17 GeV	124.2	605.9	1338.7	2980.5		
S.	(based on EPOS-LHC-v3400)						

Fixed target mode – SMOG

- Gas can be injected in the interaction region of LHCb, in the VELO vaccuum (ie the LHC vaccuum)
- Initially this was designed to measure the luminosity of LHCb, by measuring the beam images with beam-gas vertices: used during LHC van der Meer scan sessions: 1.5% precision on integrated luminosity
- Other use cases emerged:
 - Measure LHC ghost charge (proportion of particles outside the colliding buckets) for the ALICE, ATLAS and CMS luminosity
 - Fixed target physics: strong involvement of LAL-LLR (with also IPN colleagues) for feasability studies

Fixed target mode – SMOG

- Very simple system
- Originally use Neon gas
- Other non-getterable nobel gases can be used: in 2015, we used also Ar and He
- The pressure in the LHC when the gas is injected is ~2x10⁻⁷ mbar (instead of 10⁻⁹ mbar with no injection)

History of the project (3)

- The proposal to participate in heavy ion runs (pPb, PbPb, fixed target) was presented to the collaboration in 2015:
 - Accepted fully by LHCb
 - Is now part of the LHCb physics program: the collaboration covers shifts, operations
 of the detector and data handling
 - A dedicated physics working group (Ion and Fixed Target IFT) was created
 - An ERC grant was obtained in 2016: 1.8 M€ total with 1.1 M€ for LAL
- The proposal was also presented and accepted by the LHCC in 2015:
 - LHC Machine plans include the LHCb participation to the heavy ion runs:
 - In pPb collisions, L_{int}(LHCb) ~ L_{int}(ALICE)
 - In PbPb collisions, L_{int}(LHCb) ~ 0.1 x L_{int}(ALICE)
 - · Gas can be injected in the LHC for our fixed target program on demand

LHC schedule

• The LHC uses ions (Pb) about 1 month per year

Collider mode: PbPb collisions (2015)

- LHCb took part for the first time to a LHC PbPb run end of 2015, with emphasis on low multiplicity events.
- Up to 54 colliding bunches, *ie* 10% of the luminosity provided to the other LHC experiments, and a total of 3-5 μb⁻¹ integrated luminosity recorded with the detector running in standard conditions (same as with proton-proton collisions)
- <u>Centrality reach</u>: up to 50%, where measurements of J/ ψ , D⁰, K_s⁰, Λ , ... production can be done
- Analysis however difficult because of high multiplicity events, limiting tracking efficiency with the current detector. Not covered at IN2P3.
- But, as expected, good performances for Ultra Peripheral Collision Events

J/ψ in UPC events

Collider mode: pPb collisions (2016)

- Due to geometry of detector: when reverting beams, two different coverages: statistics accumulated in both configurations
- No problem with multiplicities, similar to pp collisions with the usual pile-up
- pPb (~13nb⁻¹) and Pbp (~17nb⁻¹) collisions at 8.2 TeV: more than 10 times the 2013 (pilot run) statistics.
 Possibility to perform several important measurements [LHCb-PUB-2016-011]

Channel	2013 yields	Yields expected in 2016 with $20 \mathrm{nb}^{-1}$
$\Upsilon(3S) \to \mu^+\mu^-$	<u></u> -	300
$\psi(2S) \to \mu^+\mu^-$	500	10000
$Z \to \mu^+ \mu^-$	12	250
Associated $J/\psi - D^0$ production		100
Drell Yan	=	1000

J/ψ production in pPb at 8 TeV

Fraction from B decays

- J/ ψ production is the first publication (of all LHC experiments) in this sample, using trigger candidates with no extra reconstruction
- Precise double differential cross-section of prompt and J/ψ from b

[PLB 774 (2017` 1501

$$t_{z}(J/\psi) = \frac{d_{z} \times M_{J/\psi}}{p_{z}}$$

Collider mode – pPb collisions (2016)

- Very good quality data set out of which several original measurements will be obtained in the next years, in the LAL/LLR groups:
 - χ_c in the decay $\chi_c \rightarrow J/\psi \gamma$: might be a first at the LHC, will give important information on cold nuclear matter effects on charmonium
 - D correlations: insight on multiple parton scattering
 - Drell Yan production
 - Measurement of Drell Yan (DY) production in the forward region is a method proposed to distinguish between shadowing and energy loss models.
 - LHCb acceptance is ideal for this measurement.
 - Capabilities to remove background from b decays with the VELO
 - About 1000 candidates are expected with the 2016 dataset.

