Electromagnetic Spectrometers

du détecteur à la mesure : Benodet 2018

1

Summary

- I) History and evolution of the spectrometers
- II) Magnetics spectro/separators with accelerator's beams technical devices : quads, dipoles Beam optics concept
- III) Spectrometers without accelerator
- 1 exemple for Astroparticle
- Penning Traps

B.Jacquot// Ganil

« du détecteur à la mesure 2018 »

I) History/evolution of the electromagnetic spectrometers

1) Thomson (1897): cathode rays measurement Noble prize in 1906 for discovery of the electron (measurement of me/qe ratio with E+ B selection)

2) Aston (1919) : **E+ B selection**

identification of isotopes Ne,CI & mass measurement

3) 40's :Manhattan project U235/U238 enrichment (B selection)

4) Dehmelt (1955) :Penning Traps

5) « Commercial » mass analyzer : (Tof ,Maldi,Esi,...) Small size tools commercially available for many applications

Magnetic selection : the basic things Ion Equations in a transverse magnetic field

$$\frac{d\mathbf{p}}{dt} = \mathbf{F} = q (\mathbf{v} \times \mathbf{B})$$

Lorentz force : $(\mathbf{v} \perp \mathbf{F})$ so \mathbf{V} . $d\mathbf{V}/dt = d\mathbf{v}^2/dt = 0$ hence the modulus $|\mathbf{v}|$ =Constant and γ = constant The motion is circular and uniform:

/B

$$\frac{d\mathbf{v}}{dt} = \frac{|\mathbf{v}|^2}{R} e_r \qquad \gamma m v^2 / R = q |\mathbf{v}| |\mathbf{B}| \qquad \text{trajectory Radius } \mathbf{R} \qquad R = \gamma \frac{mv}{q \mathbf{B}}$$
We define the particle rigidity : **Bp** Trestam
$$\begin{pmatrix} \mathbf{m}, \mathbf{q}, \mathbf{v} \end{pmatrix}$$
Charged
particles
source
$$\mathbf{R} \qquad \text{The trajectory radius given By } \mathbf{R} = \mathbf{B}\mathbf{p}$$

$$R = \frac{Bp}{B} = \gamma \frac{mv}{q \mathbf{B}}$$

Isotope separator for atomic bomb (1942)

$$R = \frac{B\rho}{B} = \gamma \frac{mv}{q B}$$

 $R_{235}/R_{238} = (235/238)^{1/2}$ U238:99,27% U235=0,72%

1152 isotope magnetic separators at Oak Ridge (USA) in The 1940's for ²³⁵U bomb

Magnetic dipole : technical details

H type magnetic dipole

Beam pipe (vacuum) Coils (copper)

Yoke & Poles (N & S)

Poles saturates at 1,6-2Tesla Bz ~ Ipower supply/gap

Power supply (100-1000A)

Electrostatic selection :*

$$\mathbf{F} = \boldsymbol{q} \boldsymbol{E}$$

 $R = \gamma m V^2 / qE$

*Difficult to bend energetic particle With raisonnable E.field

*sparking

E not very efficient Electric force ~ q E low energy particles keV ion/electron

Magnetic force ~ q V B adapted to high energy particle

F.W Aston Nobel Prize : Stable isotopes discovery : ²⁰⁻²²Ne; ³⁵⁻³⁷Cl

Penning Traps : high resolution mass spectroscopy Rm~10⁻⁵-10⁻⁹

Developped in the 50s (Dehimet) Used in research but the applications are expending

Commercial Mass analysers

TOF or magnetic & electrostatic deflection Chemistry, Phamarcy, industry

Importance of electromagnetic spectrometers

Molecule identification

Accurate mass measurements

Quantitation

Isotope ratio measurements

« Commercial » tools : Small Tof spectrometer for mass analysis

Reflectron (Tof $\sim m/q$)

: isochronism (Tof non dependant of U)

Tof = L (m/q) $^{1/2}$ L=F(U) for U=U0 L = L0 for U=U0+AU L=L0+AL

40 -30 -20 -

1000 1200 1400

1800 2000 2200

m/7

Commercial tools for Mass spectroscopy Maldi = Matrix Assited LASER desorption /Ionization

MALDI-TOF

matrix assisted laser desorption/ionization TOF

Matrix:

- low vapor pressure for operation at low pressure
- polar groups for use in aqueous solutions
- strong absorption in UV or IR for efficient evaporation by laser
- low molecular weight for easy evaporation
- · acidic: provides easily protons for ionization of analyte

Commercial tools for Mass spectroscopy SIMS = ionzation with an ion gun of a sample

-Acceptance : -Mass range -Angular acceptance (solid angle: steradian)

Rejection = Nb of unwanted particles (final) / Nb of unwanted particles (initial)

