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Cosmology: a wide range of energies and scales

The acceleration epoch:
the pico-eV era

The dark ages: Sub-eV energies

Inflation:
the grand Unification scale?
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On large scale, the Universe is homogeneous and isotropic
(cosmological principle).

The Universe is not static: matter and radiation prevent it
(Friedmann 1923).

In the expanding universe of the general relativity theory, the

Lifschitz (1946): perturbations of most types decrease with time, thus showing no
tendency to spontaneous increase. There also exist such
perturbations which increase with time, but so slowly that they
cannot produce large concentrations. Thus we can apparently
conclude that gravitational instability is not the source of
condensation of matter into separate nebulae.

Einstein and de Sitter in Pasadena (1932) building
the standard model of cosmology till 1998. The
Einstein-de Sitter model (2 = 0)



Two missing ingredients in 1946:
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inflation

e Cosmic Inflation setting the initial fluctuations.
Also guarantees the isotropy of space on large T e,
scales via an era of exponential expansion. The " ‘}—
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initial fluctuations are quantum fluctuations. o %

e Dark matter responsible for the potentials wells where
baryonic matter aggregates and for a longer period of
matter domination.

A galaxy embedded in its halo



For a long time, the role of the quantum vacuum in cosmology was neglected. It is now
fundamental during inflation and possibly crucial for dark energy.

Everything happens as though the energy in vacuo would be ditferent
from zero. In order that absolute motion, i.e., motion relative to vacuum,
may not be detected, we must associate a pressure p =— pc? to the density
of energy pc* of vacuum. This is essentially the meaning of the cosmical

constant A which corresponds to a negative density of vacuum according

tofps = Ac/4nG = 10% g/eme}

/ Lemaitre (1934)

Close to present value:

107 g/cm?

Although the “reality” of quantum fluctuations was ascertained by the detection of the
Lamb shift (1s-2s):
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Pauli and Jordan (1928) following Lenz
(1926) worry about the vacuum energy.
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The use of explicit cut-
offs was later better

pA ~

understood in terms of
renormalisation



The vacuum energy contribution (or cosmological constant) was postulated as early as 1917 by Einstein
and enters in the Einstein equation on par with matter.
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It immediately led to great confusion as it admits a solution with no matter and an accelerating expansion
rate (de Sitter space-time 1919):

ds® = —dt® + a*(t)dz?, a(t) =el'', H? =8nGyV

Einstein did not like this solution because it violates « Mach’s principle »:
inertia (geometry) here is only due to matter there.
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Does vacuum energy gravitate?




Cosmology: from de Sitter to de Sitter?

The acceleration epoch:

The dark ages: The dark matter era A second phase of acceleration

Inflation:
A first phase of accelerated expansion
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What is the Physics behind these phenomena?

* Inflation: Inflation is close to a de Sitter phase but inflation must end.
Cannot be pure vacuum and must be driven by something else.

* Dark matter: For a long time, the best candidates were WIMPS (weakly interacting
particles) . Now not so obvious. Looking for alternatives.

* Dark energy: Could be driven by vacuum energy. Nobody knows how to calculate it from first
principles. What makes it emerge so late in the Universe?

Before Planck After Planck



The ubiquitous scalar fields

One of the most fundamental observations in cosmology
is that the Universe is dynamical, i.e. time dependent.

This realises a breaking of time translation invariance
which must be spontaneous, i.e. we always assume that
space-time respects local Poincare invariance.

Associated to this breaking is a Goldstone mode which
can be realised as a scalar field.

t—>t+&(2,t)

o) @

A general framework: Scalar-tensor theories
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Cosmology: a landscape of (scalar) theories?

The acceleration epoch:

The dark ages: WIMP or scalar dark Another scalar coupled to gravity?

Inflation:
f matter?

Primordial scalar field model?

