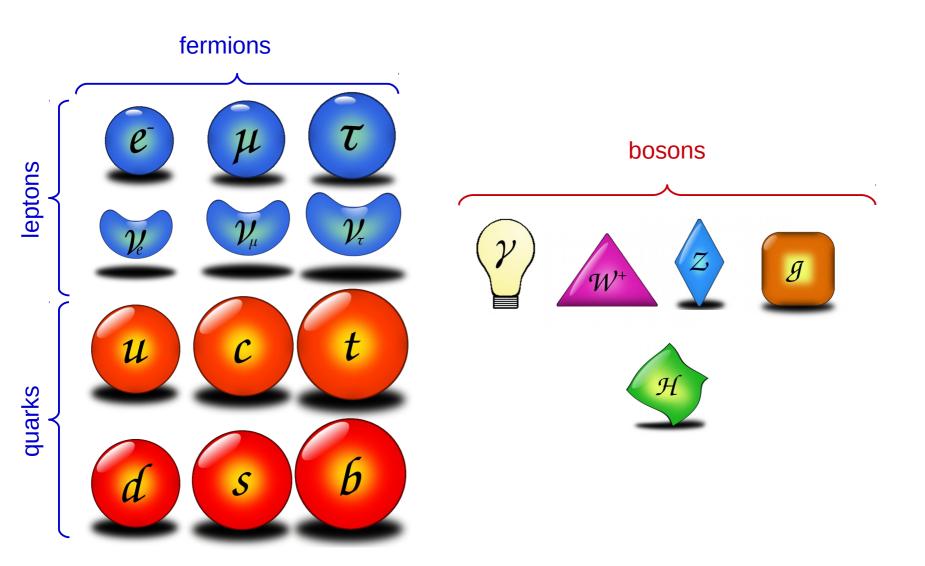
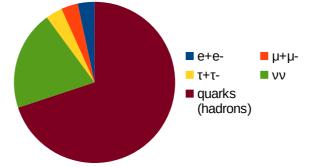
Les particules et leurs signatures

Elisabeth Petit
CPPM

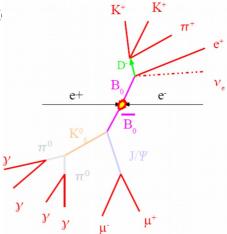


Ecole IN2P3 d'instrumentation
"Techniques de base des détecteurs"
Cargèse, 1-6 avril 2019

Les particules du Modèle Standard



Temps de vie des particules (1)


- ♦ La plupart des particules sont instables
- ◆ Exemple : le boson Z
 - peut décroître en une paire d'électrons, de muons, de quarks, etc
 - on parle de "canal": ex. le "canal di-électron"

- théorie quantique : probabilité de chaque décroissance (rapport de branchement)

calculée par la théorie

- Les décroissances continuent en chaîne jusqu'aux particules stables :
 - NB: parfois "stable" = "stable jusqu'à la sortie du détect
- ◆ Les particules stables sont mesurées
 Les particules instables sont reconstruites

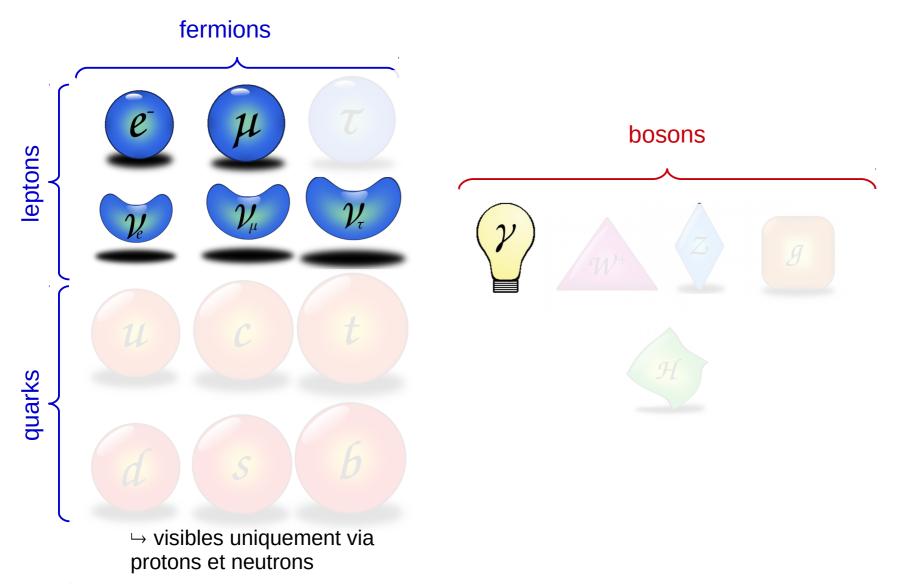
Temps de vie des particules (2)

