

DED-CLAD® process

Didier Boisselier

October 2018

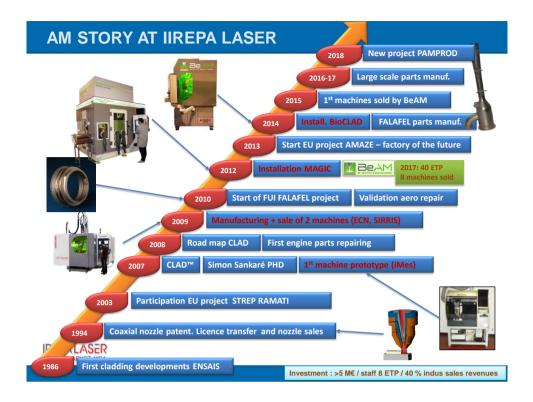
IREPA LASER, Pôle API – parc d'innovations, 67400 Illkirch, France

IREPA LASER

Laser Technological centre in France

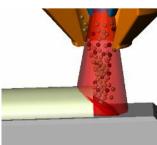
Industrial laser applications and developments in the field of material processing More than 30 years of experience. 47 people.

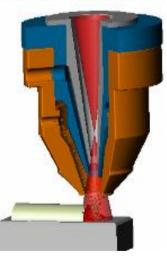
MICA

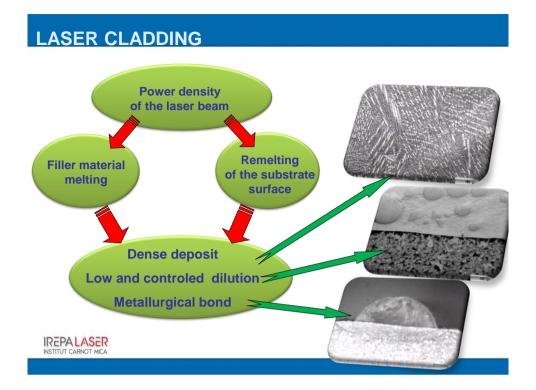

- Products : feasibility, technical and economic studies, training, industrialization, R&D, ...
- □ ≈ 20 lasers in the lab : YAG, Fiber, diode, Femto, ...
 - with multiaxis workstations and robotanalysis means: 3D profilometer (ALICONA),
 - analysis means: 3D profilometer (ALICONA) metallographical, ...
- **Expertise and fine characterization :**

Main activities:

- Welding and surface treatment
- Micro-machining
- Training
- Image: And additive manufacturing :
 - 3 CLAD machines
 - + future SLM machine
 - + future WAAM machine


IREPALASER




LASER CLADDING WITH BLOWN POWDER

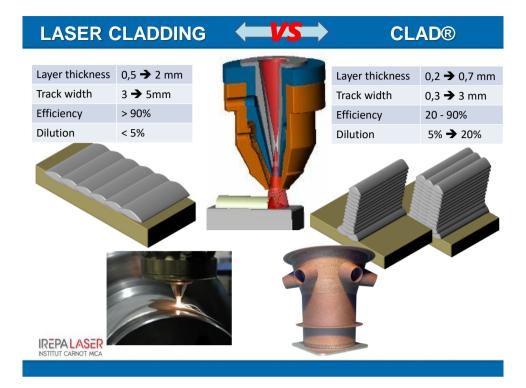
- IREPA LASER experience:
 - Coaxial nozzle patented by IREPA LASER
 - Adapted for all kind of laser sources
 - Layer thickness : 0,3mm up to 2 mm/layer
 - Track width: 1 up to 5 mm
 - → Powder catchments efficiency $\leq 90\%$
 - ✤ Dilution < 5%</p>
 - High shielding gas quality

IREPALASER

INDUSTRIAL APPLICATIONS

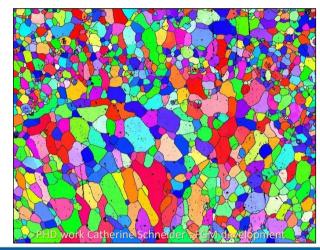
Repairing of worn parts

Crankshaft repairing Courtesy of TECHLASE

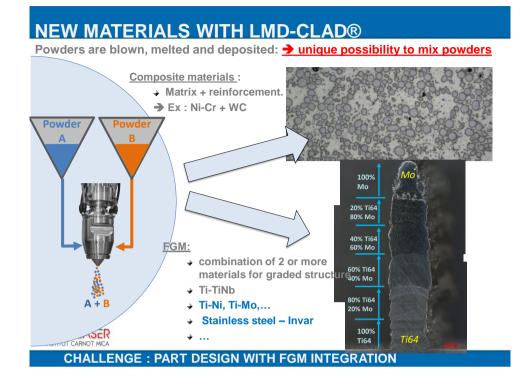


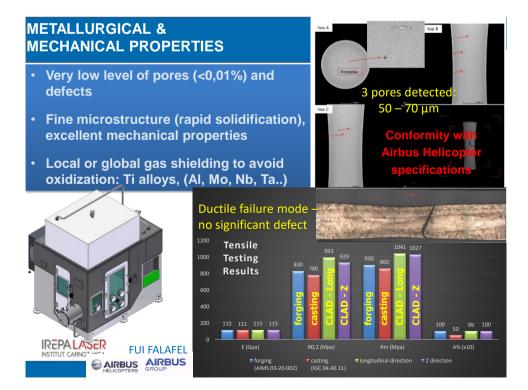
FROM LASER CLADDING TO AM-CLAD®

<section-header>



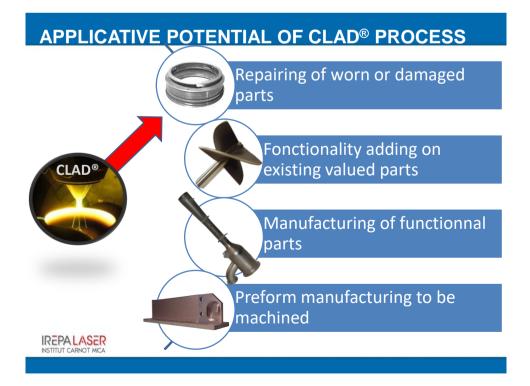
	MACHINES	
	MAGIC	BioCLAD
Continuous 5 axis	\checkmark	\checkmark
Travel stages [mm]	X1500xY800xZ760	X400xY250xZ200
Max load	300 kg	50kg
CLAD heads	2	1
Lasers	Fibre 500W Diode 2000W	Fibre 600W
Gas enclosure	12 m ³ O2<20 ppm H2O<40 ppm	1,5 m ³ O2<20 ppm H2O<40 ppm
Powder feeders	2	1
Z C C C C C C C C C C C C C C C C C C C		