B.Jacquot// Ganil

2200

1000 1200 1400 1600 1800 2000

800

II) Spectrometers & separators

with accelerator's beams

Spectrometers & separators with accelerator beams

1) Why a spectrometer ? Part 1

2) Designing a spectrometer (1^{rst} approach)

3) Beam optics (Basics)4) Spectrometer's properties

Part 2

5) Fragments separators (100MeV/A-500 MeV/A)

2018

6) Tuning And Diagnostics

Eletromagnetic spectrometer

- Eliminate primary beam (~ 10¹¹⁻¹³ particles per second)
- Help to identify the reaction products
- Measure Energy with very good resolution
- Select very rare events (selectivity)

-1: Many particles are lost in the magnet (very bad)
-2: Trajectories are complex (bad) Xfinal =f(Bρ, θi, φi, X0,Y0)

- Final position **Xf** depend on the

- Bρ (good for identification or separation)

- position & Angle after the reaction (bad)

22

Beam divergence after target 2 problems solved with focusing lenses

Imagine than focusing lenses exist like in light optics

With Focusing lenses $Xf = F(B\rho, \partial v, v)$

Xf

less unknowns ! Less beam losses!!

At one location s (the detector location, called focal plan) The trajectoires are independent of the angles θ_i , ϕ_i And the initial position is $\chi_0 = 0$, $\chi_0 = 0$

Xf=F(Βρ, θί, φί, Χο, ΥΟ

How to construct a Focusing lens for ions : Magnet with 4 poles (+,-,+,-) F=q (∨ × B)

The quadrupole magnet is focusing in HORIZONTAL PLAN Nota: In the center, the force is zero

If you tune i1 and i2 with opposite polarities, the beam can be focused in *X* and Y

B.Jacquot / JC2015

Beam optics (basics)

Focalisation with quadrupolesDONEDispersion with dipoleDONEMagnetic rigidity : $B\rho = \gamma Mv/Q = P/Q$ DONE

- Particles coordinates
- Equations in field B & E
- 1rst order approximation :Optical Matrices
- Resolution
- Angular Acceptance
- Bp Acceptance

Beam optics notation

The reference particle : $B\rho_0 = P_0/Q_0 = B_{dipole} \times R_{dipole}$

it is traveling in the Center of the beam lines So $X_0=0$, $Y_0=0$ « angles » : X'_0=0 , Y'_0=0

At the location 5_0 , a particle is represented by a vector $\overline{Z(5_0)}$

Z=(x, x', y ,y', l, δ) 6Dim

Trajectory equations for 1 particle

How to compute x(s),y(s) ?

We use a curvilinear Reference Frame which follows the reference particle

 $\frac{d}{dt} [m\gamma \mathbf{v}] = q \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B})$

Coordinate change t \implies s x(t),y(t) => x(s),y(s)We want to compute x,y at a detector location s=s₀ B.Jacquot// Ganil

$$\frac{d}{dt} = \dot{s} \frac{d}{ds}$$

$$\frac{d}{ds}[m\gamma \mathbf{v}] = \dots$$

Trajectories : exact equations

$$\frac{d}{ds}\left[m\gamma \dot{x}\right] = m\gamma \dot{s}(1+\frac{x}{\rho}) + q(t'Ex+y'B_s - \dot{s}(1+\frac{x}{\rho}) \cdot B_y)$$
$$\frac{d}{ds}\left[m\gamma \dot{y}\right] = q(t'E_y + (1+\frac{x}{\rho}) \cdot B_x - x' \cdot B_s)$$
$$\frac{d}{ds}\left[m\gamma \dot{s}(1+\frac{x}{\rho})\right] = -\frac{m\gamma \dot{x}}{\rho} + q(t'E_s + x' \cdot B_y - y' \cdot B_x)$$

Trajectory simulation (x(s), y(s))
1) knowing B(x,y,s) AND E(x,y,s,t) [field map 3D]
2) Integrate the equations for ALL the particles
 (computer+ Numerical method: Runge-kutta)

Generally we can do <u>simpler</u> Matrix approach (1rst order approximation) B.Jacquot// Ganil

The simplest transport Matrice: Rmatrix for a straight section L (drift) Particle Evolution in drift length between s1 & s2 : x=x(s) ??????? $x^2 = x^1 + tan(\theta_1)(s_1 - s_2)$ **x2** $\theta 1 = \theta 2$ **x1** nota: $tan(\theta 1) = \Delta x 1 / \Delta s = x 1'$ and (s2-s1)=L **S1** $= \begin{bmatrix} 1 \ L \ 0 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ L \end{bmatrix} \begin{bmatrix} x1 \\ x1' \\ y1 \\ y1' \end{bmatrix}$ 0 0 0 0 0 1 0 0 0 0 x2' y2 y2' $0 \ 0 \ 1 \ L \ 0 \ 0$ $R_{d1} = \begin{vmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{vmatrix}$ 0 0 0 0 0 1 L/γ^2 $0 \ 0 \ 0 \ 0 \ 0$ 1 $\mathbf{0}$

B.Jacquot// Ganil

s2

More on Transport Matrices: how to compute the Rmatrix for a spectrometer ?