- ♦ Temps de vie de quelques particules :
 - NB : avec la dilatation des temps en relativité générale le temps de vie est multiplié, ex. par 10 pour une particule d'impulsion de 10 GeV

L L	1
masse (GeV/c)	temps de vie cτ (m)
0.000511	stable
0.106	658
0.938	stable
0.94	$2.7.10^{11}$
0	stable
< 2.10 ⁻⁶	stable
125	5.10 ⁻¹⁴
90.2	9.10 ⁻¹⁷
80.4	9.10 ⁻¹⁷
173	3.10 ⁻¹⁷
0.14	7.8
0.494	3.7
0.135	25.10 ⁻⁹
0.498	0.03 ou 15.3
5.3	491.1 μm
5.3	455.7 μm
	masse (GeV/c) 0.000511 0.106 0.938 0.94 0 < 2.10 ⁻⁶ 125 90.2 80.4 173 0.14 0.494 0.135 0.498 5.3

les particules que l'on va le plus souvent observer dans nos détecteurs

> stable suffisamment longtemps se désintègre instantanément


stable

mésons (assemblages de quarks)

Les particules du Modèle Standard observables

◆ La plupart des particules que l'on veut étudier se désintègrent instantanément, on étudie leur produit final de désintégration

- ♦ Ce qu'on veut connaître : masse, charge, temps de vie, modes de décroissance, etc
- ♦ Exemple : le boson W

W

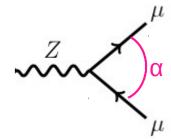
J=1

Charge $= \pm 1~e$ Mass $m = 80.379 \pm 0.012~{\rm GeV}$ W/Z mass ratio $= 0.88153 \pm 0.00017$ $m_Z - m_W = 10.803 \pm 0.015~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.029 \pm 0.028~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$

W modes are charge conjugates of the modes below.

W+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[b] (10.86± 0.09)	%	_
$e^+ \nu$	(10.71 ± 0.16)	0%	40189
$\mu^+ \nu$	(10.63 ± 0.15)	0/0	40189
$\tau^+ \nu$	(11.38 ± 0.21)	%	40170
hadrons	$(67.41 \pm 0.27)^{\circ}$	%	-
$\pi^+\gamma$	< 7	× 10 ⁻⁶ 95%	40189
$D_s^+ \gamma$	< 1.3	$\times 10^{-3}$ 95%	40165
cX	(33.3 ± 2.6)	V ₀	-
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array})$	2/6	-
invisible	[c] (1.4 ± 2.9)	%	_

source : http://pdg.lbl.gov/201 8/download/db2018. pdf

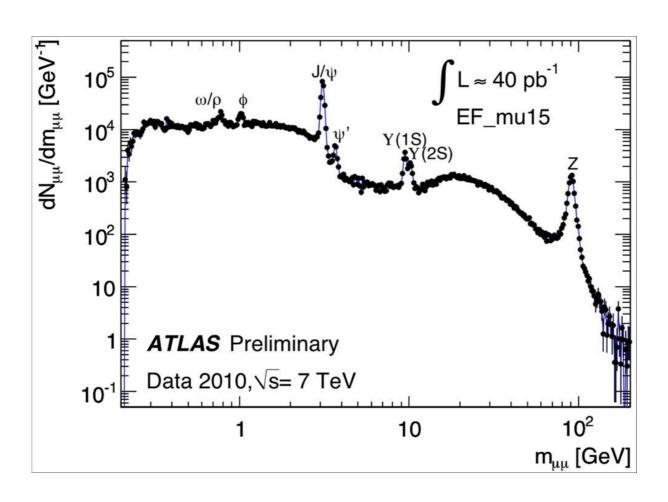


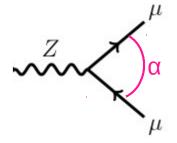
Masse invariante et résonance (1)

- Quadrivecteur particule de masse m : $P = (E, \vec{p}), \vec{p} = (px, py, pz)$
 - "métrique" spéciale : $P^2 = |P|^2 = E^2 p^2 = m^2$
- ♦ Ce qui se conserve dans une interaction : |P|
- ◆ Désintégration : Particule C en particule A + particule B

