WP3: GPS and Time-Tagging
Case Western Reserve University
(Cleveland, USA)

Corbin Covault, Robert Halliday
Robert Sobin, Andrew Ferguson

SDE Electronics CDR
Orsay, February 2015

WP3: GPS and Time-Tagging Tasks:

« Hardware: Select GPS receiver for use in the UUB. Also
development of a Time-Tagging test stand to test, calibrate and
characterize performance of GPS receivers.

 Firmware: Develop Time-Tagging modules for the UUB

 Firmware: Develop serial I/O interface between UUB and GPS
daughterboard.

« Software: Develop OS drivers for control and communications

» Software: Re-write gpscntl code for GPS control, initialization,
etc.

» System: Develop local expertise in establishing working
system within a new board: “board bring-up” (OS, etc.)

 Other: Investigate negative impact of position-dependent drifts
in atmospheric jitter on timing resolution within the array.

Work at CWRU on WP3 “Zedboard” development kit
with Xilinx FPGA board, Zyng-7000 processing core

* Vivado/SDK firmware
development environment

 Firmware: Preliminary
time-tagging module:
DONE

 Firmware: serial I/O to
GPS daughterboard:
DONE

 Software: testbench time-
tagging exercise program:
DONE

 Software: firmware drivers
and gpscntl for gps
initialization: WORKING:

 Board bring up and OS
installation: WORKING

Time-tagging firmware module specifications:

« AXI slave peripheral interface: (16 registers
available, 13 implemented)

* Preliminary register mapping scheme documented.

* Testing and modification of generic AXI peripheral
interface handshaking: address cycle stretched to
ensure reliable read given need to synchronize
between clock domains.

Schematics of time-tagging module with AXI interface

a00_axi_aclc| »
s00_awi_araddr{5:0] >

time_tag

ing w1 0 500 AXI imst

5_ANI_ACLK
5 AXI ARADDRA[D:0]

B_AM_ARESETH

s00_axi_aresetn [_»

=Xl ARFACTZO]

s00_axi_arprot[2:0] [
00 _axi_arvalid [

5_ANI_ARVALID

=00 _axi_awaddr]5:0] b

5 AXl A\'.I'ADI:IH'E:D -

5 _AXl AWPROT[2]

=00_axi_awprot[2:0] >

S_AXI_AWWVALID

s00_awi_awnvalid >
s00_axi_bready [_»

5_axi_BREADY

s00_axi_rready [»

B_AKI_PREADT

Z A WDATAE O
—

200_ad_wdata[31:0] [y

= AN WETHRE[Z 0 -

S00_axi_wsire]3:0] [
300_axi_wvalid [_»

address_mb[2:0] [

time:_tagging_

cmaldhaT

5_AMI_WWVALID

csalkdiur

ceslr

aodrass rmbi]z:0
p—

c=al8rr

o120caloul_mb[E1:0]

i1 20 aliout 31:

add re-es_r:b[ﬂ:ﬂ]l }

acdress rsp{2:0]

o1 ZOcalout_min{31:0)

c1Z0caiout_sH{31:0]

addrass_wmb]Z2:0]

o1 FOcalout_pel31:0)

o1 20deadau31:0]

address_wmb{2:0] [

aodrass WEHEZD L

aduress wsbi2:0] | 'I;

ol S0caiout_sb{31:0)

£ 20mout_min{3t:03]

clk 120m |_"'\ clk_120m ol S0ceadoul[31:0] c120moul_ps[3120]
— #
CSEION| _f1i‘J.II1'H1IJI IMO|s1:U] Lo Py (ol W) g [-
cselsr ol 20maul ps[E1:0] onancsec[3t 0]
dead D dead i1 20maoul sb31:0] peeconds]31:0]
ewichl QNS 31 slowtriggermis]21:0)
cwtodhf "/\. e o 15 |]
ks |_"\ aviclks asecands[31 0] slowiriggerseo]21:0]
-
E:'.“tcn[[S'ﬂ]D avtori D:E - - alcwiriggormal o =) toatatabua]z1:0]
pps | Y ops moenniggersac3t 0] Hmesecards[310]]
Hapoii]31:0] fest=iatus[31 0]

timeseconds]21:0]

time_tagging

CEEL_DFW

casL_sn

SLW FEG 133110
5 AX] ARREADY

= _AXI_AWREADY

5 AKXl BRESP[1:0]

{7 =00_axi_arready
[a00_swi_awrcady

=_AMI_RWALID

[s00_aui_brespl1:(

5 AX] RDATA[Z1:]

[s00_ax_bvald

{ " =00_axi_rdaraf31:

ER | HHEEE | .l:ll

5 _AX] RAVALID

{5 s00_axi_resp(1:0

5 _AX] WREADY

> =00_axi_rvalid

fime_tagaing_vi_i_s00_AX]

[s00_awi_wready

Block Diagram: Time-tagging module implementation example

rel_processing_system?_0_125M

-

sowest_syne_dk

ext_resst in
=gy reset in
wriy_clebug_sys rat
= ciaam_ locked

bua_awuct resetfd:0]
peripheal_rese{ 0]

Processing_System s _U_axi_panpn

Intesconnect_asaein] 000]

time_tagging_0
[F[z00_Ax

L b

lk_120m

viclkd

viclka

penpheral_asaem|0:0]

CEsS0r System Resal

chk_wiz 0

ck_in D

processing_systemi_0

M_AYI GPO_ACLEK

DO |

FED 10|
uUsBIND_ o[+
M_Ax| GPo
FOILK_ QLK
FOLK RESETO_N

e
evicn] 0]
address_wa b{2:0]

addreas rab]2i0]
acddress wnb{z:0]

addreas nmin]2:0]

a00_ax_adk

l,:_im dk_out1

Clacking Wizard

00 _zad_zuemesn

Lirme_tagging_v 1.0

VIO (Virtual Ingut'Outputy

DDR
FIXED It

Bench test using logic analyzer tool to verify register
change of nanosecond counter upon 1 PPS from GPS

'_Ih“ fa_1 X = ILA-hw_ila_2 X | VIO -hw_vio_1 % [B3 hw_ila_data _2 wcfg* XL

[+D 500

499

II‘——\ '—-—_l
ﬁ — 113079925 ¥ 113079926 } 1

113079925 L 113079926 ¥}

\ ; 113079927

<4 COM4:115200baud - Tera Term VT
File Edit Setup Control Window Help

Ead v B 2 P . - 0 A E s n]1515%

[P
= P aC 0 1

OIGIGIGInIn1n]G10K = i
[5555555555 [' 0 [
(alalalalalalalals ; B NG DN
MUY 15 i i 2Umo N
H0000080AE] 1 2] 1
MUY me
15 . 24U 0 15
LS 4 2k] DE
15151515 /] 1515 2o il
lafalalalalslalslnla] = ' P BCC [E
Walalslnlnlnlalalnls] z h = [= i
ialalalalslalalalsis pwe h = ma :
00000 00BE D WE h = ‘45 - .

Status of Time-tagging module development:

 DONE: Preliminary specification complete and
documented.

« DONE: Preliminary modules implemented and
tested.

 DONE: Slightly modified general AXI peripheral
interface implemented.

« DONE: System tested and working on the bench
using virtual 1/0O wrapper.

« WORKING: implement software access to module.

GPS Recelver Selection

Goal: Desired <5ns accuracy on 1 PPS, with
good performance in varying temperatures.

Backwards compatibility in the command set
would be good.

* i-Lotus M12M was chosen with
reported 2ns accuracy

 We also looked into an offering from "
Trimble in a similar price range

—2ns vs 15ns accuracy to 1-sigma, and
Trimble does not use Motorola binary

CWRU has acquired and fully tested 20 of
these receivers.

I-Lotus Product Change Notification for M12M,

effective January 2013
Qé}%ﬂ]i-lﬂfﬂs

Product Change Notification PCN suggests that M12M
Reference Code: M12MPCN2012_10 .

Issued Date: 10 October 2012 receivers manufactured after
Revision: 1.0 January 2013 might have

improved accuracy, less drift
relative to UTC.

Title: Product Change Notification

Summary

_Model Descripion: i MI2MOncore™ Receiver VersionB |
Model Part number; ¢ IL-GPS-0010-B, IL-GPS-0020-B, IL-GPS-0030-B & IL-GPS-
... i00d0-B =
_FCNPhase InDate: . Janwary2013
Last Version of Firmware

Release:

Market Regions Affected: ;. Global

This serves as a notice that M12M Oncore™ Receiver Version B will phase in with a RFIC
replacement due to the End of life (EOL Q1 201 3) of the current C5R RFIC P/N: GSCi2000-TR. It

will bereplaced by a new ST Microelectronics RFIC P/N: STASE30. Some M12M users also report

improved temperature
stability.

There will be no M12M part number change associated with the introduction of STABB30
replacement. It will be a phase inchange to be scheduled to be introduced in Q1 2013

In comparison tothe CSR GSC2000-TR, the STM STASE30 RFIC has proved to attain an
improved GPS acquisition & tracking sensttivity by about 2 dBm. In addition, the alignment of the

1 PPStothe UTC second offset has been improved from 30ns to 10ns. CWRU purchased 20
“new version” M12M

Pricing receivers by mid-2014

There is nochange in pricing of the M12M product.

GPS Recelvers, Temperature Response

Example: 25 hour temperature cycle test for M12M receiver

Modified Julian Date

In early models we saw some issues with temperature stability. Prior
models initially had 5-7ns PPS accuracy, but since Jan 2013 product
change and after extensive testing we find ~4ns accuracy on a 250Mhz

test stand.

GPS Recelvers, Timing Histogram

M12M Timing Accuracy

(o))
1 L

A~ (&)
1) 1 A

Count (20 Total)
w

N
A 1 L

—_
' 1

0 T T T T T T T T T T T T T T T T T T T
35 36 37 38 39 40 41 42 43 44 45
Timing Accuracy (ns)

Note that these measurements are made on a test stand using a 150
Mhz counter. They were taken over a 25 hour test.

GPS Communications and Control

* Set-Up Serial Communications UART
— Since the M12M goes directly into the Zynq, we will need a |

L

UART (Receiver/Transmitter) in the Programmable Logic to 97
communicate with it A v

— Will use model NS550(16550) N L
— Completed and tested on ZedBoard (Zynqg Evaluation
Board) A o
* Rewrite GPS control module (Gpsctrl) for M12M

— Controls start-up and messaging protocols, some of which
have changed

— Instead of 8 channel TRAIM, we now have 12 channel TRAIM
requiring new data structures

— Commands that need revision have been identified and
rewriting is underway, soon to begin testing (2-4 weeks)

Serial UART

* Implementation is relatively simple, just need UART
NS550 IP
— Significantly more versatile than the UARTIite

* |t can be interacted with using a Standalone
driver(test bench), or a Linux driver(UUB)

* This allows Gpsctrl to function as it had been. The
BAUD, Stop bits, etc. are the same from the UT to
the M12M

—4 Commands dealing with TRAIM, Location and Time
had/have to be changed

GPS Control Module

* Receiving messages:

— Adapted TRAIM and Position
data structures

— Added 10 handling for 12
channel commands (@@H*)

* |nitialization:

— TRAIM command splays out
into many commands

— Remapped position hold
enable

TRAIM Data Structure:

FFINITION DU TYPE tiraim, INFORMATIONS
typedet struct {

BYTE satid ;

unsigned int fract ;
} TRAIM SAT ;
#ifdef (050888
typedet struct {

BYTE rate ;

BYTE algo ;

WORD alarm ;

BYTE ppsmode ;

BYTE dummy[18] ;

BYTE ppstatus ;

BYTE ppsync ;

BYTE traim_solution ;

BYTE traim_status ; /*19%/

WORD one sigma ;

BYTE sawtooth ;

TRAIM SAT sat[8] ;
} TRAIM ;
t#telse
typedet struct {

BYTE ppstatus ;

BYTE ppsync ;

BYTE traim solution ;

BYTE traim_status ; /*19%/

LWORD swids; //syids removed by traim

WORD one _sigma ;

BYTE sawtooth ;

TRAIM SAT sat[12] ;
} TRAIM ;
#endif

TRAIM Initialization:

#ifdef (059008)
arg[@]=5;
arg[1] = TraimFrequency ; /* Freguence
arg[2] = 1 ; /* Algorithm ON */
arg[3] = @ ; /* Alarm limit */
arg[4] = 1ea ; /* 18ex1ee nanos */
arg[5] = 1 ; /* 1PPS All the time */
commande (&C TraimZ, arg);

#else
arg[@]=1;
arg[l] = TraimFrequency ; /* Freguence

commande(&C Traiml2, arg);

arg[@]=1;
arg[1] = 1 ; /* Algorithm ON */
commande (&C TraimEnable, arg);

arg[@]=2;

arg[1l] = @ ; /* Alarm limit */
arg[2] = 188 ; /* 188 nanoseccnds */
commande (&C Traim&larm);

arg[®] = 1;
arg[1] = 1 ; /* 1PP5 All the time */
commande(&C PP5Enable, arg };

#endif

d 1

UART Block Diagram

|
I I
i i i rocessin stem7_0
proc_sys. reset L pmcessmg_system?_[]_axl _periph p g_sy !
.. DOR
slowest_sync_clk mb_reset m= 11| 2PS00_AXT * Il D DDR
. H FIxeD_10 < ||| { > FIXED_IO
ext_reset_in bus_struct_reset[0:0] m= ACLK * 0 ACLK Y M_AXT GPOdh “_
=gux_reset_in peripheral_reset[0:0] = I ARESETN[0:0] . ZYNO _FCI__K CLKO [FCLK_CLKO
=mb_debug_sys_rst interconnect_aresetn[0:0] S00_ACLK MOO_AXI =R — i RESI:—I'D N -
= dem_locked peripheral_aresetn[0:0] > S00_ARESETN[0:0] < = y
= MOO_ACLK - ZYNQ? Processing System
Processor System Reset l MOO_ARESETN[0:0] Q7 Pr ing 5Y Zyn q PS
A
AXI Ingerconnect axi_uart1e550 0
sin D‘_ | b S AXI UARTH: |||
l s_axi_aclk sin+
| s_axi_aresetn south [> sout
7

—freeze ipZintc_irpte=
27

AXI Interconnect allows o
many AXI devices on one /

Zynq Bus

UART 16550

Serial In and
Out made
external for
connection

Board Bring-Up

In Moving to the new board, we are choosing a new
operating system. In order to run the operating system
on the UUB, it must be preconfigured. Although we can’t
prepare the OS for the UUB yet, we can practice on the

ZedBoard.

1. Hardware Image Bootstrapper (Vivado/SDK)

2. First Stage Bootloader (SDK)
3. Second Stage Bootloader (U-Boot)
4. Operating System (PetalLinux)

The hardware image is loaded to the board first,
and then the board begins running through the

stages of startup.

1 Gk Flash memary :
4 Gb LP-DDRZ memaory: WHDL, LINUX & Software Storage
muu“mm MICRON
ZBM3IZDILF-25 MZSO00AALIGSFE0

Hardware Image and First Stage
Bootloader (FSBL)

* Once a Block Diagram and configuration
are complete in Vivado, they can almost
iImmediately be used to make a Board
support package (BSP)

* Both of these are created in SDK
—system top.bit (From BSP)

—zynq_fsbl.elf From (FSBL Template)
* The FSBL is a low level program that starts

up the board and secures resources to
launch the Second Stage Bootloader

Second Stage Bootloader

U-Boot is the most commonly used solution
here. It Is available for many systems and is
most often cross-compiled

Zyng is already supported for U-Boot; this
already works on the ZedBoard

The second stage bootloader prepares the
system to launch Linux.

To create this, we will add a makefile option
to U-Boot for the UUB. Most of the standard
options (zyng common.h) will be fine.

Operating System

* The operating system requires a few
elements, but our concern is generating a
device tree.

* PetaLinux is the Xilinx supported option. It
Is light weight and comes with a Zyng BSP,
along with its own version of SDK, which
creates the device tree and boot image.

* All stages are then given priority during
boot and tied together with SDK.

Reference Chip
Scale Atomic
Clock (CSAC)
and GPS

Receiver\é :
~0

m 5-10km

We would like to measure the relative drift of two GPS
units as a function of the distance between them. This
will give us a good idea of if/how this is affecting the
array’s timing. To do this we will use atomic clocks as
an independent time reference and create a test
platform which we can synchronize with a reference
and then move to varying distances from the lab.

CSAC Test Stand

Z7edBoard M12M GPS
CSAC 600Mhz, 1.8ns Timing
78ps P -
Recelver

« This setup will also double as a more advanced teg’Psétand for the
incoming GPS receivers which will be able to measure down to their
stated maximum accuracy

« At this point we have a 600Mhz oscillator implemented on the
ZedBoard (supposed max 800Mhz) and upon the arrival of the
atomic clock(s) we will start assembling the test platform.

Counter PL for CSAC Test Stand

Reference GPS
l |
I |
Latch on Latch on GPS

DQFF DQFF

GPIO3
Latch when

GPIO4 both are up
- Latch on GPIO3,

Send Counts bac’k
to PS

Zynqg PL for CSAC Test Stand

Counter Clock

[]
[sl

: -]
j OO
i
=i
H—H

General Purpose Input/Output (GPIO)