&
@&




INFLATION



Single field inflation is a triumph of effective field theory: all the observations can be described by a few

numbers related to the derivative of the potential during inflation.
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Quantum fluctuations of the inflaton and of the graviton have
a power spectrum:

k k nT
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The spectral indices are related to the slow roll parameters by:
ns = 1 — 6€ 4 2n,

nr = —2€

The tensor to scalar ratio is related to the tensor spectral index by the
consistency relation:
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reheating
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Small field inflationary model

Scalar perturbations already constrained
by Planck, their tensorial nature is the
goal of future experiments such as
Litebird.
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They could be ruled out when objective r=0.001 achieved !

V(@) = Vo(l— e Vi7m)?

The energy scale of inflation will be uncovered and also give access
to the reheating temperature:

VY4 =6.110"° GeV(——

) 1/2 — T h Depends on the decay modes of the
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0 inflaton



What happens if r is well below 0.001? Inflation could be multi-field.

Future surveys like sphere will discriminate A fyr ~ 0.5
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Non-gaussianities feed a scale dependent bias in the galaxy
matter spectrum on large scales.

Mixing between the inflaton
and other fields.
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Perfect CMB experiment 1<3000 for
Polarisation and temperature.
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In the curvaton scenario, the inflaton generates the exponential
expansion of the Universe whilst the curvaton slow-rolls and

generates the primordial fluctuations.
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When curvaton density
dominates at the start of
oscillations



Low | plateau on the BB spectrum due
to a non-vanishing graviton mass.
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General Relativity could be incomplete and in fact gravitons could have a mass.

mg < 10722 eV I—) mg < 10730 eV

Current bound Litebird



Neutrinos and their hierarchy
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DARK ENERGY



The dark energy scale is in the pico-eV range: apparent fine-tuning compared to
standard model scales.

Spr = M*, M ~ 100GeV

Weinberg’s theorem states that there is no non-fined tuned vacuum in a 4d
guantum field theory respecting Poincare invariance.

Dynamical configurations Modified gravity
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Birefringent Crystals Between Crossed Polarizers
n O/bjeci (Anisotropic Crystal)

Dark energy 5=2+2+1
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Sample—||=— Two Components
es:

Resulting From
Thlc('};' Birefringence

Scalar field rolling down its potential

Scalar polarisation: can modify Newton’s law
and play the role of dark energy

Massive graviton



Future large scale galaxy surveys will test the evolution of the background cosmology.
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- Darkenergy ~€————— Time ~ Matter

%0 domination domination
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Almost most general scalar-tensor theory
leading to dark energy.



The growth of structure could also be modified:

* Dynamical dark energy compares to L-CDM
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* Newton’s constant could be dynamical and scale-
dependent.

The simplest parameterisation involves three constants, two for the
background and one for perturbations.
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More sophisticated parameterisation of modified gravity: two Poisson equations.
Newton’s law

A® = 4G na’upmd

oy ' carly time' | For theories with one extra
----- i Tote e’ degree of freedom:
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Deviation angle



Weak lensing
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GC+WL+Planck priors
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Galaxy clustering
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Gravitational Waves



Gravitational waves have already had a dramatic impact on dark energy models!
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Simplest cases excluded cosmologically
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The Great Massacre*

Distances (luminosity) will be tested up to a redshift of order 10: standard sirens.

In addition, we investigate the measurement precision of
cosmological parameters as a function of the number of
observed LISA MBHB standard sirens, finding that 15 events will
on average achieve a relative precision of 5% for HO, reducing
to 3% and 2% with 25 and 40 events, respectively.
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Gravitational wave experiments will test high energy physics
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Would require a
large and positive
tensor spectra
index.

Typically not sensitive enough to the stochastic

gravitational background from inflation. Need

enhancement...

Cosmic strings? Phase transitions?



Is the future now?



flat = ACDM
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Conclusions



In the next decade large scale galaxy survey, CMB and gravitational wave experiments should give indications on:

Is inflation single-field? What is the energy scale of inflation?

Is the Higgs field responsible for inflation?

How much do neutrinos weigh?

Is dark energy dynamical? Is there a modification of General Relativity at large scale?

They could also shed light on the current puzzles: the HO tension etc...