The total transport matrix R is the product of the matrices representing each elements (drift ,quad, dipole)

The transport Matrix R allows the computation of the coordinates of a particle at the end of a spectrometer

at

 $Zin=(x,x',y,y',l,\delta)_{\bullet}$ Zout= (x,x',y,y',l,\delta)_{1}

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{1} = \begin{bmatrix} R_{11} R_{12} & 0 & 0 & R_{16} \\ R_{21} R_{22} & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} R_{31} & 0 & 0 \\ 0 & 0 & R_{43} R_{44} & 0 & 0 \\ R_{51} R_{52} & 0 & 0 & R_{55} R_{56} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{0}$$
 $l = v0(t - t_{0})$
 $\delta = \frac{p - p_{0}}{p_{0}}$

the entrance
at the exit

$$Zout = R.Zin$$

Interpretation of R
 $Rij = (\frac{\partial Zi \ out}{\partial Zj \ in})$
 $ex:$
 $R_{11} = (\frac{\partial Z_1}{\partial Z_1}) = (\frac{\partial x \ out}{\partial x \ in})$ $R_{12} = (\frac{\partial Z_1}{\partial Z_2}) = (\frac{\partial x \ out}{\partial x' \ in})$
 $R_{16} = (\frac{\partial Z_1}{\partial Z_6}) = (\frac{\partial x \ out}{\partial \delta \ in})$

The transport Matrix $R=R_{ij}$ is related to

- spectrometer geometry
- **tuning** of the quadrupoles

SPECTROMETER TRANSPORT MATRIX R allow the simulation of 1 trajectory (**easily**)

36

Typical spectrometer Matrix is simple

Bp = **Bdipole**. Rdipole

XFinal = R_{11} Xtarget + $R_{16} \delta$ $\approx R_{16} \delta$ $\delta = (B\rho - B\rho_0) / B\rho_0$

$$R_{16} = \left(\frac{\partial x_F}{\partial \delta_{T \, \text{arg}et}}\right)$$
The beam size : important for the design

- A particle has 1 trajectory : $\overrightarrow{Z} = Z(s)$

We are not interested by only 1 trajectory/1 particle

A beam is an ellipsoid in 6D with a given size

The beam size(width) has to be simulated to avoid beam losses

 $O_{\mathbf{X}}$ (horizontal width), $O_{\mathbf{Y}}$ (vertical width)

37

Focusing a beam in a simulation get a small size at some point S

Angular distribution (x') in a beam line ? The beam ellipse is rotating in (x, x'=dx/ds)

...The Area of the beam ellipse (x, x') is a constant in a beam line... but, Area is not constant in a target

B.Jacquot// Ganil

Resolution of a magnetic spectrometer

M,Q,V

$$R_{16} = \left(\frac{\partial Z_1}{\partial Z_6}\right) = \left(\frac{\partial x \text{ out}}{\partial \delta \text{ in}}\right)$$

R=1/100 Resolution means : capacity for a spectrometer to distinguish two beams with 1% Bp difference

The resolution R (separation)

is optimal at the focus point (size is minimal)

The 2 beams with \neq rigidities

$$B\rho_{ref} = B\rho_0 = B \times R_{dipole}$$
$$B\rho = B\rho_0(1-\delta)$$

The 2 beams are separated « at the focal plan » But not everywhere !!

Resolution (R= Ox/R16) is optimal When Ox is small and R16(dispersion) is large 41

Angular acceptance

The reaction products exit from the target with an

Angular dispersion

Vacuum chamber limitation induces beam losses = less transmission

\ll Bp \gg Acceptance

The particles are dispersed by dipole magnets with $\delta = [B\rho - B\rho 0] / B\rho 0$

