Draftl: Private communication
on CMS Construction Database

Guillaume Baulieu

IPNL
May, 2006

1. Purpose

The CMS Tracker is composed of 200000 components from about 20 dif-
ferent species travelling between 20 laboratories around the world. Each
component has to be identified, tested, and assembled into other compo-
nents. The goals of the construction database are :

To be able to track components in the different laboratories

To store and retrieve the different tests that have been performed on
a given object

To have a global view of the production

To know where each object is in the Tracker

To keep a long term track of the tracker built in

2. Content

(a)

Objects description
Each object is described with 3 fields :

e The specie of the object (module, sensor, hybrid, AOH...).

e A type. This field reflect the various shapes of an object.

e A version. Each type can evolve in time from a prototype to a
production model. The DB can follow these evolutions.

These fields are made of acronyms and numbers, for example :

Object : MOD
Type : 2.11.25.22
Version : 1

To be more understandable for humans, each object/type/version has
a corresponding description/type_description/version_description. For
the example above we have :

Description : Module
Type_description : EC_R6P.4U
Version_description : module with HPK sensor

To identify a specific instance, each object has a unique object_id in
the DB. This ID is also on the physical object as a bar code.

Assembly

In order to have a description of the structure of the tracker, each
object knows who is its ”"father” (in which object it is contained).
This gives a tree representation of the tracker (see figure 1).

HYBRID 2.2.2.110
30216661605044

(©)

PETAL 1.1
30250100000054,

MODULE 2.5.17.14
30200020011270

MODULE 2.8.22.19
30200020011968

SENSOR 5.1
302205340004 08

HYBRID 2.1.1.400
30216631604408

SENSOR 8.1
3022083220027

Figure 1: Sample of objects assembly

Assembly rules
To avoid inconsistencies, assembly rules are stored in the DB. For
each object/type, the DB has a list of acceptable object/type and
the number of required objects. For example we can store that a
module type 2.11.25.22 is made of :

e 1 hybrid type 2.1.1.600

e 1 sensor type 11.2

e 1 sensor type 12.2

The database will reject all other associations.

Transfers
To follow the objects moving from one laboratory to an other, the
notion of transfer has been created. A transfer contains :

e The sender laboratory

e The receiver laboratory

The sending date

The receiving date

The carrier (which can be ’courier’)

The list of objects in the transfer

A transfer is identified by a unique transfer_id which is also a bar code
on the box containing the objects. When a laboratory has to send
objects, it creates a new transfer and scan all the objects to get the
list of travelling objects. The objects are then known as ’shipping’
and no data concerning these objects can be entered. When the
destination is reached, the receiver scans the bar code on the box
and acknowledges the reception. All objects are then moved to the
new centre in the DB.

(e) Actions
One of the goal of the database is to store the different tests results
that have been performed on a given object. These results are stored
in the actions tables. One action is defined by a name, a version
and the kind of object it deals with. All actions are described in the
action_description table.

There are two different classes of actions.

i. Base actions
This kind of action stores the results of a single test performed
on one single object. A base action always contains the following
fields :

e the DB Id of the object (the barcode).

e the tool used to perform the test

e the name of the upper level composite (see below).

e An input parameter representing the input conditions of the
test. For example a range of hygrometry, an analysis cut,....

e the date of the action.

e the name of the operator.

e a quality flag representing the summary of the test. This flag
is a list of column separated subflags. If a subflag is positive
or equals to zero the object is in conformity with the spec-
ifications, if at least one subflag is negative the object has
failed the test and should be considered as faulty. All possi-
bles values of the subflags are documented for each action in
the diagnostic_description table.

e a status flag describing the status of the action. The status
is not related to the quality of the object, but to the stage
of the action. The possible values are described in table 1

status flag | description

reference The result of the action is correct and should be considered as the
reference for this object. Most of the time, this is the last result

valid The result of the action is correct.

notvalid The result of the action is not correct.

unknown | Should not be used (only in case of DB pb)

Table 1: possible status flag value for base actions

e All the fields needed to describe the test results (integer,
float, vector or strings).
ii. Composite actions
This kind of actions do not really store datas but organizes ac-
tions in an action tree. Base actions are at the base and the
composite actions contains pointers to other actions (base or
composite). In most of the case a composite action contains all
the actions needed to validate an object or an action. Among
the composite actions, one distinguish
e composite of actions : the composite action and the base
actions linked together are refering to the same object. A
simple example is shown on figure 2.
e composite of objects : used when a an object is composite
and when the action acts on all of its subcomponents. (see
figure 3)

(base 1)(base 2)

Figure 2: Example of composite of actions with 2 base actions. Both base and
composite actions are related to the same type of object

: : object A :
@omp031te of obj ecD container

T ; jects B :
oieck

contained in A
(base 1)(base2) (basel) (base 2)

Figure 3: Example of an action composite of objects. The composite of object
is related to the container object A, while the composite and the base actions
are related to all subcomponents B of A.

A composite action always contains the following fields :
e the DB Id of the object.
e the name of the upper level composite (if it exists).

e a quality flag representing the summary of the test. This
flag is calculated with the one provided by the base actions.
Possible values are -1(faulty), 0 (correct and all subactions
status equal 0) and 1 (correct but at least one subaction’s
status positive)

e a status flag describing the status of the action. Possible val-
ues are identical to those described in table 1. In addition,
a running’ status is available when all the base actions are
not fully completed.

(f) History
The database keeps a track of all activities on each object. The
following events of the life of an object are recorded :
e Registration
e Transfers
e Composite actions
e Assembly
e De-assembly
e Type/version change
e Bar code change
Each record in the history contains the date of the event, the centre

where the object was, the result of this event and the state of the
object.

(g) Problems
In order to be able to manage a problem concerning many objects,
there is the possibility to create lists of objects concerned by a given
problem. For example if a defect is discovered on a specific production
system, all objects produced with this system can be flagged.

3. Technical aspects

(a) Database
The database is running on Oracle 9i and hosted by the IN2P3 com-
puting centre in Lyon (France), which provides a 24/24, 7/7 long
term database service.The figure 4 describes the database structure.

(b) Data insertion

The unique way of inserting or updating data into the database is to
use XML-files to describe the actions performed. Insertion is decom-
posed into four main categories : registration, assembly, transfer and
actions. The three first items are separated from the last because de-
scribing and storing results of each action on each object is a rather
complicated thing which need a particular treatment. Registration,
Assembly and Transfers must be performed in a coherent way ; for
example registration of all sub-objects is obviously done before any
assembly operation on them and this must be ensured by a kind of
workflow. To preserve some flexibility, a real workflow hasn’t been
implemented but XML files format and pure database constraints
has been designed to prevent from incoherences.

i. register a new object in the database:

<DBFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="TrackerDB.xsd">

<registration>
<registrationItem>
<commonData>
<name>R0D</name>
<date>2002-09-25T10:00:00</date>
<type>1.2.3.1.2</type>
<version/>
<center>CERN</center>
</commonData>
<objects>
<object 1d="30240000000097" faulty="false"/>
</objects>
</registrationItem>
<registrationItem>
<commonData>
<name>M0D</name>
<date>2002-09-25T10:10:00</date>
<type>3.4.12.12</type>
<version/>
<center>STRASBOURG</center>
</commonData>
<objects>
<object 1d="30200020007810" faulty="false"/>
<object id="30200020007811" faulty="false"/>
<object id="30200020007812" faulty="false"/>

center_description
center <
type tool_description
address tool
phone tool_id
fax —4 center
1 transfer_seq
emai operation_type tool_se
— pd =P -5eq transfers
contac lescription
A B transfer_id [
description L
receiver
carrier
sender
" . B ot issued_at
object_description object_assembly_descriptipn
, - arrived_at
object object —
< description
type / type
version K‘ version
description sub_object —
— position_tbl
type_description sub_type =
. P \‘ . position [
version_description sub_version
isacable sub_object_number St Or
description y
. histor
— =
q object_i
object_assembly 1 —=
2 2 osition
object_id T L 3
- transfer_id
object -
" N ., Rl = == ==== 4 current_action
diagnostic_description type . -
\‘ . current_action_version
code version
action container_id

center
g faulty
sequence

1
!
.
1
1
i
1
A '
.
Assembt VA ; history_id
.
.
1
1
.
1
1

action_version number_in_container

T A

object
type
version
diagnostic = — A Ct O
g action_desctiption I n
—— N R I 5 known_problem
action_version problem_id
/‘ object < object_id
type ‘/ action_table
\1 version object_id
output_format test_id
description tool_id
Sequence P - < test_seq —
composite parent_action —
- - - problem_description
units input_id -
problem_id
. tdate .
Unique I:I description
operator
output_format
Primary key |:| hction_input_descriptior] —4 status
action tcomment Pr Obl em
action_version action_val
Constraint *—>r object
type /
version status_tbl
input_id < —p status
input_description
input_values
status
description

Tracker DB Tables

Figure 4: Database structure

ii.

iii.

</objects>
</registrationItem>
</registration>
</DBFile>
assembly
Once objects have been registered, they may be assembled with
a file like the following :
<DBFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="TrackerDB.xsd">

<assembly>
<assemblyItem>
<parent id="30240000000097"/>
<subobject id="30200020007810" position="1" action="add"
date="2002-03-20T09:00:00" faulty="false"/>
<subobject id="30200020007811" position="2" action="add"
date="2002-03-20T09:01:00" faulty="false"/>
<subobject id="30200020007812" position="3" action="add"
date="2002-03-20T09:02:00" faulty="false"/>
</assemblyItem>
</assembly>

</DBFile>

Here, a list of <subobject> is indicated to be placed in the

<parent> object and a given date at a given position. The

position is just a number and people doing such a job need to

choose (and remember !) which real position correspond to this

number. if action="remove" flag is here, this subobject will

be remove from this parent object. If something is going wrong

during the assembly, the subobject become faulty by setting the

faulty flag to true.

Trace transfer of objects between production centers

One need to know where are each objects stored in the database.

Each time someone is sending some objects to another produc-

tion center, it is necessary to start a <transfer> indicating which

objects are concerned, where they are sended at which date. The

file for that is this kind :

<?xml version="1.0" encoding="UTF-8"7>

<DBFile xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="TrackerDB.xsd">

<transfer>
<transferItem>

<info>
<id>30299991000001</id>
<sender>LYON</sender>
<receiver>CERN</receiver>
<carrier>COURIER</carrier>
<issued>2002-04-22T17:33:18</issued>
<arrived> </arrived>
<description> object is sent not received. </description>

</info>

<batch>

<object faulty="false" id="30221133500239"/>

</batch>
</transferItem>
</transfer>
</DBFile>
when the object is arrived at the receiver center, the tag <arrived>
is filled with the current date. This action closes the transfer.
iv. Actions
The description of the test results in the database is done via
xml files. The content of these files is sent to the database either
via BigBrowser or either via a command line parser. During
the update of the DB, the flags (status flag and quality flag) of
the composite action are automatically calculted starting from
the individual flags of the base actions. The history table is
also updated. Technical details on the xml file format and on
the rules of flags calculations can be found on the DB website :
http://cmsdoc.cern.ch/~cmstrkdb.
v. Special cases
To be able to deal with events that are not foreseen (for example
an object fell down and was broken), a SPECIAL action has
been created (with its composite FREEACTION) to allow an
operator to enter data outside the normal workflow.
It is also possible to have a different behaviour for some specific
cases. For example the validation of the sensors can be done
through a sampling procedure : only some sensors are really
tested to validate a whole batch.

(c¢) Cabling
The construction database also store cabling informations for the
Tracker End Cap (TEC) and the Tracker Outer Barrel (TOB) up to
the patch panel level 1.

(d) Data access

i. The Graphical User Interface : BigBrowser
The standard way to communicate with the database is to use
the JAVA graphical user interface called BigBrowser. It has been
designed to perform all of the standard tasks one may want to do
with the database : inserting objects, making some assemblies,
transfering objects between two production centers and insert-
ing some results of an action realized on one particular object.
BigBrowser offers the possibility of inserting data ”in live” or
saving the session in one XML file which can be inserted in the
database later.
Apart from that, BigBrowser can be used for retrieving different
informations :
A. Tracker Description
This menu shows the trees of all the components in the
database.
B. Production Status
This menu is very usefull. It shows a kind of snapshot of the
production at a given time. An inventory of all the objects
and a view of all current transfers are avaible.
C. Quality control
This menu allows people to make some statistics on the pro-
duction. For instance, one can knows the number of petals
that have passed the thermal test, etc ... There is also a

special menuitem allowing someone at ease with SQL syntax
to query directly the database with SQL language.

D. Tables
This menu is rather technical ; it shows the database tables
and their description. This information can be usefull for
people that want to know a little more on this aspect to
develop their own database interface.

BigBrowser ensures that data are correctly inserted in the database.
The technique used by BigBrowser is to produce XML files that
are treated to insert data. This approach allows people that need
a special control to produce their own XML files with their own
application and then inserting data using either BigBrowser or
the command line version provided with the installation package.

ii. Java Interface Plug-ins
To extend the possibilities of BigBrowser, the concept of plug-
in has been implemented. It is therefore possible to write small
programs in Java which will be able to query/insert data from/to
the database. Those programs will have a graphical interface
that will be available from BigBrowser. A guide to develop plug-
ins is available on the website.

iii. Relay application
The relay application is used to query the database from any-
where, using any language. The application is waiting on a
socket, so you just need to open a TCP connection and send
you query using a very simple XML format. The answer will be
send also in XML format. For example, if you want the list of
bad strips of a sensor you send :

<?xml version="1.0"7>
<select db="prod">
POSITION_OF_BAD_STRIPS
from stripscansummary_1_sen_
where object_i1d=3022111605326
and status=’reference’
</select>

and you will receive :

<?xml version="1.0" encoding="UTF-8"7>
<answer>

<status>200 DBQuery: O0K</status>

<row>
<column>POSITION_OF_BAD_STRIPS</column>
<value>256 494</value>

</row>

</answer>

The relay application is waiting on port 3615 of cmstrkdb.in2p3.fr.
There is also a backup server on port 3615 of lyopc72.in2p3.fr.

4. Status and evolutions

(a) Statistics
The database is in production since the summer 2001. The current
number of registered objects (May 2006) is around 190 000. During
the last year (from may 2005 to may 2006) the average data insertion
rate was about 2000 records/day in the history table. During the

last 6 months, the 2 relay applications answered to an average of 10
queries per minute.

For more informations on the Construction Database, you can go
to the website : http://cmsdoc.cern.ch/~cmstrkdb. A mailing list
for users has also been created with CERN’s mailing list system
(SIMBA) : cms-trackerdb-users@cern.ch.

10

