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Particles/nuclear physics and “physics for health”: Same tools and methods

Instrumentation
• Particle Detection: Detectors + Electronics and acquisition systems +

Data analysis
• Beam lines: Beam physics and diagnostics (irradiation platforms)

Numerical developments
• Monte Carlo simulations of particle transport

▶ Detection system design and interpretation of the experimental data
▶ Modeling the impact of radiation on living organisms

• Statistical physics approach to predict the effect of radiations (eg. cell
survival)

Fig. 1: Top: XEMIS2 camera at the Nantes
University Hospital. Bottom: Geant4-DNA
simulations of ion tracks and radiolysis within
a neural network.
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Medical applications of Particle Physics: The “pillars”
@CERN

Fig. 2: The 3 “pillars” according CERN (from Sparsh Navin 2014,
CERN – Knowledge Transfer Life Sciences Section)

@IN2P3
• Same considerations although topics are slighlty different
• NB: Arrows in both directions. Examples of transfer from

medical to fundamental physics in IN2P3
▶ “TOF-PET” ASIC → CMS ECAL timing layer elec-

tronics
▶ Liquid Xenon for PET @ LPSC (early 2000’s) →

Dark matter detection @ SUBATECH
Requirements of medical applications

• Need for close interdisciplinary connections with biolo-
gists, chemists, physicians. . .

• Need to go beyond the HE technology
▶ Technical challenges (10 ps challenge for TOF-PET,

FLASH dosi.. . . )
▶ Harsch conditions (implanted detectors, FLASH

dosi.. . . )
▶ Clinical constraints (hadronth., theranostics. . . )
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1st type of dev.: “Detectors for the monitoring of therapies and irrad. platforms”

Detectors for
the monitoring

of therapies and
irrad. platforms

Irradiation
platforms

Beam monitor

Ion-range
monitoring

Fig. 3: Left: TIARA prototype for ion-range monitoring . Right: PEPITES as beam monitor
at ARRONAX.
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2nd type of dev.: “Imaging for diagnostics and theranostics”

Medical imaging
(pre-clinical
and clinical)

Theranostics
for Targeted

Radiotherapies

Diagnostics

Fig. 4: Left: PIXSIC probe dedicated to small animal imaging. Right: Mobile gamma-camera for
estimation of absorbed dose in targeted radiotherapy.
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3rd type of dev.: “Numerical developments ”

Numerical
developments

Models to
predict the

effect of
radiations
(e.g. cell
survival

Monte Carlo
simulations
of particle
transport

NanOx

Fig. 5: Top: Monte Carlo simulations with Geant4-DNA (from physics to biology) and GATE
(Imaging and Therapy based on Geant4). Bottom: The NanOx model of cell survival predictions.

E. Testa Instrumental and numerical developments 6 / 45



Introduction Detectors Imaging Irradiation platforms Numerical developments Conclusion

Plan

1 Introduction

2 Detectors
Beam hodoscopes
Ion-range monitoring for hadrontherapy

3 Imaging
Diagnostics
Theranostics
Probe

4 Irradiation platforms
Current platforms
Projects of platforms

5 Numerical developments

6 Conclusion

E. Testa Instrumental and numerical developments 7 / 45



Introduction Detectors Imaging Irradiation platforms Numerical developments Conclusion

Beam hodoscopes

Beam hodoscope

Applications
• Therapies : Hadrontherapy (including FLASH) but also X-ray micro-beam radiotherapy (MRT)
• Irradiation beam lines including low-energy and high LET ions (radiobiology) and FLASH
• Main specifications: low budget material, radiation hardness and (for “PG Fast-timing”) timing resolution

Technologies investigated in IN2P3
• Secondary Electron Emission (PEPITES project)
• Semi-conductors: Diamond (DIAMOND project) and GaN (MATRIX project)

Bandgap Breakdown field Electron mob. Thermal cond. Radiation Large area Cost
(eV) (MV/cm) (cm2/Vs) (W/mK) hardness (industry)

SiC 2.36–3.23 3.5 900 320 + + +
GaN 3.4 3.4 1500 1300 + + +
Si 1.1 10 3000 230 – + +
Diamond 5.47 0.3 1500 2130 ++ – –

Table 1: Comparison of semiconductor materials for particle detectors.
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Beam hodoscopes

Master Projet “DIAMOND”: Technology and Status

Detectors
• Single and polycrystalline diamond detectors (sCVD

and pCVD)
• Metallization with thin (100 nm) Al layer by laser

lithography
• PCB with various arrangements (single, 4x4 mosaic

or 9x1) or thin membrane (few µm)

Electronics
• FE electronic developments: e.g. fast preamps,

DFC, QDC, . . . discrete and integrated electron-
ics

• BE electronic developments: e.g TDC (40 on a sin-
gle Cyclone 10 FPGA - STD 25 ps / CMOS 130 nm
STD 12 ps)
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Beam hodoscopes

Master Projet “DIAMOND”: Technology and Status

Status
• Hadrontherapy: CTR of 130 ps and prototype of

4x4 single crystals in progress (1x1 cm2)
• X-MRT: Linear response at the clinical dose rate

with a prototype of 9x1 single crystals
• Ion FLASH: Linear response up to a few

1013 alpha/(cm2.s) and radio-resistance up to
1013 p/(cm2)