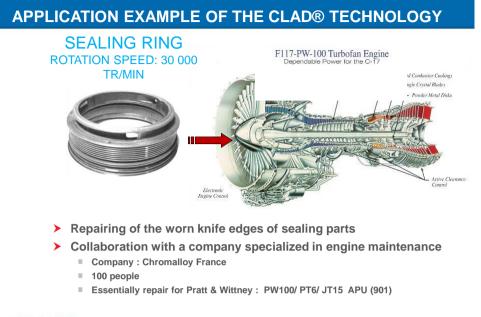

Materials development

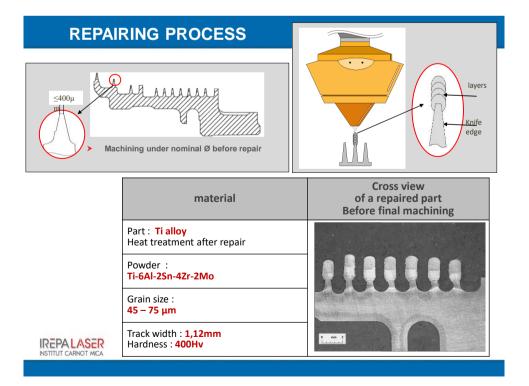


MATERIALS -> WELDABILITY

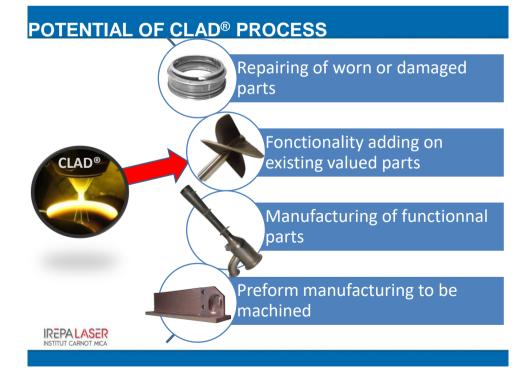
			CLAD ®
materials	grade	State of CLAD® development	results
	Low carbon steel	Parameters ok	1.6.6
Steels	Alloy steel (low Ceq)	Parameters ok	1.6.6
	Tool steel (CPM10V, M2)	Cladding ok	
	SS304L, 316L	Parameters ok	
Stainless	APX4	Parameters ok	1.4.4
steels	17-4 Ph	Parameters ok	
	SS440,	Setup in progress	1616
	Inco 718, 713	Qualified on aero parts	
	Inco 625, 738	Parameters ok	- 161
Ni base	Nimonic C263, 75	Parameters ok	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
alloys	Rene 77, 142	Parameters ok	
	Waspalloy	Qualified on aero parts	
	CMSX4	Setup in progress	1 1
Ti base	Ti6Al4V	Parameters ok	
	Ti6Al2Sn4Zr2Mo (6242)	Qualified on aero parts	
alloys	СрТі	Parameters ok	
Co base	Stellite 6, 12, 21, 25	Cladding ok	
Al alloys	Al alloys (Si, Mn, Mg)	Difficult to process	7 4
Cu alloys	Cu alloys (Zn, Sn, Al, Ni,)	Difficult to process	7.4
Au alloys	Au alloys	Difficult to process	7
	W	Difficult to process	
ER Others	wc	Ok with Ni matrix	16
	Мо	Setup in progress	


7




APPLICATIVE POTENTIAL OF CLAD® PROCESS


IREPALASER



CONCLUSION ON REPAIRING APPLICATION

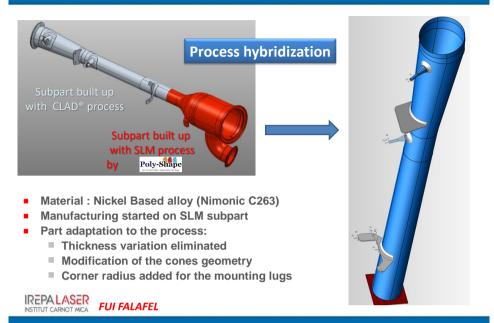
Success story

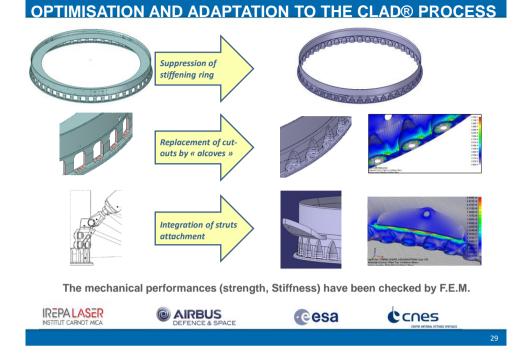
- 1st contact : 2008
- 1st repaired part : 2009
- Process validated : 2010
- Parts qualified : 2011-2015 (1200 parts repaired)
- Parts in production at CFR : 2016
- > 2 machines BeAM bought by CFR
- Process validated and qualified by the motorist (various materials)
- > Technology transfer to :
 - Spin-off BeAM for pilot production
 - And then to the customer
- > Technology transfer on other parts

EXAMPLE: FUNCTIONALITIES ADDING

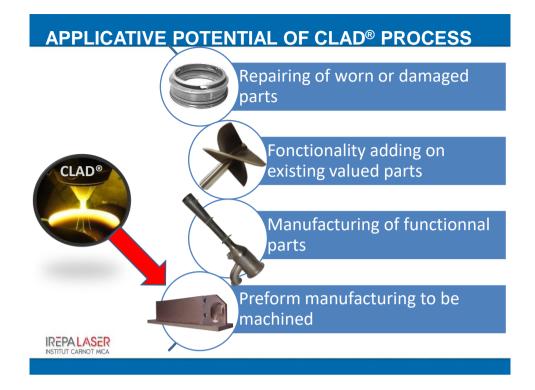
Manufacturing of 2 blades on a machined steel cylinder

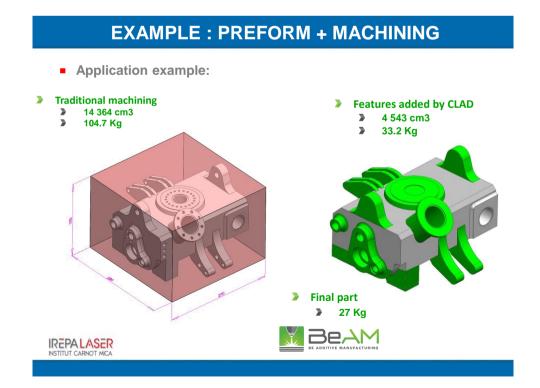
Manufacturing of a centring pin on a machined Ni base ring


EXAMPLE : BLADES ON A SHAFT

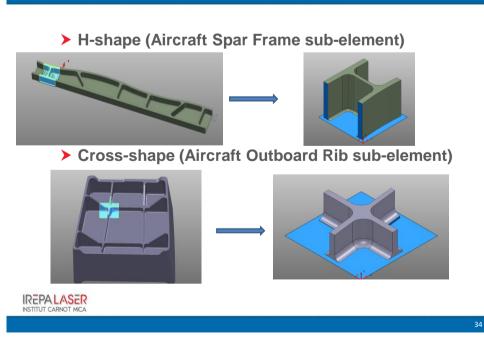


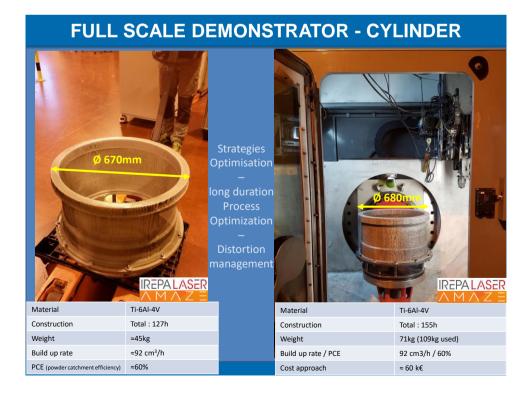
TRUMP : PREPARATION

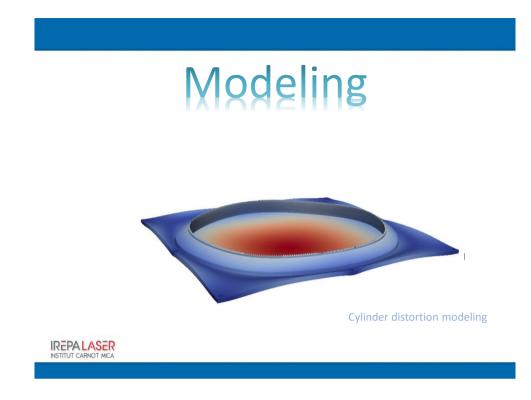



TRUMP: PRODUCTION				
Material Wall thickness Build up time	C263 0.8 mm 3h46min 2h46 + 1h	Technical-economic demonstrator build-up. Combination of the processes :		
Deposited mass	520 g	CLAD® et SLM		
Powder efficiency	21%	Setup within the framework of the FUI FALAFEL project		
build up rate	18 cm³/h	Countery of DASSAULT AVATION		
Roughness	Ra5			
Powder to be recycled	1900 g			
		IREPALASER Industrial demonstrator: airduct 7/64		
IREPA LASER	SLM subpart made by Poly-Shape	FUI FALAFEL 2014 – IREPA LASER Dassault Aviation Courtesy		

<section-header>


15


SUB-ELEMENTS



FULL SCALE DEMONSTRATOR - RIB

> Demonstrator: Aircraft spar

II. ISSUES RAISED BY THE LMD-CLAD® PROCESS

To know and counteract thermo-mechanical effects

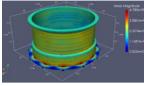
Crack

Residual stresses, distortion, cracks, mismatch, lack of material... can appear in manufactured part:

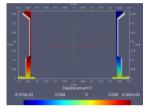
Mismatch

During building . During cooling **During unclamping** •

Distortion in the 'airframe spar' part after unclamping



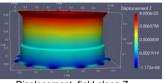
Screw break during the manufacturing process



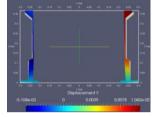
CHALLENGE : BIG PARTS MODELLING

C. Application: ESA cylinder in 48hours

Stress field magnitude Stress: > 600MPa



Displacement field cross section along X axis: calculation vs CAD (8mm)


IREPALASER

Max external diameter: 660mm Inner diameter: 592mm

Thicknesses: 20mm at the bottom of the part, 4mm in the middle section and 34mm at the top of the part Height: 350mm

Displacement field along Z axis: 8,6mm

Displacement field cross section along Y axe: calculation vs CAD (10mm)

THANK YOU FOR YOUR ATTENTION

IREPALASER INSTITUT CARNOT MICA

Pôle API - Parc d'Innovation - F-67400 ILLKIRCH T : +33 (0)3 88 65 54 00 - F : +33 (0)3 88 65 54 01 IL@irepa-laser.com

www.irepa-laser.com Didier BOISSELIER

db@irepa-laser.com

41