NEDA PSA through Neural Networks NEDA/DIAMANT data processing

Xavier FABIAN

IPN Lyon Université Lyon 1, CNRS, IN2P3

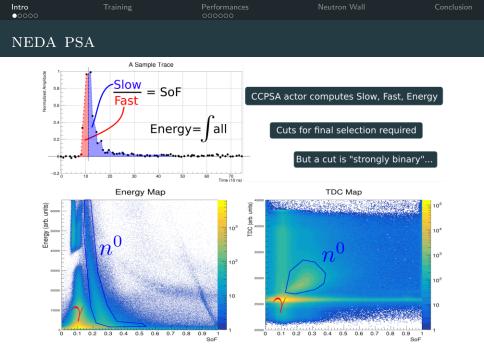
AGATA Data Analysis Workshop Orsay, January 2019

Training

Performances

4 A Word on Neutron Wall

<figure></figure>	Intro ●○○○○		Performances 000000		Conclusion
$\mathbf{Find}_{\mathbf{Fast}} = \mathbf{SoF}_{\mathbf{Fast}} + \mathbf{CCPSA} \text{ actor computes Slow, Fast, Energy}$ $\mathbf{CCPSA} \text{ actor computes Slow, Fast, Energy}$ $\mathbf{Find}_{\mathbf{Fast}} + \mathbf{Find}_{\mathbf{Fast}} + \mathbf{Find}$	NEDA PS.	A			
Energy (act units)	0.4	Slow Fast = SoF Energ	y=∫all	actor computes Slow, Fast,	Energy
Even (approximation of the second of the sec		Energy Map		TDC Map	
	4000				10 ⁴ 10 ² 10

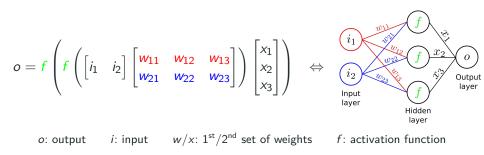

fabian@ipnl.in2p3.fr

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 SoF

SoF

Intro ●0000		Performances 000000		Conclusion
NEDA PSA				
abritidary pertinuedary 0.8 0.4 0.4 0.2 0.2	A Sample Trace	C	ctor computes Slow, Fas	
-0.2 0 10	20 30 40 50	60 70 Time (10 ns)		
Energy (at), units)	Energy Map		TDC Map	10 ⁵ 10 ⁴ 10 ³ 10 ² 10
0 0.1 0.2	0.3 0.4 0.5 0.6 0.7 0.8	0.9 1 0 0.1 SoF	0.2 0.3 0.4 0.5 0.6 0.7 0.8	0.9 1 SoF

fabian@ipnl.in2p3.fr



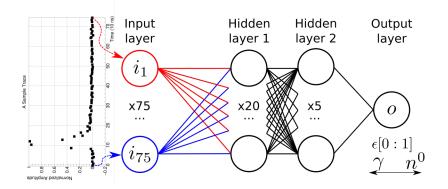
fabian@ipnl.in2p3.fr

3 / 16

Intro ○●○○○	Performances 000000	Con

Neural Networks – Generalities

Training


Adjust weights iteratively with a known input-to-output set

Output

Not boolean, but a probability/likeliness

Intro 00●00		Performances 000000	Conclusion
Previous V	Vork		

TMultiLayerPerceptron (ROOT)

 \Rightarrow Interesting results¹, but computing time online-incompatible

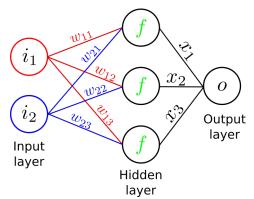
¹P.-A. Söderström et al., in preparation

fabian@ipnl.in2p3.fr

Intro

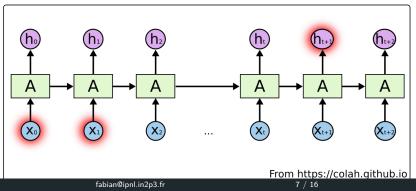
Fraining

Performance 000000 Neutron Wa

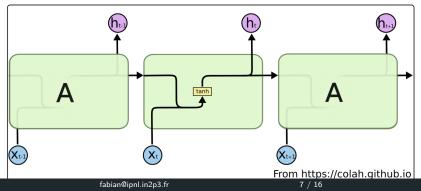

Conclusion

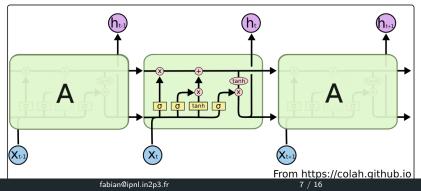
Integration in GANPRO

TensorFlow


Library by Google: optimized, documented, active community Multiple NN types available Multilayer Perceptron Recurrent NN GPU-compatible (Nvidia) C++-compatible Integrated in GANPRO NNPSA Filter: buffering & parallelism ↔ has worked online!