• High LET ion beams (“beam halo detector”) (e.g
BioALTO) : operational

• Ion micro beam (e.g. AIFIRA) (active beam line
window): operational at 8 µm, objective: 1 µm

Human resources: ∼ 6 IN2P3 FTE + external
collaboration: Néel, ASNR (IRSN), ESRF, ALTO,
Japan (Tsukuba)
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Beam hodoscopes

Master Projet “DIAMOND”: Characterization techniques and Perspectives

New diamond characterization techniques: Application of various “Beam Induced Current” techniques
• ToF eBIC (“pulsed” SEM - Institut Néel) & XBIC (BM05 - ESRF)
• IBIC (Ion Beam Induced Current – AIFIRA)

Fig. 6: XBIC chracterization system (BM05-ESRF): Creation of vacancies with alpha irradiations (identification with Raman spectro.) + Annealing
[F. Lafont, 2023]

Main perspectives
• Short-term: single and polycristalline CVD diamond beam monitors (hadrontherapy, X-MRT)
• Long-term: development of “full scale” sensors with integrated electronics
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Beam hodoscopes

PEPITES : Principle and Advantages

Principle
• 50 nm thick gold strips on thin substrate
• Beam passage ejects secondary electrons

from strips (collected by anode) ⇒ Sig-
nal of monitor

• Operates in vacuum

Advantages
• Very thin (≲ 10 µm WET)
• Can be adapted to beam
• Very linear ⇒ FLASH

Human resources (IN2P3): ∼ 12 persons
(IN2P3) + 3 outside IN2P3
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Beam hodoscopes

PEPITES: Status and Perspectives

PEPITES @ CNAO: monitoring 6.5 m upstream from patient (CNRS – CNAO
specific agreement)

1 1st phase: Adaptation of the current prototype
▶ Functioning with carbon ions verified
▶ Reduced WET 10 → 5 µm option, with off axis anodes, validated

2 2nd phase: 3 - 4 years: Production a dedicated monitor
▶ Phase starting now. Revision of the readout considered

FLASH (X/IPP premat’ for continuous and FLASH beam portable monitors)

• SPLIF (2023 – 2024), SPLASH (2025) : Portable PEPITES

ULTRA-FLASH: laser-plasma beams
• SEE with ∼ 10 fs beams ? MITI 2 years 2023 – 2024 with LOA

▶ Strong signal, attenuation observed!
• Next: Physics understanding and Monitor feasibility?
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Ion-range monitoring for hadrontherapy

Ion-range monitoring by means of Prompt Gamma detection (PG)

Pionneering work at IN2P3
• Collimated and Compton cameras coupled with beam hodoscope (TOF) (ANR Gamhadron 2009-2013)
• Prompt Gamma Peak Integration (compact device): PG counting with TOF detectors (PCSI Project “Gam-

maDosi”)
• Conclusion : millimetric precision on large beam spots (108 protons)

Main objectives of the current projects (compact devices)

• PG Time Imaging: Improvement of the precision on ion-
range control by means of fast-timing detection at low
beam intensity

• PG Energy integration (PGEI): PG detection for pulsed
beams (synchro-cyclotron)

Fig. 7: Typical beam time structure of hadrontherapy accelerators.
Beam currents of the order of nA in cyclotron and µA in synchro-
cyclotron (current peak)
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Ion-range monitoring for hadrontherapy

PG Time Imaging: Principles and developments

Human ressources (IN2P3): ∼ 12 FTE

TIARA project,
2020-2023

PGTI project,
2022-2027
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Ion-range monitoring for hadrontherapy

PG Time Imaging: Main achievements and next goals
Main achievements

• Detector R&D completed (8-channel prototype), validated with:
▶ protons from cyclotrons, synchrotron and synchro-cyclotron at low

intensity
▶ carbon ions (CNAO) at clinical intensity

• No saturation with protons at high intensity (prelim. results)

Next goals (2-3 years)

• WP1: 30-channels full-scale prototype
▶ DAQ system under development + Mechanics design

• WP2: AI-based data reconstruction
▶ To improve the accuracy of PG vertex profiles (1D)
▶ To obtain 3D images (synthetic-CT and dose maps)

Fig. 8: Top: PG TOF profile obtained
from 12C at CNAO. Range accuracy
is 2.4 mm sigma for 3000 PG events.
Bottom : PG emission map (left) and
mechanics design of the 30-channel
prototype (right)

• WP3: Tests of prototypes and customization
▶ Range monitoring at clinical intensities + Detection of anatomical modifications at low intensities and

proton tomography configuration
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Ion-range monitoring for hadrontherapy

PG Energy Integration: Principles, Status and Perspectives

Thèse MITI 2023-2026

Principle
• Detectors around the patient in integration

mode to cope with high beam intensity dur-
ing beam pulses of synchro-cyclotrons (S2C2)
(1 µA)

Status
• Feasibility study with Monte Carlo simulations
• Systematic detector characterization and cal-

ibration (2.5 × 2.5 × 5 cm3 PbWO4 + fast
PMT): ESRF, ARRONAX and CAL-Nice

Perspectives
• Short term: Test on the S2C2 accelerator at

CAL-Nice
• Mid term: Joint development with PGTI?

