
Intel®
CNRS DAQ Seminar – Fréjus, November 2018

francisco.perez@intel.com

Programmable Solutions Group 2

• Introduce the high level design coding tools

available for Intel® FPGAs to increase the

abstraction level and boost your productivity

• Make the FPGAs more “friendly” to software

programmers.

• We will cover OpenCL and HLS (High Level

Synthesis).

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 3

HLS vs OpenCL™

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

HLS OpenCL

Quickens design of blocks to fit into a

traditional FPGA design

Quickens the development of a kernel

to fit into a system with an FPGA

accelerator card and host

Uses the C/C++ programming

language for design of components

Uses the kernel C (similar to C) for

kernel design, and a host API for

interaction with the host

Meant to help you design a block to

fit into a traditional FPGA design

Meant to help you create a FPGA

accelerator to fit into an OpenCL

compliant system

CNRS DAQ Seminar – Frejus, November 2018

francisco.perez@intel.com
*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 5

• Introduce the concept of OpenCL™ for

heterogeneous programming using Intel®

FPGAs

• Understand how to develop kernels and how

they are executed on Intel® FPGAs

• Know which are the singular features of

OpenCL™ applied to Intel® FPGAs

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Types of Parallel Computing

Intro to OpenCL™ for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels

The Intel FPGA SDK for OpenCL

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Types of Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group 8

Parallel Computing

“A form of computation in which many calculations are carried out simultaneously,

operating on the principle that large problems can often be divided into smaller

ones, which are then solved concurrently (in parallel)”

~ Highly Parallel Computing, Amasi/Gottlieb (1989)

Programmable Solutions Group 9

Types of Parallelism

Data Parallelism

Task Parallelism

Pipeline Parallelism

Programmable Solutions Group 10

Data Parallelism

Input data separated and sent to parallel resources, results recombined

▪ Same operation(s) applied across different data in parallel

▪ Single Program Multiple Data (SPMD)

▪ Single Instruction Multiple Data (SIMD) for (i = 0; i < N ; i++)

c[i] = a[i] * b[i]

c[0]

c[1]

c[2]

X

X

X

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

… … …

Programmable Solutions Group 11

Task Parallelism

Decompose problem into sub-problems (tasks). Divide and conquer

▪ Tasks operate on same or different data

▪ Example: Multi-CPU system where each CPU execute a different thread

▪ A.K.A. Simultaneous Multithreading (SMT), Thread/Function Parallelism

Problem

Sub-problem

Task 1

CPU 1

Sub-problem

Task 2

CPU 2

Programmable Solutions Group 12

Pipeline Parallelism

Task parallelism where tasks have a producer consumer relationship

▪ Operates on pipelined data

– