

WP3: GPS and Time-Tagging
Case Western Reserve University

(Cleveland, USA)

Corbin Covault, Robert Halliday
Robert Sobin, Andrew Ferguson

SDE Electronics CDR
Orsay, February 2015

WP3: GPS and Time-Tagging Tasks:

● Hardware: Select GPS receiver for use in the UUB. Also
development of a Time-Tagging test stand to test, calibrate and
characterize performance of GPS receivers.

● Firmware: Develop Time-Tagging modules for the UUB

● Firmware: Develop serial I/O interface between UUB and GPS
daughterboard.

● Software: Develop OS drivers for control and communications

● Software: Re-write gpscntl code for GPS control, initialization,
etc.

● System: Develop local expertise in establishing working
system within a new board: “board bring-up” (OS, etc.)

● Other: Investigate negative impact of position-dependent drifts
 in atmospheric jitter on timing resolution within the array.

Work at CWRU on WP3 “Zedboard” development kit
with Xilinx FPGA board, Zynq-7000 processing core

● Vivado/SDK firmware
development environment

● Firmware: Preliminary
time-tagging module:
DONE

● Firmware: serial I/O to
GPS daughterboard:
DONE

● Software: testbench time-
tagging exercise program:
DONE

● Software: firmware drivers
and gpscntl for gps
initialization: WORKING:

● Board bring up and OS
installation: WORKING

Time-tagging firmware module specifications:

● AXI slave peripheral interface: (16 registers
available, 13 implemented)

● Preliminary register mapping scheme documented.
● Testing and modification of generic AXI peripheral

interface handshaking: address cycle stretched to
ensure reliable read given need to synchronize
between clock domains.

Schematics of time-tagging module with AXI interface

Block Diagram: Time-tagging module implementation example

Bench test using logic analyzer tool to verify register
change of nanosecond counter upon 1 PPS from GPS

Status of Time-tagging module development:

● DONE: Preliminary specification complete and
documented.

● DONE: Preliminary modules implemented and
tested.

● DONE: Slightly modified general AXI peripheral
interface implemented.

● DONE: System tested and working on the bench
using virtual I/O wrapper.

● WORKING: implement software access to module.

GPS Receiver Selection

• i-Lotus M12M was chosen with
reported 2ns accuracy

• We also looked into an offering from
Trimble in a similar price range
– 2ns vs 15ns accuracy to 1-sigma, and

Trimble does not use Motorola binary

Goal: Desired <5ns accuracy on 1 PPS, with
good performance in varying temperatures.

Backwards compatibility in the command set
would be good.

CWRU has acquired and fully tested 20 of
these receivers.

 I-Lotus Product Change Notification for M12M,
effective January 2013

PCN suggests that M12M
receivers manufactured after
January 2013 might have
improved accuracy, less drift
relative to UTC.

Some M12M users also report
improved temperature
stability.

CWRU purchased 20
“new version” M12M
receivers by mid-2014

GPS Receivers, Temperature Response
Example: 25 hour temperature cycle test for M12M receiver

In early models we saw some issues with temperature stability. Prior
models initially had 5-7ns PPS accuracy, but since Jan 2013 product
change and after extensive testing we find ~4ns accuracy on a 250Mhz
test stand.

GPS Receivers, Timing Histogram

Note that these measurements are made on a test stand using a 150
Mhz counter. They were taken over a 25 hour test.