Human ressources (IN2P3): ∼ 3 FTE

Fig. 9: Top: Energy measured in forward
and backward detectors as a function of lon-
gitidunal target displacement. Bottom: 4-
channel acquisition board.
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Diagnostics

XEMIS: Compton Camera for medical imaging

Context and objectives
• Small animal imaging with LXe

based Compton camera
• Following the developments for

dark matter detection in Subatech

Status
• Camera installed in CHU Nantes

⇒ Access to:
▶ Mice store
▶ Nuclear medicine department

(radiopharmaceuticals, mice
CT images)

• First data in Sep 2025
▶ Following 10 years of dev.

with 10 − 12 FTE
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Diagnostics

XEMIS: Compton Camera for medical imaging

Principle
• Monolithic Time Pro-

jection Chamber of
Liquid Xenon

• Detection of HE γ:
(HE > 400 keV)

Fig. 10: Schematic representation of
3-γ detection with 44Sc

Main characteristics
• First of its kind worldwide

▶ Pioneering techonolo-
gies

▶ First application: re-
duced activity demon-
stration

• Multi-HE γ radio-isotopes
▶ 1 γ
▶ 2 γ (PET or multi

radio-isotopes)
▶ 3 γ (e.g. 44Sc)

• Image reconstruction
▶ Open distributed data

Operations
• Up to 2040 @ Nantes Univ. Hospital
• Exploitation: 2027 -2031 : Under dis-

cussion

Milestones
• Short-term: Image assessment with re-

duced activity
• Mid-term (5 − 6 years)

▶ Fast photo-detection upgrade and
image assessment with reduced ex-
posure time

▶ Monitoring studies on hadronther-
apy and targeted internal therapies

• Long-term: Total body imaging design
and construction
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Diagnostics

ClearMind: Towards sub-100 ps CTR for PET using “scintronic” detector concept

Context and objectives
• Pushing toward a coincidence time resolution

(CTR) of 10 ps ⇒ no need for image recon-
struction with improvement of image quality

• Objective: develoment of “scintronic” detec-
tors with PbWO4 monolithic scintillator opti-
cally coupled to a 5×5 cm2 MCP-PMT (enca-
pulsation) (ANR ClearMind, 2020-2025)

Material and methods
• Detection of scintillation (energy) and Cherenkov photons (time) emitted in PbWO4
• Direct deposition of a photocathode (n ∼ 2,7) on the crystal surface (n ∼ 2,3) and passivated by a thin

optical coating
• Experimental work at CPPM using the tomXgam mechanical test bench for experimentation in tomography

Human resources (IN2P3): ∼ 3 FTE
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Diagnostics

ClearMind: Results and Perspectives

Results
• Expected CTR ∼ 20 ps FWHM (excluding MCP-

MT) (MC simulation results)
• Modeling of light transmission through surfaces

with thin film optical coating in Geant4
▶ Update of Geant4 version 11.1 to model opti-

cal coating

Perspectives
• Development and characterization of “scintronic” detection modules within AAIMME: Machine Learning

for molecular imaging and future medicine (CEA-DM2S, CEA-IRFU, CEA-BioMaps, INRIA, CPPM, ANR
2025-2029)

• Contribute to the development and characterization of new fluoride crystals with cross-luminescence and
index of refraction within the Chronos EIC Pathfinder project (submitted in May 2025)

• Contribute to model multilayer optical coating and crystal anisotropy for Geant4 and to extend the SiPM
model developed for GATE to SiPM arrays within the submitted Master Projet ModOp
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Theranostics

THIDOS project: Theranostics for iodine treatment of thyroid diseases
Motivation and objective

• Accurate, personalized dosimetry essen-
tial for optimizing treatment

• Objectives: new instrumental (gamma
camera) and methodological (dose un-
certainties) approaches aimed at im-
proving control of the dose

Results
• Clinical prototype of a mobile gamma

camera (10 × 10 cm2 field of view) op-
erational (131I, 365 keV)

• Evaluation of the accuracy and robust-
ness of the quantification protocol using
3D phantoms (calibration of the cam-
era response, segmentation of the source
image, partial volume effect and scatter-
ing corrections)

Human ressources
(IN2P3): ∼ 13.6 FTE

PCSI Project 2019-2023
Short-term perspectives

• First clinical evaluation of the mobile camera completed in
March 2025 (IUCTO). Results under analysis.

• Comparison of quantification performances with conventional
clinical systems (Fall 2025, Baclesse, Cochin).