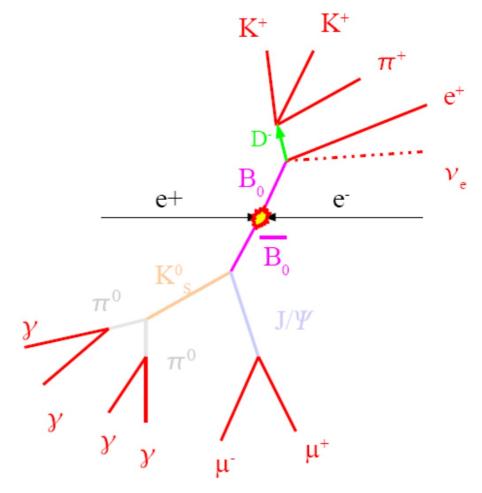
-
$$P_C^2 = (P_A + P_B^2)^2 = (E_A + E_B^2)^2 - (\vec{p}_A^2 + \vec{p}_B^2)^2$$

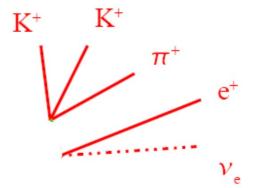
$$- P_C^2 = E_C^2 - p_C^2 = m_C^2$$



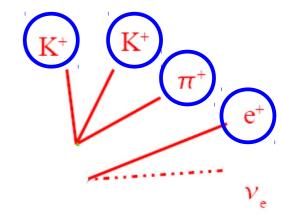

- ◆ La masse de la particule C peut être reconstruite à partir des produits de désintégration
 - $m_C^2 = (E_A + E_B)^2 (\vec{p}_A + \vec{p}_B)^2$
 - on parle de "masse invariante" des deux particules A et B
 - $m_C^2 = m_A^2 + m_B^2 + 2(E_A \cdot E_B |\vec{p}_A| \cdot |\vec{p}_B| \cos \alpha)^2$
- ◆ Conséquence : On peut connaître la masse d'une particule si on connaît celle de ses produits de désintégration et leur impulsion

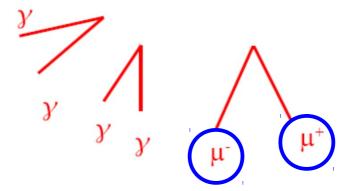
Masse invariante et résonance (2)

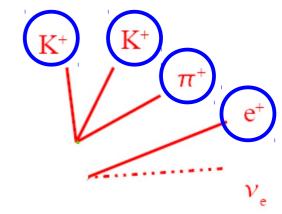

♦ Exemple de masses invariantes : particules qui se désintègrent en deux muons

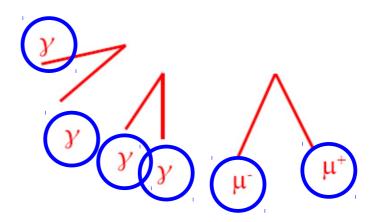


- Exemple : paire de particules contenant des quarks b
- ♦ On veut connaître :
 - son taux de production
 - ses rapports de branchement
 - corrélation angulaire des produits de désintégration

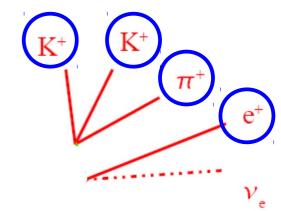

- ♦ Ce qu'on peut voir: de multiples particules dans l'état final
- ♦ Ici, un cas très propre (pas de parasites)
- ♦ Il faut les détecteurs adaptés à toutes les particules finales

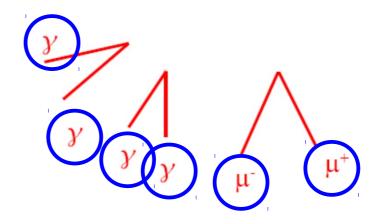



- Ce qu'on peut mesurer :
- ♦ L'impulsion des particules chargées
 - en applicant un champ magnétique
 - en mesurant leur trajectoire
 - ex. : spectromètre (chambre à dérive + aimant)
- ◆ Leur trajectoire très très près du point d'interaction
 - ex. : détecteur de vertex au silicium