 $X_{\text{final}} = R_{16} \delta$

Beam pipe limit: Xmax

How to simulate an experiment with a spectrometer in nuclear physics

🖶 LISE++ [Noname]					
File Settings Options Calculations Utilities (D-P)	Plot 2D-Plot Database	Help			
		KA Q			
Projectile ⁷⁸ Kr ³⁶⁺ 70 MeV/u 1 pnA FR		Ja 🗸		oute oole oole oole olle oole oole oole	
Fragment ³² S ¹⁶⁺	1	- A			
Terret Be 500 micron				⁸⁶ Mo ⁸⁷ Mo ⁸⁸ Mo ⁸⁹ Mo ⁹⁰ Mo ⁹¹ Mo ¹	
St. Stripper	/ n	Ś			LISLTT
Dipole 1 Brho ^			82Nb 83Nb 84Nb	85Nb 86Nb 87Nb 88Nb 88Nb 99Nb	
-40 21 +40 -40 V +40		1	Physical calculator		
M PPAC AI 1 micron					
W Vedge			A Element Z Q S 16 16	atter/into Si 300 micron	
Dipole 2 Brho 2.2305 Tm		784	Stable Nuclides N	Energy Heman 1 0 MeV/u	
-40 H +40				Energy Strag.(sigma) 0.0087953 MeV/u	CUUE
300 micron			Energy (12.0044 MeV/u Energy (11.9939 AMeV	Angular Strag. (sigma) 12.162 mrad	
option: A1900_2004A 4.62%	73ST 74Si	1 11 11	Etho C 47 7355 MU/C Valocity C 477002 cm/bs	Lateral spread (sigma) 0.44197 microns Sr 8/Sr 4	
			P.C. 4796.68 MeV/c Beta C 0.1590116	Sino (for Q=2) U Im	
		74R6	After C Gamma C 1.012887	Charge State <q> 15.56 Rb 86 Rb 4</q>	
			Energy Remain. E-Loss	dQ (sigma) 0.55	Takacay at Al
70Ki	r 71Kr 72Kr	73Kr	Block Z \ Thickness MeV/u MeV MeV <q></q>	Thickness mg/cm2 Kr 85Kr 1	I AFASUV EL AL
			Material 2 Si 300 micron 0 0 383.81 0.00	Paras and Energy Loss to 100	
_	708, 718	. 72 ₈₁		Range dRange (signal 3r 84Br	
				C 36.8937 0.089295 mg/cm2	
				C 158.342 0.38324 micron	
IN2P3	ie 1856 (85)	e ''Se		Energy Remain. 0.000 MeV/u	To he
PARTITUE NATURAL DE PANYAY E NA VIE AIR				Material thickness 36:894 mg/cm2	
ET DE PHYTRICLE DES PARTICULES 67 20	is ⁶⁸ As ⁶⁸ Δ	8 ⁷⁰ As		In energy less 158.34 micron Is 82 As	
				Calculation method of	Downloaded
66 G	ie ⁶⁷ Ge ⁶⁸ G	e ⁶⁸ Ge	🗂 Print 🛛 🤊 Help 🖌 Quit	Charge States 3 Angular straggling 1 3e 81Ge	Downloaded
Big.	a 86Ga 87G	a ⁶⁸ Ga	69Ga 70Ga 71Ga 72Ga 73Ga 74Ga	75Ga 76Ga 77Ga 78Ga 79Ga 80Ga 1	
647,	n 657n 667n	n 67Zp	687n 697n 707n 717n 727n 737n	74Zn 75Zn 76Zn 77Zn 78Zn 79Zn 1	
Fragmentation					

HOMEWORK:

Exercise 1: Imagine a spectrometer with a dispersion R16=2 m (=2cm/%) and beam width $\sigma x = 0.5$ mm on the focal plan detector, What is the resolution R in Bp?

Exercise 2 :

A spectrometer (R16=1.5 cm/%) is tuned for $B\rho 0=2.0$ T.m A particle arrives on the focal plane at Xf=3cm, What is the particle rigidity?

Exercise 3 :

How to measure the dispersion (R16) in a spectrometer ?

II) Spectrometers

with accelerator beams

Magnetic Spectrometer recap

- The need of focalisation (quadrupole)
- Magnetic rigidity define the trajectory
- Dynamics can be approximated with a matrix R

$$B\rho \stackrel{def}{=} \gamma \frac{mv}{q}$$

Beam optics coordinates

 At the location S, a particle is represented by a vector Z(s) = (x, x', y, y', l, δ)

HORIZONTAL ANGLE X'= dX/ds=tan(θ) $\approx \theta$

Rmatrix for a magnet (ϕ =180° exemple) Frame = attached to the reference particle (circle with R=R0) S = curvilinear abciss What is the position of a particle with (xo \neq 0, xo' \neq 0, Bp \neq Bpo)

 $x_{ref}(\theta = s/R) = 0$ Reference (x0=0,x0'=0, Bp=Bp0=B0R0)

* R16 : x final pos. if a different rigidity X($\phi=180^{\circ}$)-X_{ref} = 2 (R-R₀)

 $X(\phi) = (1 - \cos(\phi)) (R - R0) \\ = (1 - \cos(\phi)) (B\rho - \beta\rho)/B0 = \\ = Ro(1 - \cos(\theta)) (B\rho - \beta\rho)/\beta\rho$

R11 : x final pos. if a different initial position X(ϕ =180°) = - X(ϕ =180°) = - x0