• Adaptation of a Bayesian network developed by IRSN for the
estimation of dosimetric uncertainties (2025-2026, IRSN)
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Theranostics

THIDOS project: Mid/long term perspectives & AIDER project

Mid/long-term perpectives (2025-2027)

• Extended clinical protocol of the mobile gamma camera for the
treatment of thyroid diseases

• Open up the use of the mobile camera to clinical applications
using medium-energy gamma-emitters (200-400 keV, 177Lu or
225Ac)

• Adaptation of the camera for dose-based treatment planning
of thyroid diseases using 123I (160 keV, Cochin)

Long-term perpectives (2026-. . . )

• Development of a Compton camera ded-
icated to dosimetric monitoring with
high-energy gamma rays (> 400 keV)
for targeted alpha therapy with 149Tb,
211At 213Bi, 225Ac or 212Pb (South Ko-
rea collaboration)

AIDER project
• European project (HORIZON-

EURATOM): Development of a
CC for vectorized internal radiotherapy
(2025-2029)

• @Lyon (CREATIS-IP2I) : Camera opti-
mization using MC simulations + image
reconstruction
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Probe

MAPSSIC: a radiosensitive telemetric probe for behavioral imaging

Context and objectives
• Behavioral neuroimaging: limitation for preclinical PET imaging due to the required anesthesia.
• Alternative: Development of β+ microprobes for freely moving small animal + image analysis methods +

validation
• Development of pharmacokinetic models to associate with radiotracers

Material and methods

Fig. 11: 1st prototype with PIXSIC detectors

• MC simulations for physical validation

Results and status
• First prototype operational

• ⇒ Improvement with MAPSSIC detec-
tors (electronics on going) 21 IN2P3

persons involved
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Probe

MAPSSIC: 2-year Perspectives

Short term
• Physical validation (radioactive phantom)
• Biological validation (anesthetized/awake)

and comparison with microPET (imaging gold
standard)

Middle term
• Pharmaco-behavioral analysis
• Comparative studies with freely moving ad-

pated systems (RatCap, Motion Tracking)

Long term
• Industrial transfer
• Optical/isotopic duality

Fig. 12: Planned comparative neuropharmacological study PET sys-
tems dedicated to behavioral neuroimaging
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Current platforms

Irradiation platforms: The ResPlaNDIR network

Ions X-rays and e−

Centers Ions Energy Centers
(MeV/n)

CPO (Orsay) p 76–201 ICO (Nantes)
CAL (Nice) p 65 CERVO (Lyon)
GANIL (Caen) C, O up to 95 PARMIVA (Clermont)
Arronax (Nantes) p, d, α 70 RadeXp (Orsay)
CYRCé (Strasbourg) p 25 IRCM (Fontenay aux roses)
AIFIRA (Bordeaux) p, α 3 Cyceron (Caen)
BioAlto (Orsay)* p → O 8–25 CGFL (Dijon)
SILab (Lyon)* α ∼ 3 CREFRE (Toulouse)

Gustave Roussy, (Villejuif)
CRAN (Nancy)
IRCM (Montpellier)
ESRF (Grenoble)

Table 2: *: Platform currently under development. All ion irradiation platforms are accelerator-based,
except for SILab, which uses a radioactive Americium-241 source and affiliated to IN2P3 except CPO and
CAL (clinical centers).
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Current platforms

Irradiation platforms: Focus on the ion beam facilities

Center Ions Energy Range FLASH Access
(MeV) (mm)

CPO (Orsay) p 76–201 46 − 260 Yes Paid beam
CAL (Nice) p 65 31 In progress PAC
GANIL (Caen) C, O → 95 MeV/n 17 (C) Yes† iPAC
Arronax (Nantes) p, (d), α 70 40 (p), 3 (α) Yes Platform
CYRCé (Strasbourg) p 25 6 Considered Platform
AIFIRA (Bordeaux)** p, α 3 0.150 (p), 0.018 (α) No Collab.
BioAlto (Orsay)* p 4–25 0.16 − 6.19 Considered PAC

α 14-43 0.13 − 1.29
C 87.5 0.17
O 128 0.14

SILab (Lyon)* α ∼ 3 ∼ 0.018 No

Table 3: PAC: Program Advisory Committee. GANIL : 120 − 240h/year for radiobiology (between 60 and 100% of the beam time allocated by the
interdisciplinary PAC). CAL: 24h/year (3 year CNRS-CAL agreement). Platform: internal scheduling of the experiments. Collaboration : Collaboration
with the group in charge of the beam line is required to obtain beam time and to prepare the experiment. (*) are currently under development. (**)
microbeam facility. † FLASH irradiation are in particular available at very low energy on IRSSUD (< 1 MeV/n) + D1
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Current platforms

Irradiation platforms: Focus on the ion beam facilities

Fig. 13: RBE for the V79 cell line (preditions of the
NanOx model): top: p, bottom: α, right: 12C

“Radiobiological relevance” of the various beams
• Considering the RBE as the biological endpoint for the sake of sim-

plifity
• Specificity of ion irradiation at relatively low energy (high RBE):

∼ 10 MeV/n (C), ∼ 1 MeV/n (α), ∼ 0.1 MeV/n (p)
• Low energy limits in the figure correspond to ion ranges of 10 µm

(typical cell dimension)
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Current platforms

“BioALTO” Master Projet: “Hadron biology” Platform @ ALTO

Objective
• Development of a platform dedicated to radiobiological research for thera-

pies involving ions (hadrontherapy, Target Alpha Therapy, Boron Neutron
Capture Therapy)

• BioALTO beamline based on Radiograaff device (previously at the IP2I 4
MV accelerator in Lyon)