GPS Communications and Control

• Set-Up Serial Communications UART
– Since the M12M goes directly into the Zynq, we will need a

UART (Receiver/Transmitter) in the Programmable Logic to
communicate with it

– Will use model NS550(16550)
– Completed and tested on ZedBoard (Zynq Evaluation

Board)

• Rewrite GPS control module (Gpsctrl) for M12M
– Controls start-up and messaging protocols, some of which

have changed
– Instead of 8 channel TRAIM, we now have 12 channel TRAIM

requiring new data structures
– Commands that need revision have been identified and

rewriting is underway, soon to begin testing (2-4 weeks)

Serial UART

• Implementation is relatively simple, just need UART
NS550 IP
– Significantly more versatile than the UARTlite

• It can be interacted with using a Standalone
driver(test bench), or a Linux driver(UUB)

• This allows Gpsctrl to function as it had been. The
BAUD, Stop bits, etc. are the same from the UT to
the M12M
– 4 Commands dealing with TRAIM, Location and Time

had/have to be changed

GPS Control Module

• Receiving messages:

– Adapted TRAIM and Position
data structures

– Added IO handling for 12
channel commands (@@H*)

• Initialization:

– TRAIM command splays out
into many commands

– Remapped position hold
enable

TRAIM Initialization:TRAIM Data Structure:

UART Block Diagram

AXI Interconnect allows
many AXI devices on one
Zynq Bus UART 16550

Zynq PS

Serial In and
Out made
external for
connection

Board Bring-Up

1. Hardware Image Bootstrapper (Vivado/SDK)
2. First Stage Bootloader (SDK)
3. Second Stage Bootloader (U-Boot)
4. Operating System (PetaLinux)

The hardware image is loaded to the board first,
and then the board begins running through the
stages of startup.

In Moving to the new board, we are choosing a new
operating system. In order to run the operating system
on the UUB, it must be preconfigured. Although we can’t
prepare the OS for the UUB yet, we can practice on the
ZedBoard.

Hardware Image and First Stage
Bootloader (FSBL)

• Once a Block Diagram and configuration
are complete in Vivado, they can almost
immediately be used to make a Board
support package (BSP)

• Both of these are created in SDK
– system_top.bit (From BSP)
– zynq_fsbl.elf From (FSBL Template)

• The FSBL is a low level program that starts
up the board and secures resources to
launch the Second Stage Bootloader

Second Stage Bootloader

• U-Boot is the most commonly used solution
here. It is available for many systems and is
most often cross-compiled

• Zynq is already supported for U-Boot; this
already works on the ZedBoard

• The second stage bootloader prepares the
system to launch Linux.

• To create this, we will add a makefile option
to U-Boot for the UUB. Most of the standard
options (zynq_common.h) will be fine.

Operating System

• The operating system requires a few
elements, but our concern is generating a
device tree.

• PetaLinux is the Xilinx supported option. It
is light weight and comes with a Zynq BSP,
along with its own version of SDK, which
creates the device tree and boot image.

• All stages are then given priority during
boot and tied together with SDK.

CSAC Test Stand

We would like to measure the relative drift of two GPS
units as a function of the distance between them. This
will give us a good idea of if/how this is affecting the
array’s timing. To do this we will use atomic clocks as
an independent time reference and create a test
platform which we can synchronize with a reference
and then move to varying distances from the lab.

Reference Chip
Scale Atomic
Clock (CSAC)
and GPS
Receiver

CSAC+GPS Test Platform

~0m 5-10km

CSAC Test Stand

• This setup will also double as a more advanced test stand for the
incoming GPS receivers which will be able to measure down to their
stated maximum accuracy

• At this point we have a 600Mhz oscillator implemented on the
ZedBoard (supposed max 800Mhz) and upon the arrival of the
atomic clock(s) we will start assembling the test platform.

ZedBoard
600Mhz, 1.8ns

M12M GPS
Timing
Receiver
2ns

CSAC
78ps

Counter PL for CSAC Test Stand

DQFF

DQFF

DQFF

DQFF

Counter

32 Bit Register GPIO2
Latch on GPS

PPS

GPIO1
Latch on
CSAC PPS

Reference GPS

GPIO3
Latch when
both are upGPIO4

Latch on GPIO3,
Send Counts back

to PS

Zynq PL for CSAC Test Stand
C

o
u
n
te

r P
L

Counter Clock

General Purpose Input/Output (GPIO)