 $X(\phi) = \cos(\phi) \times 0 = \mathbb{R}_{11} \times 0$

Rmatrix for a magnet (ϕ =180° exemple) What is the position of a particle starting with an angle (X'0 =tan(ϕ))

R12= Trajectory with initial different angle
Arrive at different position
X(φ=180°) = 2R0 (1-cos(αο)) # Ro X'o
X(φ) # Ro sin(φ) X'o

Xfinal = - R₁₁ x0 + R₁₂ X0' + R₁₆ (Bpo-Bpo)/Bpo = - cos(ϕ) x0+ R₀ sin(ϕ) X0' + R₀(1-cos(ϕ)) δ

	$ \begin{array}{c} \cos\varphi & R\sin\varphi \\ -1/R\cdot\sin\varphi & \cos\varphi \end{array} $	$\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cc} 0 & R(1-\cos\varphi) \\ 0 & \sin\varphi \end{array}$
$\mathbf{M}_{dipole} =$	0 0 0 0	$\begin{array}{ccc} 1 & R\varphi \\ 0 & 1 \end{array}$	0 0 0 0
	$\begin{bmatrix} -\sin\varphi & -R(1-\cos\varphi) \\ 0 & 0 \end{bmatrix}$	0 0 0	$\left \begin{array}{c} R\varphi/\gamma^2 - R(\varphi - \sin\varphi) \\ 0 & 1 \end{array}\right $

Transport matrix For a dipole with angle ϕ

Fragment Separators : selection and identification of radioactive isotopes (T1/2 ~ 10ms-1s)

Reaction : fragmentation or U fission

accelerator ion beams at 100-1000 MeV/A

β**=0,40 -0**,85

GOAL The production & study of exotic nuclei beyond the region of nuclei known today

Fragment Separators : selection of a specific isotopes

Primary beam suppression (Separator)
 Identification of particles
 purification (selection of some reaction products)

Purification to focus on A specific isotope

Measurement : (Mass; gamma spectroscopy...

 \bigcirc

Fragment separator 2 symmetric sections : A & B

Fragment separator :2 symmetric sections

2 Trajectories in a Fragments separator

Fragments separators : dispersiv section optics

1 Selection in Fragments separators is not sufficient

Magnetic separator with degrador increase the purification (Z dependance)

We consider 2 isobares (A=34,Z=14) (A=34,Z=15) with same Bp

2 Selections in Fragments separators Bρ + Z (degrador)

Selection in Fragments separators & identification

Bρ +degrador selection

BIG RIPS (Riken) quads

Beam very rigid : $B\rho = \gamma mV/Q = 7 T.m$ (Beam 300MeV/A)

with high v !

Super-ferric quadrupole triplet :

Very strong focusing : supraconducting coils (NbTi), with pole (Fe)

Figure 22: Schematic view of the RIKEN prototype quadrupole triplet (left side) and its installation into the cryostat (right side) [24].

Supra-conducting coils (i very large, B close to saturation)
 Raperture very large =0.1m ; Bpole-max# 2 Teslas
 GradientMax=2T/0.1m=20.T/m
 B.Jacquot// Ganil

« Recoil » spectrometer : nuclear physics at low energy (1-10MeV/A)

Many experimental problems => A large variety of devices Reactions : fusion-evaporation, transfer,..

Goals :

Very efficient primary beam suppression
 2) Help identification

RITU

SPECTROMETER TUNING AND DIAGNOSTICS Tuning rely on - B field measurement

- Beam measurement

Beam Diagnostics : dedicated Robust detectors for beam tuning

Statistical information on the beam $\overline{(\mathbf{X}, \sigma \mathbf{x}, \sigma \mathbf{T}, < \mathbf{I} > ...}$

1rst step : check the primary beam

profil measurement (alignement, focus)intensity check

SPECTROMETER TUNING

Many Profil monitors

for different beam intensities

Rotating wire ibeam# 10¹²⁻¹⁴pps (Cern)

Wires i# 10⁹⁻¹¹pps « Gas Profil »
i# 10³⁻⁷ pps

Gas ArCO₂ +HV

(Ganil)

Specific technologies adapted for ≠(intensities, Energies) Proportional counter

Emittance = constant if Energy=constant

SPECTROMETER TUNING : check the intensity Beam diagnostics : Faraday cup

Intensity measurement

Particle per second

Npps = IA/Qe = IμA 10⁶/[Q 1.6 10⁻¹⁹]

B.Jacquot// Ganil
Summary

- I) History and evolution of the spectrometer
- II) Magnetics spectro/separators with accelerator's beams technical device : quad, dipole Beam optics concept
- III) Spectrometers without accelerator
- 1 exemple for Astroparticle
- Penning Traps

III) Spectrometer experiments without accelerators

Penning Traps

1eV ions

AMS at ISS (10-300GeV e-)

AMS :a Spectrometer in space 7 tons : 1 dipole magnet + trackers+ 1Calorimeter P=2,3 kW Sactive=0,8 m2

Cosmic Ray Measurement + quantification of Matter/antimatter

e-//e+ ; p // pbar ; heavy ions He; Li;....