Intro ○○○○●		Performances 000000	Conclusion
Used Net	works		

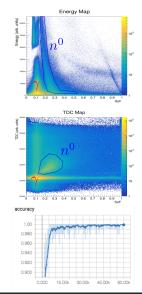

Intro 0000●		Performances 000000	Conclusion
Used Netw	orks		


Intro 0000●		Performances 000000	Conclusion
Used Netw	orks		

Intro 0000●		Performances 000000	Conclusion
Used Netw	orks		

Training	Performances	Conclusion

Training


Crucial step, sets the discrimination quality

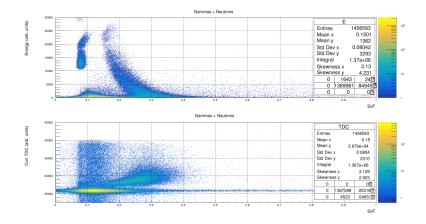
Sensitivity to t_0

Training with blocks of 100 signals and averaged error

Training dataset

Ideal: events labelled with 100% confidence For now: CCPSA cuts \Rightarrow fine tuning mandatory!

Intro


Iraining

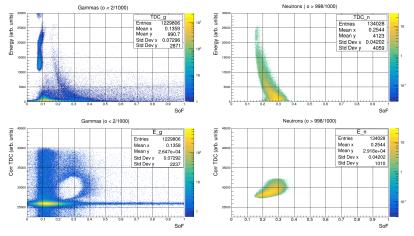
Performances

Neutron Wa

Conclusion

Selectivity Example

Intro

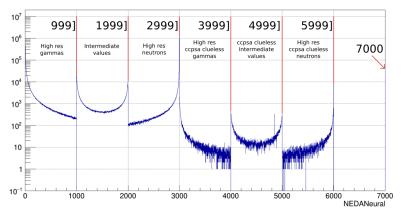

raining

Performances

Neutron Wal

Conclusion

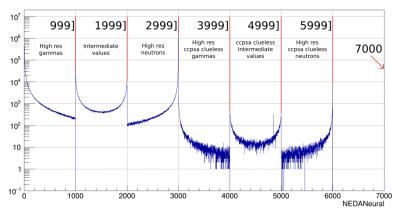
Selectivity Example



 \Rightarrow Extreme condition on output values is compatible with training cuts

	Performances ○●○○○○	Conclusion

Output values


NEDANeural

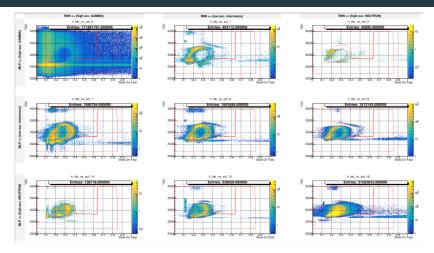
	Performances ○●○○○○	Conclusion

Output values

NEDANeural

 \Rightarrow What data shows up for MLP vs RNN decision?

Intro	
0000	


Iraining

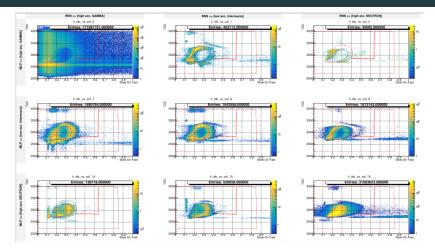
Performances

Neutron Wal

Conclusion

"Cross-cases"

	tr			
			0	


Iraining

Performances

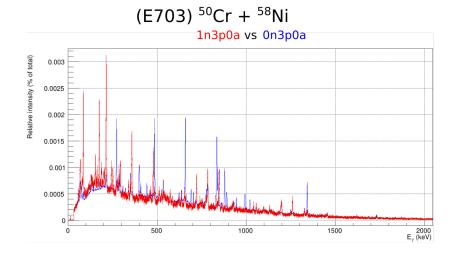
Neutron Wal

Conclusion

"Cross-cases"

=> Who's right ?