[F. Arleo and S. Peigné, arXiv:1512.01794]

Fixed Target Physics With LHCb

- Inject gas between 1 day and 2 weeks.
- The pressure is so low that it does not interfere with the running of the LHC and data can be collected also in parallel with pp collisions by LHCb.
- Operation in 2015 demonstrated that running with SMOG in completely transparent for the LHC: it is considered now as routine operation.

Year	Target	Beam energy	Proton on Target	Relative size
2015	Ne	6.5 TeV p	9x10 ²⁰	1
2015	Не	6.5 TeV p	2.4x10 ²¹	2.7
2015	Ar	6.5 TeV p	3.9x10 ²²	43
2015	Ar	2.5 TeV p	2x10 ²⁰	0.2
2015	Ar	2.5 TeV Pb	2x10 ²⁰	0.2
2016	Не	6.5 TeV p	2.7x10 ²¹	3
2016	Не	4 TeV p	4.6x10 ²²	51
2017	Не	6.5 TeV p	2.4x10 ²⁰	0.3
2017	Ne	6.5 TeV p	3x10 ²¹	3.3
2017	Ne	2.5 TeV p	5x10 ²³	550 (180 h of data)

D⁰ and J/ψ production in pAr collisions at 110 GeV: data sample

• Overall data (17h) : ~500 J/ ψ ~6500 D^0

$$J/\psi \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \qquad {\it D}^0 \to K\pi$$

- Very clear signal, very small background
- Study J/ψ/D⁰ as a baseline for QGP studies
- Bjorken-x range covered by the data
 - $J/\psi x_2 \in [0.03, 0.45]$
 - $D^0 x_2 \in [0.02, 0.27]$
 - Give access to intrinsic charm regime
- pHe @ 86.6 GeV analysis ongoing

Group organisation

- Two groups in IN2P3:
 - LLR Ecole Polytechnique:
 - 1 DR (Frederic Fleuret, 100% CNRS), 1 Post-doc (Emilie Maurice, 2 years P2IO + 6 months Ecole Polytechnique)
 - LAL Orsay:
 - 1 DR (Patrick Robbe, 30% ERC), 2 Post-docs (Michael Winn, Yanxi Zhang, 3 years ERC)
 - Former members: Laure Massacrier (P2IO post-doc, now CR CNRS at IPNO), Francesco Bossu (ERC post-doc, now CEA permanent researcher)
- Responsabilities:
 - <u>IFT Working group conveners</u>: *Frederic Fleuret* and *Michael Winn* (replacing *Francesco Bossu* who replaced *Laure Massacrier*)
 - LHCb Luminosity working group convener: Emilie Maurice (in charge of SMOG operations)
 - LHCb Quarkonium working group convener: Yanxi Zhang
 - LHCb Run coordinator (2015 2017): Patrick Robbe
 - HL-LHC Heavy Ion working group co-convenor: Michael Winn

Group organisation

- Main contributions:
 - Heavy ion and SMOG data taking (help with detector and gas injection operation, shifts, monitoring, stripping, simulation, trigger,...)
 - Data analysis of the *pPb* and SMOG samples
- Important involvement in common LHCb activities:
 - Shifts and piquets during pp data taking (L0 and Calorimeter, which are the responsabilities of IN2P3) financed by ERC travel budget
 - Take part to other important analyses:
 - Calibration of pp luminosity
 - ∃_{cc}⁺⁺ discovery
 - Calibration of electron tracking for Lepton Flavor Universality tests $R(K^{(*)})$ with pPb data

Future of the activity in LHCb

- New groups are joining the collaboration to participate to heavy ion studies (Los Alamos, Michigan, ...) often contributing to the upgrade.
- New fixed target projects are emerging:
 - An upgrade of the SMOG system will be installed in LS2 (2019) to increase the pressure and allow to inject virtually any kind of gas. Lead by INFN Frascati: we will collaborate with them.
 - Further upgrades (after 2021) proposed already now, providing extra physics cases (discussed in a dedicated group during the Physics Beyond Collider workshops at CERN):
 - Polarized gas jet (INFN Frascati) for spin physics
 - Solid fixed target in beam halo (Kiev)
 - Fixed target + *crystal* with beam halo extracted with crystal to measure charm baryons MDM (LAL A. Stocchi with UA9 expertise)
- The future of the activity is guaranteed inside LHCb

SMOG Upgrade in LS2

- Limitations of the current system:
 - Low pressure
 - Very little control of injected pressure
 - · Gas limited to noble gases
- New design will allow:
 - Increase local pressure by one order of magnitude at least while keeping the overall pressure in the VELO at the same level
 - Design and prototyping done at INFN Ferarra (see talk by V. Carassiti):
 - Al Cell with coating (e.g. Graphite) a couple of options under study, e.g. Wing type (see picture), or two parallel planes;
 - Wake-Field Suppressor and Cell in two halves to open during injection.
 - Goal is to install the SMOG2 system during LS2!

Future of the activity in LHCb

 Detector will be upgraded to be able to run at higher luminosities: this also means that the centrality reach in heavy ion collisions will be improved:

- readout entire detector at 40 MHz and improve granularity of tracking detectors (Pixel vertex detector and Scintilating Fiber tracker).
- In construction phase now, installation will start next year.
- LS4 Upgrade II (*L*_{inst} x50):
 - expression of interest (2017) to run LHCb during the HL-LHC phase at much higher luminosities (means in general high multiplicity, but this is mitigated by the fact that individual pile-up interactions would be separated by precise timing)
 - R&D starting now: room for new groups to join and to integrate heavy-ion constraints to the design

Future of the activity in IN2P3

- Only 2 permanent researchers
- Group of 5 persons is a good number to maintain the same level of involvement:
 - Including PhD students and researcher exchanges (with Chinese institutes within FCPPL collaboration for example): will ensure full exploitation of the recorded datasets
 - Participation to upgrades will need more stable person-power
- We have a strong wish to maintain the links with the « main stream »
 LHCb physics program:
 - For example, devoting time to study detector choices for the LS4 Upgrade II.

Conclusions

- One very interesting pPb dataset at 8 TeV: will take several years to fully exploit
- We proved the feasibility of a fixed target experiment at the LHC, both for operation and data analysis:
 - Most relevant dataset will be recorded end of 2018: PbNe to possibly study QGP
 - Triggered several ideas to improve the current setup and increase the statistics, first step will be installed during LS2 (2019-2020)
- Current size of the group (5 people) allows to have leadership in this area in LHCb, but will decrease quickly in two years

J/ψ production in pPb at 8 TeV (2)

• Nuclear effects are seen in the comparison with pp collisions and in the comparison of pPb with

Pbp:

$$R_{p\text{Pb}}(p_{\text{T}}, y^*) \equiv \frac{1}{A} \frac{\mathrm{d}^2 \sigma_{p\text{Pb}}(p_{\text{T}}, y^*) / \mathrm{d} p_{\text{T}} \mathrm{d} y^*}{\mathrm{d}^2 \sigma_{pp}(p_{\text{T}}, y^*) / \mathrm{d} p_{\text{T}} \mathrm{d} y^*}$$

and
$$R_{\mathrm{FB}}(p_{\mathrm{T}}, y^*) \equiv \frac{\mathrm{d}^2 \sigma_{p\mathrm{Pb}}(p_{\mathrm{T}}, +y^*)/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y^*}{\mathrm{d}^2 \sigma_{p\mathrm{Pb}}(p_{\mathrm{T}}, -y^*)/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y^*}$$

Modification of production is expected due to the well established modification of the parton density functions in the Pb ion (smaller at low x = shadowing and larger at high x = anti-shadowing). Shown with HELAC-Onia generator: J/ψ are produced as in pp but using nuclear PDFs (EPS09, nCTEQ15)

In addition:

- CGC: color glass condensate, saturation of gluon density at low x
- Energy Loss: scattering of the colliding gluon in nuclear matter

D^0 and J/ψ production in pAr collisions at 110 GeV: differential production

• pT bins \in [0, 600] - [600, 1200] - [1200, 1800] - [1800, 8000] MeV/c

D^0 and J/ψ production in pAr collisions at 110 GeV: signal extraction

- J/ψ and D⁰: Crystal ball functions to extract the signal
 - Overall data (17h): ~500 J/ψ ~6500 D⁰
 - Very clear signal, very small background

Normalization

Using p-e⁻ elastic scattering.

Pro:

- LHCb sees the purely elastic regime: θ > 10mrad $ϑ_s < 29$ mrad, $Q^2 < 0.01$ GeV²
 - cross-section very well known
- distinct signature with single low-p and very low $p_{\rm T}$ electron track, and nothing else
- background events mostly expected form very soft collisions, where candidate comes from γ conversion or pion from CEP event ► background expected to be charge symmetric, can use "single positrons" to model it in data

Cons:

- cross-section is small (order 100 μ b, 3 orders of magnitude below hadronic cross section)
- electron has very low momentum and showers through beam pipe/detectors
 - → low acceptance and reconstruction efficiency

Electron spectra

- Very good agreement with simulation of single scattered electrons
- Data confirm charge symmetry of background

$$\mathcal{L} = 0.443 \pm 0.011 \pm 0.027 \, \text{nb}^{-1}$$

- Systematic from variation of selection cuts, largest dependence is on azimuthal angle
- equivalent gas pressure is 2.4×10^{-7} mbar, in agreement with the expected level in SMOG