Characteristics of ALTO
• 14.5 MV Tandem “Van de Graaff” accelerator
• Wide range of intense (up to µA) ions beams (1H → 79Au)
• Continuous beam
• Additional pulsed beam possible (100 ns to 100 µs)

Part. Energies Irradiation depth
[MeV] (MeV/u) [µm WET]*

1H 4 – 25 (4 – 25) 160 – 6190
4He 15 – 43 (3.8 – 10.8) 130 – 1290
7Li 50 (7.1) 480
12C 87.5 (7.29) 170
16O 128 (8) 140

*(at 5 cm air)
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Projects of platforms

“BioALTO” Master Projet: “hadron biology” Platform @ ALTO

Main tasks
• Upgrade the Radiograaff device to exploit the wide range of

ions
• Development of new beam diagnostics and dosimetry tools

▶ Diamond counter
▶ Scintillating fibre counter
▶ Microdosimeter based on Si microdetectors
▶ Beam monitoring profiler based on air fluorescence

• Modeling of the line (analytical model and digital twin)
• Equipment of a cell culture room nearby
• Access to external users → platform in 2027

Human resources (IN2P3): ∼ 4 FTE

Fig. 14: BioALTO beamline under installation

Fig. 15: From left to right: Diamond counter, Si micro-
dosimeter, beam profiler based on air fluorescence
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Projects of platforms

CEREINHAd: Project of irradiation platform in CYCLHAD (C400)

CEREINHAd : “CEntre de REcherches INternational en Hadronthérapie”

Motivations
• Clinical quality beams (p, α, C)

without the clinical constraints in
the B10 room

• ⇒ Radiobiol. (in vitro/in vivo)
• ⇒ Radiochemistry
• ⇒ Physics and detector testing
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Projects of platforms

CEREINHAd: Project of irradiation platform in CYCLHAD (C400)

Development of the (passive) beam line

• Beam shaping systems
• Energy degraders
• Ridge Filter (Conformal flash (in vivo))
• Microbeam systems
• Restraint systems
• Dosimetry and metrology equipment

5-year plan
• Contracts with CYCLHAD
• Light hadron irradiation platform in 2028-2030
• Committee to prioritize experiments
• Other beams (A/Z = 2 from 4He to 20Ne)?
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MyLife: National Efforts in Multi-Scale Modeling for Innovative Radiotherapies

Context
• Modeling the biological ef-

fects of ionizing radiation
= complex multidisciplinary
and multi-scale challenge

• Multiscale: From atomic in-
teractions to whole-body ef-
fects

• Multidisciplinary: physics,
chemistry, biology + clinical
insights

Objective
• Creation of a national/inter-

national reasearch program

MyLife: Multiscale multidisciplinarY modeLing of Irradiation efFects on lifE
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MyLife: National Efforts in Multi-Scale Modeling for Innovative Radiotherapies

• TED: Transfered energy Distri-
bution (IP2I)

• LPChem: MC Track-Structure
code (Physics+Chemistry) (IP2I
et al.)

• NanOx, MKM: Models of Cell
Survival predictions (IP2I, LPSC,
LPCA)

• TCP: Tumor Control Probability
(IP2I et al.)

• MSB: Modélisation des Systèmes
Biologiques (IJCLab)

• PMRT: Plateforme de
Modélisation en RadioThérapie
(LPCC)
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Geant4-DNA: Objectives and Status https://geant4-dna.org

Context and objectives
• Major challenge in current radiobiology: Mechanistic understanding of the bio-

logical effects of ionizing (radiotherapy, radioprotection)
• Objective of G4-DNA: Track-structure code from phys. interact. (water +

other materials) and chemical stage (radiolysis) to damage at (sub)cellular scale.
Specificity: The only open-access platform in this field (full component of G4)

• Activity of the ”Geant4” IN2P3 Master Project (RN : Marc Verderi, LLR ; DS
Calcul & données), presented at IN2P3 CSI on 06/2022

Collaboration
• 17 countries (62 collaborators, including non-permanents)
• IN2P3 : 9 IN2P3 permanent collaborators (current FTE < 3)

▶ Coordination of the project (S. Incerti, LP2I, spokesman since 2008, current
mandate until 2026) + technical coordinator (H. Tran, Research engineer)

• Strong impact: 152 peer-reviewed papers since 2006 (involving IN2P3)
• Geant4-DNA international tutorials & Geant4 at the Physics-Medicine-Biology

Frontier” series of conferences

Fig. 16: Geant4-DNA world map of
collaborators in 2023-2026

Fig. 17: Example of recent achieve-
ment: Quantification of Double-
Strand Break yields for several
Geant4-DNA human cell models
(Chatzipapas et al. 2024)
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Geant4-DNA: Perspectives at IN2P3

Core development of Geant4-DNA
• Physics: Improvements of track-structure models and implementation of new models (e.g., electrons up to

10 MeV in liquid water, electrons in GNP, low energy models for Li and C ions, etc.)
• Chemistry: Extension of radiolysis modeling for ultra high dose rate irradiation + experimental validation
• Geometries of biological targets: completion of multi-scale library of biological models (plasmids, bacteria,

cells, 3D multi-cellular assemblies, DNA packing. . . ) + experimental validation of damage prediction
• Computing: possibly GPU porting & AI R&D (both within the workplan of the Geant4 collaboration)

Geant4-DNA applications
• Development of new example applications, including:

▶ Innovative radiotherapy approaches (e.g. hadrontherapy with a variety of ions, Flash irradiation, VHEE,
TRT. . . )

▶ Radiation protection in space (e.g. multi-scale mechanistic simulation down to the cell scale)
▶ Environmental applications (e.g. track-structure simulations in the atmosphere)
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GATE: Objectives and Status https://github.com/OpenGATE/opengate

Objective
• Need for easy-to-learn macro

mechanism to configurate simple
or highly sophisticated experimen-
tal settings

• ⇒ GATE: open source interface to
run Geant4 simulations (imaging,
dosimetry)

Fig. 18: GATE world map of users in 2025 (2000 reg-
istered users)

Status
• Release of GATE 10 in Fall 2024 (after 4 years of development) ⇒

Python library
• Successful! (smoother installation, consistent integration within

“python workflow”)
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GATE: Collaboration and Perspectives

Collaboration
• Creation in 2002 with a strong contribution of IN2P3
• Strong impact in the field: ∼ 1000 citations since its creation
• 23 laboratories, companies and clinical centers (Total FTE = 20)

▶ Technical coordinator: D. Sarrut (CREATIS)
• IN2P3 (LPCA, LPSC, IP2I, IPHC, CPPM, IJCLab) : 4 FTE

▶ Spokesperson: L. Maigne (LPCA) + Research engineer (from Fall 2025)
• Strong policy of trainings on the GATE simulation platform in LPCA: for researchers + compagnies (part-

nership with “CNRS Formation Entreprises”) + medical physicists and physicians (collaboration with “UNI-
CANCER”)

Perspectives
• Construction of “digital twins” for instrumentation developments + creation of learning data bases fo AI

(e.g. improvement of image reconstruction)
• Special effort on FLASH irradiation modeling (Master Projet “FLASH”)
• Stronger link with the Geant4 collaboration (python interface in G4?)
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NanOx model: “Nanodosimetry and Oxidative Stress” NanOx

Main assumptions
• Sensitive volume: cell nucleus + 2 types of biological events:

Local lethal events (LLE) Global events (GE)
Event Inactivation of Oxidative stress

nanometric targets in the sensitive volume
Scale Nanometric Micrometric
Evaluation Specific energy* Production of chemical species*

▶ *: evaluated from Monte Carlo simulation (e.g. Geant4-DNA)
• Cell survival for the configuration cK (ion impacts, target positions, track struc-

tures): cK S = cK SLLE × cK SGE

Full modeling of radiation stochastic effects
• Average cell surviving fraction: S(D) =

∑∞
K=0 P(K ,D) · ⟨cK S⟩

▶ P(K ,D): probability to have K impacts with a dose D
▶ ⟨cK S⟩cK

: mean survival over all configurations cK
Fig. 19: Cell geometry, specific energy
spectra and OH• prod.
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NanOx model: Main parameters / input data & Results NanOx

Main parameters Cell nucleus diameter Effective lethal function of nanometric targets
Main input data Cell microscopy ∼ 3 cell survival curves

1 RX + 2 ions (intermediate and high LET ions)

Results (“for hadrontherapy”)

• “NanOx predictions for three cell lines irradiated by
monoenergetic ions were more often more accurate
than the ones issued from 5 other biophysical mod-
els (MKM, LEM I–IV)” [Monini 2019]

Perspectives
• Extension of the model to TAT and BNCT ⇒ Con-

sistent modeling for all therapies involving ions
• Towards “fast” and open NanOx

Human resources (IN2P3): ∼ 3 Fig. 20: NanOx predictions of α coefficients for HSG cell [Monini
2019]
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Conclusion

General conclusion
• Instrumental and numerical developments in health-related IN2P3 projects fall entirely within the core ex-

pertise of the institute ⇒ They clearly belong within the scope of IN2P3
• The developments are built on strong, long-standing collaborations between our laboratories and clinical or

biological centers - sometimes even within the same lab - ensuring their relevance and applicability
• Strong potential to deliver technological breakthroughs at the interface between cutting-edge particle physics

and critical medical applications
• ⇒ Projects based on technological opportunities and/or opportunities of collaborations with stakeholders in

the clinical field

Instrumentation
• Main developments in beam monitors for therapies and irradiation platform & gamma detection (hadron-

therapy monitoring and nuclear imaging for diagnostics and theranostics)
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Conclusion

Irradiation platforms
• Scientifically relevant and complementary for both detector characterization and biological measurements.
• Dosimetric intercomparison under progress
• Ongoing development of platforms to better meet the need for biological data using relatively low-energy

ions: BioALTO (@IJCLab) and SILab (ion sources@IP2I)

Numerical developments
• Strong IN2P3 contribution to high impact numerical platforms (Geant4-DNA, GATE)
• “MyLife”: Nat. research program for Multiscale multidisciplinarY modeLing of Irradiation efFects on lifE

▶ From atomic physics and chemistry (Geant4-DNA) to biology at cell scale (NanOx) and tumor responses
(modeling at IJCLab).

▶ Example of results: Tumor Control Probability in Targeted Alpha Therapy
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Perspectives

Instrumentation
• Possible research axis gathering competences in various labs: Compton camera (CC) for targeted radiotherapy

monitoring
▶ Targeted radiotherapies in full expansion with crucial need for monitoring
▶ IN2P3 expertise: CC (IJCLab/Astroparticules, SUBATECH, CPPM, IP2I) and γ camera for theranostics

(IJCLab/Health) (instrumentation, MC simulations, image reconstruction)

Irradiation platforms
• CEREINHAd@CYCLHAD ⇒ Need for agreement between academical research (CNRS, CEA. . . ) and CY-

CLHAD
• GANIL: Irradiation platform@SME (13.6 MeV/n 12C) and SOBP (Spread-out Bragg peak)@D1?

Numerical platforms
• 2 recent research engineering positions to support both Geant4-DNA and GATE. Future spokespersons?
• Many scientific perspectives to model the new modalities of radiotherapies: Temporal and spatial dose

fractionation (microbeams, FLASH) and targeted therapies (TAT and BNCT)
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Thank you for your attention
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Physics and Medicine: Closely Intertwined
“Medical imaging and cancer treatments have benefited from developments in particle physics over the years,
and the innovations continue today. . . ” (from CERN news, February 2024)

Medical imaging

Fig. 21: From Röntgen 1885 to PET imaging (from
Sparsh Navin, CERN – Knowledge Transfer Life Sci-
ences Section)

Cancer treatments

Fig. 22: From the first patient treatment by proton therapy in Berkeley (1954) to modern hadron-
therapy center with gantry (from Sparsh Navin 2014, CERN – Knowledge Transfer Life Sciences
Section)
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Strategies of developments: Combination of . . .

“Health needs”, e.g.:
• Ion-range monitoring in hadrontherapy
• Theranostics

“New technologies”, e.g.:
• CMOS detectors and hybrid pixels originally developed for charged particle

trajectography at the LHC ⇒ What could the benefit of such detectors in
medical imaging?
▶ MAPSSIC: in vivo positron imaging with CMOS pixels
▶ Photon-counting CT : Small animal X-ray imaging with hybrid pixels

• Large Liquid Xenon detector for dark matter detection ⇒ What could the
benefit of such detectors in medical imaging with 3-γ detection?
▶ First application: low activity diagnosis imaging
▶ Then: Hadrontherapy and Targeted Therapy monitoring?

Fig. 23: Diamond beam ho-
doscope for hadrontherapy.

Fig. 24: PIXSCAN-FLI
Photon-Counting CT proto-
type
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Master Projet “DIAMOND”: Applications
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MATRIX project: a GaN proton beam monitoring
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MATRIX project: Prospectives
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IPHC: Team IMR (Molecular Imaging and Radiobiology) (1/2)

Global strategy
• Towards a modular and ≪ portable ≫ approaches
• Development of the full acquisition chain to achieve

optimal performances

The digiPET project
• Fundings region Grand-Est / Eurométropôle

2 ongoing PET projects
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IPHC: Team IMR (Molecular Imaging and Radiobiology) (2/2)

The WRC project (Use of a Rotating Slat Collimation)

• Improvement in efficiency by up to 1%
• Preservation of the detection FoV size
• Required data processing from 1D to

2D, and ultimately to 3D

• Dual-head imaging system
• 72 x 20 x 0.1 mm3 tungsten slats
• 512 PMT channels & CeBr3 monolithic crystals
• 512 Electronic channels (custom Front-End)

• Modularity
▶ 2 or more detection heads
▶ Possible extended axial FoV
▶ Fast acquisition protocol (depending on colli-

mation characteristics)
• Portability

▶ Small footprint
▶ Increased portability
▶ Facilitate collaborative research
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OPALIS project: Endomicroscopy for real-time diagnosis and biopsy

Context and objectives
• Context: The precise definition of the excision limits is a major challenge in neurosurgical oncol. operation
• Objectives: Enhance the quality of surgical procedures using rapid, sub-cellular-resolution optical methods

Material and Methods

Human resources: 3.3 FTE
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OPALIS project: Endomicroscopy for real-time diagnosis and biopsy

Results
• Development of a miniature scanning system
• Creation of a multimodal, multiscale tissue

database (from the deep ultraviolet to the near in-
frared) discriminating against tissue carcinogenesis

Fig. 25: Miniature scanning system
Fig. 26: Multimodal, multiscale tissue database
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Photon Counting-CT

E. Testa Instrumental and numerical developments 11 / 22



Introduction Detectors Imaging Irradiation platforms

Chronography
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CCP: Compton Collimated Probe
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ResPlaNDIR: Motivations and Projects

Creation
• Informal network of physicists and biologists working in the field of X-ray and Hadron radiobiology
• ResPlaNDIR: Network of National Platforms for Dosimetry, Instrumentation and Radiobiology
• Creation within the GDR MI2B in 2013
• Steering Committee: P. Annalisa (CPO-Orsay), E. Bayart (Radiotransnet), F. Chevalier (CIMAP-Caen),

C. Koumeir (Arronax-Nantes), A. Leite (IJCLAB-Orsay), C. Mirjolet (CGFL-Dijon), M. Rousseau (LPCC-
Caen), M. Vidal (CAL-NICE

Main objective : Bringing users and developers together
• Definition of requirements for the development of hadronic platforms (Biologists ⇒ Physicists)
• Assistance with dosimetry and good practice for commercial X-ray irradiators (Physicists ⇒ Biologists)
• Dosimetric intercomparison (under progress)
• Regular meetings: 8 since 2013 (between 30 and 60 participants/meeting)
• . . .
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ResPlaNDIR: Current study and project

Current study
• Dosimetric inter-comparison (dose monitoring with

Alanine + LET measurement in irradiation fields
from the hadron platforms)

Projects
• Development of common control instruments
• Creation of a master bank of cells and com-

mon biological protocols enabling biological inter-
comparison (Dedicated budget needed)

• Creation of a dedicated webpage to help access
equipment

Fig. 27: Preliminary results of the dosimetric inter-comparison per-
formed by M. Dos Santos (ASNR).
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Resplandir: Intercomparison of irradiation platforms using alanine dosimetry

Alanine dosimetry
• Internationally recognized tech-

nique
• Based on the irradiation of the

amino acid alanine, which pro-
duces free radicals in proportion to
the absorbed dose.

• These radicals are reliably quan-
tified using electron paramagnetic
resonance (EPR) spectroscopy.
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Importance of GANIL for cell irradiations and positioning in Europe/France
Room Ion Energy LET Range

(MeV/u)
(

keV
µm

)
in H2O
(mm)

GANIL
12C 95 (D1) 28 ≫ 1

35 (D1) 63
13C 13.6 (SME) 134 0.8

ALTO p → 15 3 2.5
α → 10.75 17 1.5
7Li → 12.5 55 0.5

ARRONAX p → 65 1 ≫ 1
α → 16 10

• GANIL’s carbon ion energies ⇒ Sampling of the
energy range of interest (with the increase of bio-
logical efficiency)

• Unique facility in France and few similar facilities in
Europe for cell irradiations with carbon ion beams

α coefficients for HSG cell [Monini 2019]
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Current status and perspectives in GANIL (cell irradiation beam lines)

Current status
• Cell irradiation with IRRABAT (mono-energetic carbon ion beams in D1)
• Energy: ∼ 35 MeV/u (with degrader) → 95 MeV/u

Possible additional facilities and measurements
• Mono-energetic “low-energy” carbon ion beams @

SME (13.6 MeV/u)
• SOBP @ D1: SOBP of ∼ 1 cm with a distal position

at 25 mm

Outcomes
• Cell response + cell survival
• Physico-chemical measurements such as radiolytic

yields (model constraints + dosimetry)

Methodology
• 1st meeting in September 2022: directions of GANIL, LARIA, CIMAP, GDR MI2B + M. Beuve (IP2I)
• Consultation of the community
• [⇒] Estimate of the beam time request (Go/No-go for a premilinary project)
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Platforms: CAL and ARRONAX

CAL Nice
• CAL: protontherapy center ⇒ No IN2P3 staff
• Current CNRS-CAL agreement: beam time of 24h/year for research

ARRONAX
• IN2P3: 8 persons (not only an IN2P3 platform)
• Max: 50% of beam time for commercial activities (44% in 2024)
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Platforms: CYRCé

• FTE: 6.2 (IN2P3) et 1 (CDD Université de Strasbourg
• Activities: 90% research and 10% for valorization
• Research projects: CYRCé has around 15 users from outside IN2P3 + 5-6 IN2P3 users (mainly IPHC groups)
• Beam time:

▶ Total: 900 hours/year
▶ Radiobiology: 300 h
▶ Sensor, detector and dosimetry testing: 400 h
▶ Radiolysis: 100 h
▶ Isotope production (Zr89, Cu64, Cu67): 100 h

• Fundings
▶ 15k€ per year from IN2P3
▶ 15k€ annually from the University of Strasbourg
▶ in-kind support and services (“prestations”) valued at around 20k€ to 30k€ per year
▶ funding provided by France Life Imaging for the imaging-related components of the project
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Platforms: AIFIRA

• FTE
▶ Research: 1.7 FTE IN2P3 + 0.05 FTE Bordeaux University
▶ Valorization: 1 FTE Bordeaux University

• Activity: 70% research and 30% valorization
• Research projects: 10 users for 13 different research projects - 6 projects led by laboratories outside of IN2P3
• Fundings

▶ 15k€ from IN2P3 (shared between 3 technical platforms in the laboratory, including AIFIRA).
▶ 50k€ allocated to AIFIRA from valorization activities.
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Platforms: GANIL

• Interdisciplininary research platform@GANIL: CIMAP (INP). D1@GANIL: INP staff. Beam delivering@GANIL:
IRFU/IN2P3

• Valorization: service of GANIL
• Beam time for radiobiology: between 120h and 240h corresponding to 60% to 100% of the beam time

allocated with the “interdisciplinary” PAC (iPAC = 10% of the total beam time in GANIL)
• Number of experiment proposals/year: btw 5 and 10 (20-25 people in total)
• Funding: GANIL is a TGIR (Très Grande Infrastructure de Recherche) or IR; beam time is free of charge for

fundamental research experiments and academic users
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