Intro	
00000	


Training

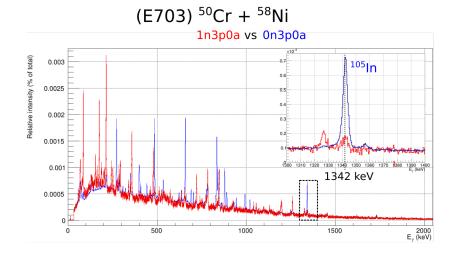
Performances

Neutron Wal

Conclusion

Quantify Success

Intro
00000


Training

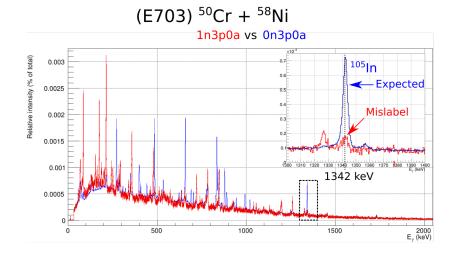
Performances

Neutron Wal

Conclusion

Quantify Success

Intro
00000


Iraining

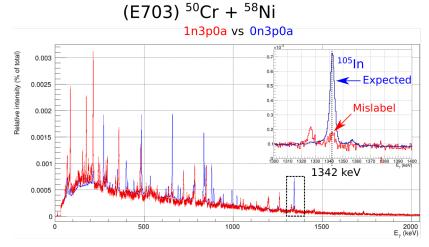
Performances

Neutron Wal

Conclusion

Quantify Success

Intro
00000


Training

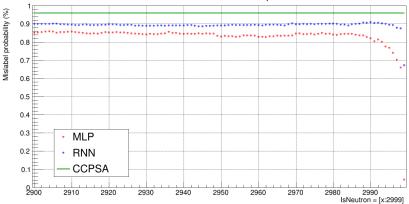
Performances

Neutron Wal

Conclusion

Quantify Success

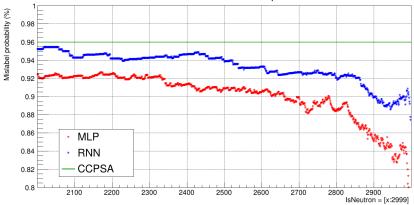
=> Computation of a mislabel probability

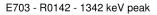

fabian@ipnl.in2p3.fr

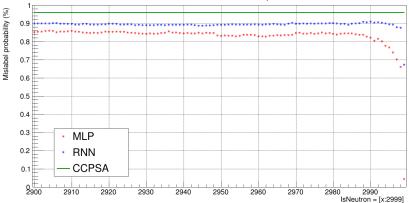
12 / 16

	Performances ○○○○●○	Conclusion

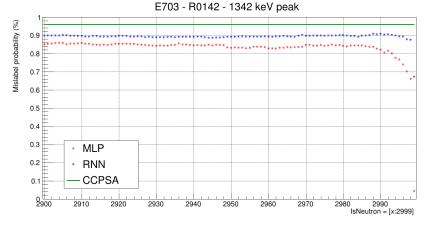
Mislabel probability


E703 - R0142 - 1342 keV peak


	Performances ○○○○●○	Conclusion

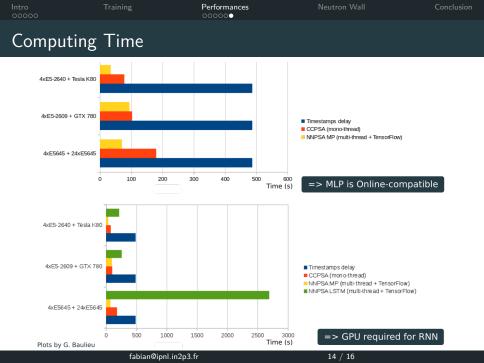

Mislabel probability

E703 - R0142 - 1342 keV peak

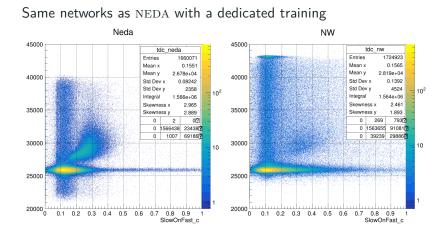


		Performances ○○○○●○	Conclusion
Mislabe	l probability		





		Performances ○○○○●○	Conclusion
Mislabe	l probability		



 \Rightarrow 0.1% was achieved!

		Performances 000000	Neutron Wall	Conclusion
Neutron V	Vall			

NNPSA actor is 2-buffer/2-network ready

	Performances 000000	Conclusion

Summary

Conclusions

- NNPSA actor operational
 - MLP: Online-compatible
 - RNN: GPU required
- 0.1% mislabel probability was achieved!

ToDo list

- Need training data of quality
- Need better encoding of NN output value
- Need to check the gamma spectra of the cross-cases
- Need a straightforward way to choose the final quality

IPN Lyon NN taskforce:

G. Baulieu, L. Ducroux, X. Fabian, O. Stezowski