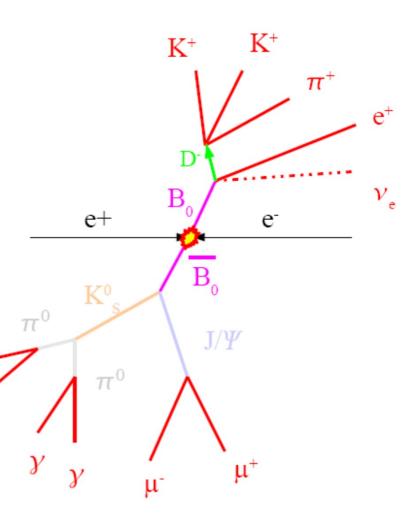


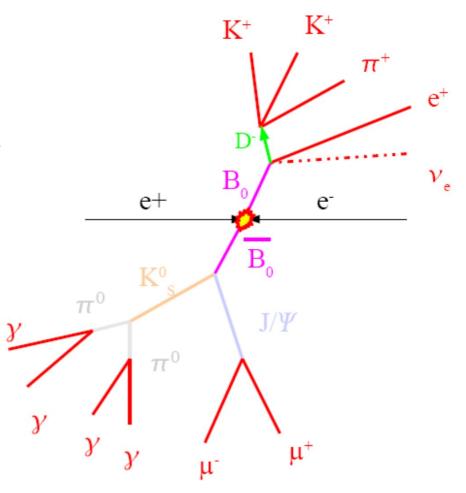
- Ce qu'on peut mesurer :
- ♦ L'énergie deposée par les particules
 - par exemple dans des calorimètres





Les observables (4)

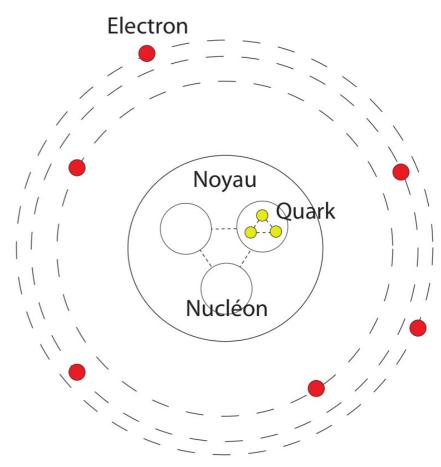

- Ce qu'on peut mesurer :
- ♦ La nature des particules:
 - masse
 - charge
- lacktriangle Particules chargées K, π , e, p
 - perte d'énergie par ionisation (dE/dx)
 - lumière Cherenkov (RICH)
 - dépôt d'énergie (calorimètres)
- ◆ Identification des muons
 - particules trés pénétrantes
 - détecteur derrière un blindage



- ♦ À partir des caractéristiques cinématiques des particules détectées
 - énergie, impulsion, masse, charge, temps de vie
 ...On reconstruit des particules primaires
 - ex.: K⁺, K⁻, π⁻ proviennent du même point. En sommant leur impulsion on reconstruit le D⁻
 - en recoupant toutes les informations on peut essayer de reconstruire la chaîne complète de désintégrations
- ◆ Ce qu'on déduit : l'étude statistique du mode de désintégration va permettre de mesurer un paramètre théorique
- ♦ L'expérience permet :
 - de confirmer ou infirmer un modèle théorique
 - d'apporter des précisions sur des paramètres que les théoriciens ne savent pas calculer

Les observables (6)

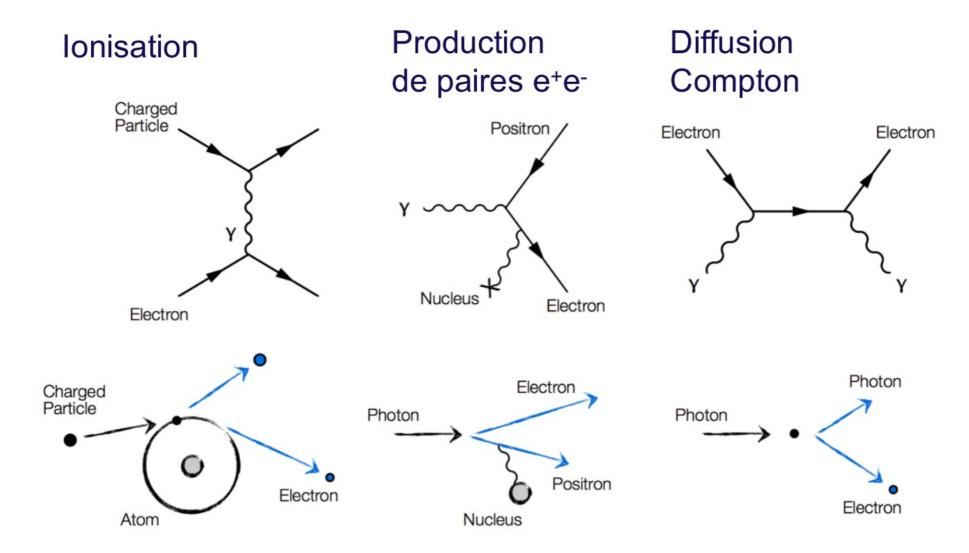
- Que mesurer dans l'état final ?
- ◆ Idéalement tout!
 - énergie et impulsion
 - position
 - pour toutes les particules produites dans la collision
- ♦ En pratique on ne peut accéder qu'à :
 - particules chargées (e, μ , π , K, p) :
 - trajectoire
 - signe
 - impulsion
 - identification
 - photons:
 - position et énergie
 - neutrinos:
 - une partie de l'impulsion (par déduction)
 - neutrons :
 - énergie, position



Interactions particules/matière (1)

- ◆ Toutes les particules « visibles » le sont par leur interaction avec la matière (= noyaux + électrons)
 - beaucoup de principes physiques différents dont la majorité sont de nature électromagnétique
 - rayonnement de freinage
 - création de paires
 - effet cerenkov
 - rayonnement de transition...
 - quelques uns de nature nucléaire (neutron + gerbe hadronique)
 - ces processus vont être utilisés pour mesurer directement les informations des quadri-vecteurs ou alors permettre une identification des particules
- ♦ MAIS au final ce qui sera observé reste un signal d'ionisation ou d'excitation de la matière auquel le détecteur devra être sensible
- ♦ En physique des particules on ne s'intéresse qu'aux particules ayant E >> 100 keV
 - En dessous, on est dans le cadre de la physique ionique, moléculaire, etc..

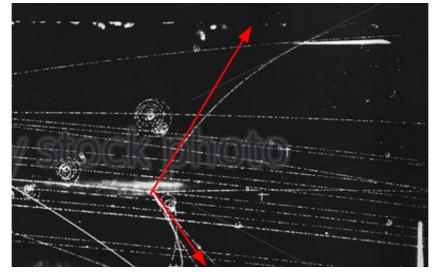
Interactions particules/matière (2)

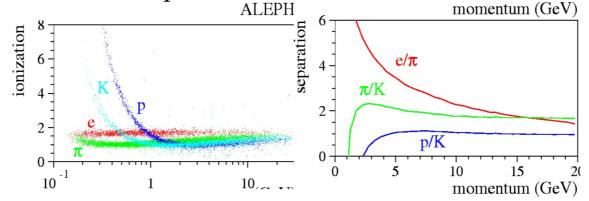

- ◆ L'interaction entre une particule chargée incidente et la matière peut intervenir à divers niveaux :
 - les charges dans leur ensemble
 - les électrons atomiques
 - le noyau
 - les constituants des noyaux
- ♦ Elle concerne les trois forces (électromagnétique, forte et faible), mais jamais la gravitation
- ♦ Particules chargées
 - Diffusion multiple
 - Particules lourdes
 - Electrons/positrons
 - Cas des muons de très haute énergie
 - Effet Čerenkov
 - Rayonnement de transition

Interactions particules/matière (3)

♦ Exemples d'interactions :

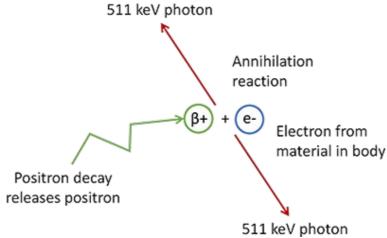
Charge électrique


- Déviation dans un champ magnétique
 - une particule chargée, soumise à un champ magnétique, décrit un cercle si sa vitesse est perpendiculaire à \vec{B}
 - le sens de l'enroulement mesure le signe de la charge
 - le rayon de courbure mesure l'impulsion
- L'hélice devient spirale si la particule ralentit en traversant la matière
 - caractéristique de ralentissement, puis d'arrêt, d'un électron et positron

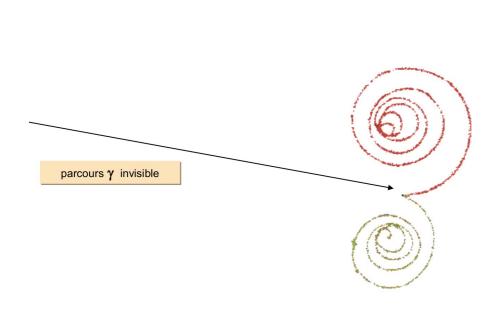

- Particules neutres
 - elles ne laissent pas de traces et sont invisibles (tant qu'il ne leur arrive rien : collision avec un noyau, désintégration, etc)

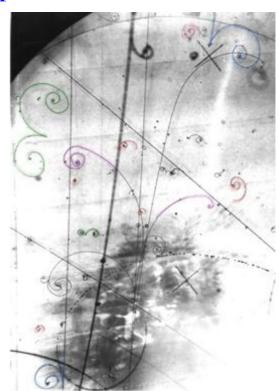
 $\vec{F} = q\vec{v} \wedge \vec{B}$

- ◆ La quantité de mouvement P d'une particule chargée se mesure à partir du rayon de courbure R de sa trajectoire (hélice) dans un champ magnétique
 - P(GeV/c) = 0.3 * B(Tesla) * R(m)
 - la direction est celle de la tangente à la trajectoire au point de départ



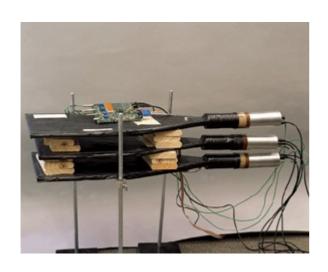
♦ Avec une mesure simultanée de la perte d'énergie par ionisation (dE/dx) on peut estimer la masse de la particule

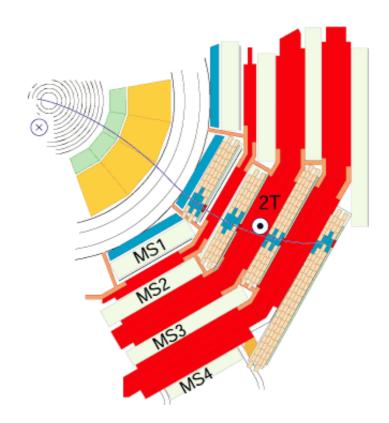

Observer les électrons


- ♦ Il dépose toute son énergie dans la matière rapidement
- ♦ Il constitue le projectile idéal pour sonder la matière
 - extrêmement léger par rapport au proton et sans structure
 - sa stabilité lui permet d'être utilisé dans des accélérateurs de particules
- ♦ Le positron est en tout point comparable à l'électron, mais il circule en territoire hostile
 - le positron finit par rencontrer un électron. Ils se détruisent mutuellement en deux photons

Observer les photons

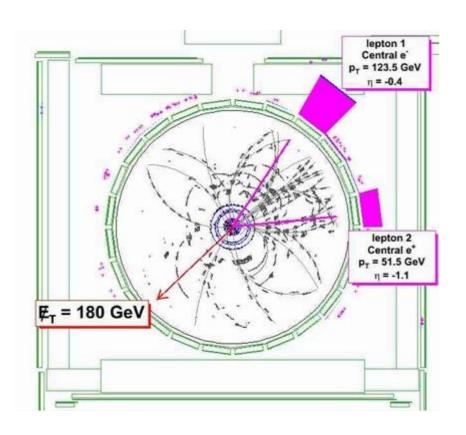
- ♦ Électriquement neutre ⇒ non dévié par les champs magnétiques, ne laisse pas de trace
- ♦ À haute énergie se désintègre en paires électron-positron

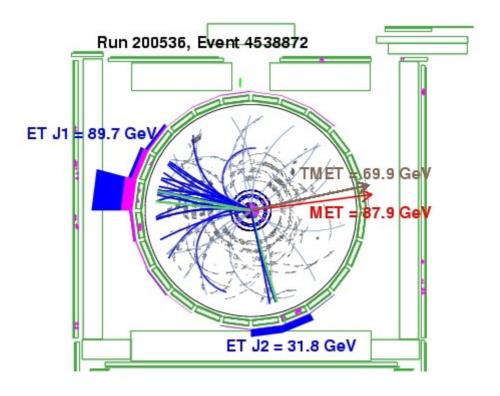



◆ Dépôt d'énergie dans un calorimètre électromagnétique similaire aux électrons

Observer les muons

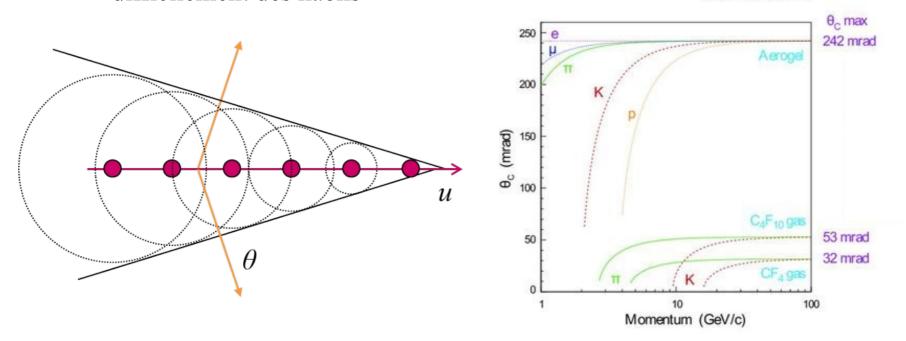
♦ Très pénétrant :


- Bulldozer comparé à l'électron, il perd lentement son énergie
- Interagit peu avec la matière : il dépose peu d'énergie, et est identifié par une mesure de trajectoire non arrêtée

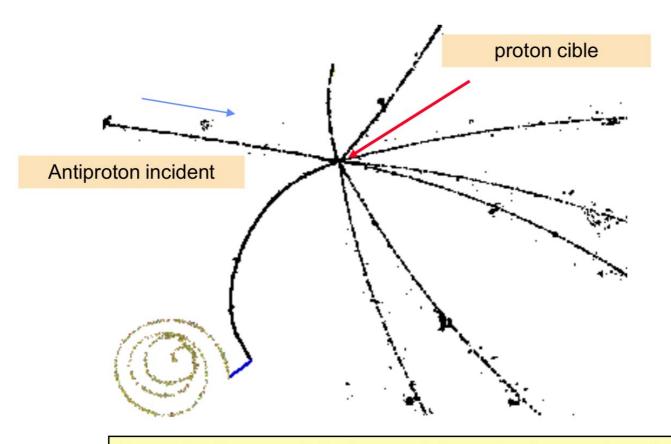


Observer les neutrinos

- ♦ Ils interagissent très peu (uniquement par interaction faible)
 - il faudrait 40 années-lumière de plomb pour les arrêter
 - la plupart du temps invisibles dans les détecteurs : apparaissent comme des particules manquantes



Observer les protons


- ♦ Il est assez lourd et ionisant
 - Au-dessous de 1.4 GeV/c d'impulsion, les protons déposent plus d'énergie par cm de parcours que les mésons π et K, et sont reconnaissables
- ♦ Il est identifiable par effet Čerenkov
 - à impulsion égale, les protons sont plus lents que les particules plus légères
 - s'ils vont plus vite que la lumière dans le milieu traversé, ils émettent des photons Čerenkov, et peuvent facilement être séparés des pions, plus difficilement des kaons

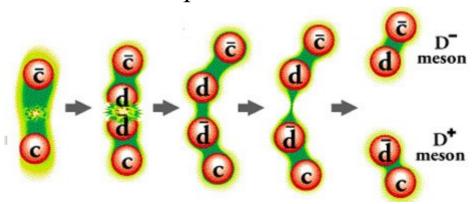
 RICH detector

Observer les anti-protons

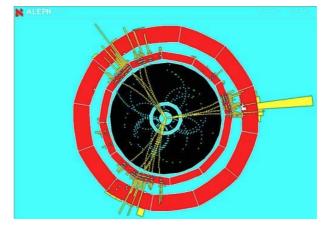
- ♦ Il possède la possibilité de s'annihiler avec un proton ou neutron
 - la réaction d'annihilation libère beaucoup d'énergie (environ 2 GeV)
 - elle produit principalement des mésons π et aussi des mésons K

Observer les neutrons

Le neutron, électriquement neutre, est difficile à détecter



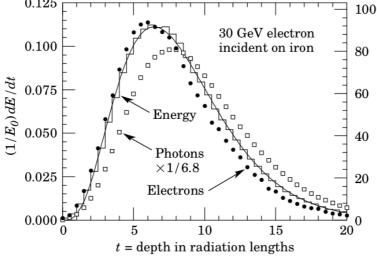
- ♦ On le détecte quand il communique une partie de son énergie à des particules chargées
 - il ralentit en rebondissant sur des noyaux
 - en physique nucléaire, on mesure l'énergie de "protons de recul" : mesure précise
 - en physique des particules, on essaye de recueillir l'énergie d'une cascade de collisions issues d'un neutron primaire : mesure imprécise
- ♦ Calorimètres "hadroniques"
 - on ne peut le distinguer d'autres hadrons neutres comme l'antineutron ou le K° long



Observer les quarks et les gluons

- ♦ Cas particulier des quarks:
 - les quarks ne peuvent exister qu'à l'intérieur des hadrons (charge de couleur)
 - l'intensité de l'interaction forte augmente avec la distance
 - ⇒ Au fur et à mesure que deux quarks s'éloignent l'un de l'autre, la création d'une paire quark-antiquark devient énergétiquement plus favorable. Les quarks résultants se combinent pour former des hadrons

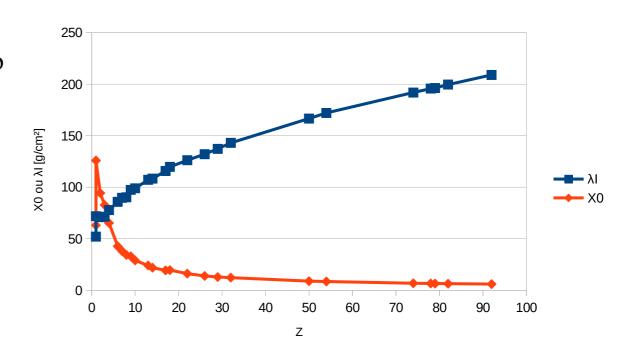
- ♦ Les quarks se manifestent donc par des jets de hadrons
 - vrai aussi pour les gluons
 - observé pour la première fois en 1979
 à DESY (Hambourg)



Longueur de radiation

- lacktriangle Notée X_0 , caractéristique des interactions électromagnétiques
- ♦ Distance moyenne nécessaire pour
 - qu'un électron perde 1-1/e de son énergie

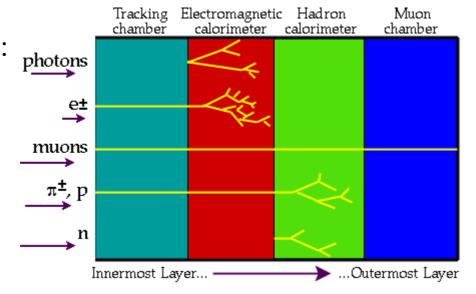
- qu'un photon parcourt 7/9 de son libre parcours moyen avant qu'il ne se


désintègre

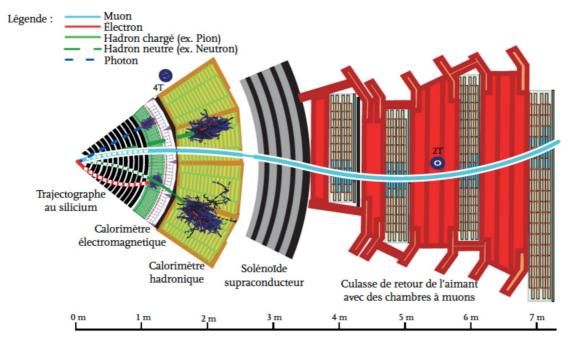
- ♦ Dépend de l'élément (Z), en g/cm²
 - parfois on divise par la densité et on donne X₀ en cm
- ◆ Exemple:
 - 6.37 g/cm² dans le plomb $(X_0/\rho = 0.6 \text{ cm})$
 - calorimètre Pb/Ar d'ATLAS : longueur totale 22 X₀ : peut arrêter tous les électrons/photons jusqu'à une énergie de qqs TeV

Longueur d'interaction

- lack Notée λ_{T}
- Équivalent pour les interactions hadroniques
 - distance moyenne pour qu'une particule perde 1-1/e de son énergie
- $\blacklozenge \lambda_1 > X_0 \text{ pour } Z > 6$
- ♦ Aussi en g/cm²
- Exemples :
 - 199.6 g/cm² pour du plomb
 - 132.2 g/cm² pour du fer



♦ Selon les détecteurs on voudra minimiser (trajectographe) ou maximiser (calorimètre) la quantité de matière


Conclusion : les particules dans les détecteurs

Schématique:

Exemple du détecteur CMS:

Back-up

Emprunts à d'autres cours ©

- ♦ Cours de Steve Muanza à l'École "Techniques de base des détecteurs" 2017
- "Physique des particules aux collisionneurs", F. Ledroit, Bénodet 2017
- ◆ "Conception de détecteurs pour la physique des hautes énergies", P. Puzo, Bénodet 2017
- ♦ "Cours de master classes au CPPM", Y. Caodou et al
- ♦ Cours de I. Wingerter aux CERN Summer Students 2018
- "Un siècle d'étude des rayons cosmiques", D. Décamp, 2012
- ♦ Autre source importante : "The Review of Particle Physics (2018)", Particle Data Group