AMS2 at Int .Space Station

TRD X Ζ TOF MAGNE Tracker By TOF RICH ECAL

The reconstruction of a 300 GeV electron measured by AMS2,

with the signals in TOF, tracker, RICH and ECAL

Spectrometer+detector that measures <u>antimatter</u> in <u>cosmic rays</u> : e-// e+ [10-300 GeV] p // pbar

AMS2 with « a dipolar field » B=Bx higher field=higher dispersion= better Resolution Electromagnet excluded : too heavy//high power So 2 magnet options : sufficient field ? & uniformity ?

Superconducting coils

Bz~0,8 T

Bx Produces by courant distribution

 $I(\theta) #I0 \cos(\theta)$

B.Jacquot// Ganil

Permanent magnets Bz~0,15 T

Rmatrix for a magnet (ϕ , R) very convenient for the tracking in a spectro

$\begin{aligned} \textbf{Xfinal} &= - \textbf{R}_{11} \textbf{x0} + \textbf{R}_{12} \textbf{X0'} + \textbf{R}_{16} (\textbf{B}\rho_0 - \textbf{B}\rho_0)/\textbf{B}\rho_0 \\ &= - \cos(\phi) \textbf{x0} + \textbf{R}_0 \sin(\phi) \textbf{X0'} + \textbf{R}_0 (\textbf{1} - \cos(\phi)) \delta \end{aligned}$

Transport matrix For a dipole with angle ϕ

78

AMS2 : Traking in a dipole magnet 1rst order Reference particules =e- 50GeV $e^{-}(50GeV) = B_{0} = 167 Tm$ L=1m $R_0 = 167T.m/0.8T = 200m$ $\theta = s/R_0$ By=0,8T Position of 50geV e^- : Xf0 = R₀ (1-cos (θ)) = L²/2 R₀ = 2,5 mm $\delta = (B\rho B\rho_0) / B\rho_0$

Xfinal = $-\cos(\theta) \times + R_0 \sin(\theta) \times + R_0 (1 - \cos(\theta)) \delta$ (= see transport matrix of a dipole matrix) So X(s=L)= ? $L^2/2 R_0 + X0 + R_0 \sin(\theta) \times + R_0 [1 - \cos(\theta)] \delta$

79

AMS2 3 unknown (m, Z, E)

Traking e- in dipole magnet 1rst order Reference particules =e- 50GeV

 $\delta = (B\rho - B\rho_0) / B\rho_0$

 $X(s) = X_0 + s^2/2 R_0 + S X'_0 + R_0 [1 - cos(\theta)] \delta$

Tracker : Fit X(s) : find $\delta = (B\rho \cdot B\rho \cdot \rho) / B\rho \cdot \rho$ Calorimeter = gives E & RiCh gives β Bp= P/Q + E=(γ -1) mc² + β = (m, Z, E)

AMS detectors and results

-TRD :A transition Radiation detector (gas) Allows the separation of e//p -Ring Cerenkov detector : $\Delta\beta/\beta \sim 0,1/Z \%$ Zmeasurement -TOF detectors : are a fast trigger -Trackers : 10micron for e/p e: R=2,5% in Brho up to 100GeV

[2011-2015] Some e+ has been detected @100GeV source of antimatter in the universe ?!

Data has been collection for radioprotection issues (long fligth toward mars ?) P, He, Li

Penning Traps : high resolution mass spectroscopy

Used in reseach but applications expending The ultimate mass resolution device

3 tricks

1) Confinement (Bz+Ez) static EMfieds

2) Excitation (RF field)

3) Extraction (Tof measurement)

Penning Traps (1) : confinement

Solenoid coil : field (Bz) is axial

3 D trapping technics (Radial+longitudinal)
 1a) Radial (x,y) confinenment with Bz
 -natural cyclotron frequency
 frevolution/2π=qB/m

1b) Longitinal (z) confinement with Electric field $V = U0 (2z^2-x^2-y^2)$ $F_z = -4 z U0$

hyperbolic field : End caps + Ring electrode ⁸³

Penning Traps (2) :excitation at resonance

excitation RF : 4 electrodes - natural cyclotron frequency $\mathbf{m} = \mathbf{f}$ revolution $2\pi = qB/m$ -Excitation with RF electic field $V(t) = U \cos(0)rf t$ if $\omega rf = \omega c$ Radial motion increases

in reality, the motion is complex (coupling) radial (Bz) and axial motion (Fz

$$\mathbf{\omega}\mathbf{c} = \mathbf{\omega}^{+} + \mathbf{\omega}^{-} \qquad \mathbf{\omega}\mathbf{z}^{2} = 2 \mathbf{\omega}^{+} \cdot \mathbf{\omega}^{-}$$

Penning Trap : mass measurement R=δm/m #[10⁻⁵-10⁻⁸] ~ Texcitation Frf

Penning Traps: Many experiments operated in the world

Magnet = superconducting solenoid (Bz#3-6 Tesla)

Particle Physics at Cern M/q of P and Pbar (R=10⁻¹⁰)

-ATrap - ATrap2 Athena ...

-Anti Hydrogen Production cooling..
-Decay measurement
-Atomic spectroscopy Nuclear Physics -Ship Trap (GSI) Z>92 mass measurement

-Isolde Trap (Cern)

...

- JYFL Trap (finland)

End

- I) History and evolution of the spectrometers

II) Magnetics spectro/separators with accelerator's beams
 technical devices : quad, dipole
 Beam optics concept

- III) Spectrometers without accelerator
- 1 exemple for Astroparticle
- Penning Traps

Back-up slides

Usefull relations : Bp, E, W

Resolution & dispersion

More on Optical matrix : the matrix for a drift

Beam ellipsoid

Exemple 1: Big Rips in Tokyo (Riken) Exemple 2: VaMOS in Caen (Ganil)

- Non linear effect in optical systems

Useful relations :

$$E_{0} = mc^{2} ; E = E_{0}\gamma = mc^{2}\gamma ; p = mc\beta\gamma ; cp = mc^{2}\beta\gamma = E_{0}\beta\gamma ; E^{2} = E_{0}^{2} + p^{2}c^{2}$$
$$\beta\gamma = \frac{cp}{E_{0}} ; \gamma = (1 - \beta^{2})^{-\frac{1}{2}} ; \beta^{2}\gamma^{2} = \gamma^{2} - 1 ; W = E - E_{0} ; \frac{mc\beta\gamma}{q} = B\rho .$$

	β	γ	W	ср
β	β	$\frac{\sqrt{\gamma^2-1}}{\gamma}$	$\frac{\sqrt{\left(1 + W / E_{0}\right)^{2} - 1}}{1 + W / E_{0}}$	$\frac{cp/(mc^{2})}{\sqrt{1+\left[cp/(mc^{2})\right]^{2}}}$
γ	$\frac{1}{\sqrt{1-\beta^2}}$	γ	$1 + W / E_0$	$\sqrt{1 + \left(\frac{cp}{mc^2}\right)^2}$
W	$\left(\frac{1}{\sqrt{1-\beta^2}}-1\right)E_0$	E ₀ (γ - 1)	W	$mc^{2}\left[\sqrt{1+\left(\frac{cp}{mc^{2}}\right)^{2}}-1\right]$
ср	$mc^2 \frac{\beta}{\sqrt{1-\beta^2}}$	$E_0(\gamma^2 - 1)^{1/2}$	$[W(2E_0 + W)]^{1/2}$	ср

Magnetic Spectrometer : A tool for identification

Suppose 2 ions beams

The beam : N particles in a 6D ellipsoid

$$\sigma_x^2 = \sigma_{xx} = \sigma_{11} = \frac{1}{N} \sum_{\alpha = 1, \dots, N} (x_{\alpha} - \overline{x}) . (x_{\alpha} - \overline{x})$$

$$\sigma_{xx'} = \sigma_{12} = \frac{1}{N} \sum_{\alpha=1,..N} (x_{\alpha} - \overline{x}) . (x'_{\alpha} - \overline{x'})$$

Done by simulation code

 Oij is a statistical definition of the beam

2) An optical code Computes OFinal with the R matrix at the end of the spectrometer

R Matrix allows the simulation

a) -of the beam size $\sigma(s)$ b) -of one trajectory Z(s)

Beam emittance : (# optical quality)

The emittance is a volume of phase space occupied by a beam 6 Dimensions

For pratical reasons we use the subspace measurement (x,x') & (y,y')

Horizontal Emittance : area in (x,x')

Vertical Emittance : area in (y,y') Longitudinal Emittance : area in (energy ,time)

 $\epsilon \text{ rms} = 4(< x^2 > < x'^2 > - < xx' > 2)^{1/2}$

=area of the ellipse ,which

Liouville theoreme : emittance is conserved in a beam line..

More on Transport Matrices: Rmatrix for a straight section L (drift) Particle Evolution in drift length between s1 & s2 : x=x(s) y=y(s) ?????? x2=x1+tan(θ1)(s1-s2) **x2** $\theta \mathbf{1} = \theta \mathbf{2}$ **y2=y1+tan(φ1)(s1-s2)** $\phi \mathbf{1} = \phi \mathbf{2}$ **x1** nota: tan(01)=dx1/ds=x1' and (s2-s1)=L **s**1 $= \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \end{bmatrix}$ L 0 0 00 $1 \ 0 \ 0 \ 0$ 0 0 x1' y1 y1' $0 \ 0 \ 1 \ L \ 0 \ 0$ $R_{d1} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ 0 v2' 0 0 0 0 0 1 L/γ^2 0 0 0 0 0 1 $\mathbf{0}$ 10 0

B.Jacquot// Ganil

s2

Exemple n°1: fragments separator @Riken(Japan) E#300-500 MeV/A L=77m 6 dipoles magnets, 42 quadrupole magnet

Superferric quads B.Jacquot// Ganil

Suppression of the primary beam (many dipoles, degrador selection)

Help the selection of very rare nuclei Selection of 4-5 nuclei Identification (DE-TOF)

BigRIPS : Tandem (Two-stage) Separator

TOF, Bp, $\Delta E \rightarrow Z$, A/Q (A, Q), P

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

Quadrupole technology

1 :Normal conducting quad hyperbolic pole (Fe) coils (Cu)

G~ 10 Tesla/m

Larger Aperture

or/and

Higher strength

COILS GROUND

COLLAR TAPERED KEY

BEARING STRIPS

2 : Superferric quad hyperbolic pole (Fe) coils (NbTi)

Higher Gradient , larger aperture possible (A1900, BigRips, Synchro.) G~ 20-30 Tesla/m

> 3: Superconducting quad No pole !!!!!! cos(2θ) coils (NbTi)

G~ 40-200 Tesla/m (Cern LHC...)

Exemple n°2: VAMOS Spectrometer L=8 meters, 1 dipole, rotative platform

Large angular Acceptance spectrometer : 70mstrd

Exemple n°2: VAMOS Spectrometer (Ganil)

300 fission fragments id.

B.Jacquot// Ganil

Suppression of the primary beam (by rotation) Selection of 20-300 nuclei Help Identification (ΔE -TOF, position and angle measurements) **Primay beam** target spectrometer **Focal plan** otation detector 99

Example n°2: VAMOS Spectrometer

Particle identification Method (M,q,Z)

 Measurement of the time of flight (TOF) => velocity
 Measurement of the position x_{focal} after the spectrometer => Bp= B x Rdipole (1+ x / R₁₆ +...)
 Measurement of the energy loss ΔE in a thin detector (Ionization Chamber)
 Measurement of residual energy Er (Ekinetic= (γ-1)M c²)

Example n°2: VAMOS Identification

Drift Ch.

(X,X',Y,Y').

In the focal plane, 7 quantities are measured : T, x1, y1, x2, y2, ΔE , E

T : Multi Wire PPAC

x1,y1 x2,y2:

> $x'=(x_1-x_2)/d = tan(\theta)$ $y'=(y_1-y_2)/d = tan(\phi)$

∆E,E : ionisation CHAMBER

 $B\rho = B\rho_0 (1 + x / R_{16} + a x'^2 + b x^2 + c x^3 +)$

Ionis. Ch.

(**∆E**,E)

Equation is non-linear in x,x',y,y' (Aberrations)

B.Jacquot// Ganil

MWPPAC

(Tof)

Non linear effects in optical system

1rst order

$$\overrightarrow{Z_2} = R. \overrightarrow{Z_2} + ... \mathcal{E}$$

for large angle, large $B\rho$ deviation 2^{nd} order, third order is required.

$$Z2_{i} = \sum_{j=1}^{6} R_{ij} \quad .Z1_{j} + \sum_{k=1}^{6} \sum_{j=1}^{6} T_{ijk} \quad Z1_{j} . Z1_{k} +$$

1rst order 2nd order

Linear Approximation holds for small angle, small Bp deviation... (#30mrad, δ <2%)

 $Z1 = (x, x', y, y', l, \delta)_1$

Effects of second order

-Inclination of focal plane

-the Focusing strenght of quads is $b\rho$ dependent

-Large angle particles are not well focused

Non linearities (ABERRATIONS) come

- with large acceptance (large x' and large δ)

- but also, with field defects in quads and dipoles

Non linear effects in optical system

Beam optics is linear when x < 5cm x' < 30mrad $\delta < 2\%$ Beam is a nice ellipse in phase space, R matrix is sufficient

If |X'| > 30mrad or $|\delta| > 2\%$ Beam are not well represented by an ellipse

R matrix is **not sufficient** for the calculation (field maps + tracking with « Runge kutta » simulation needed)

Non linear effects in optical system

Ex1: Inclination α of the focal in a spectrometer

tg (α) = R16 / T126.R11

-Choice of the dipole Angle

-Magnetic sextupole has to be used for correction

Ex2: distorsion of beam ellipseIn phase spaceInducing Distribution wings

Optical aberrations (non linearities)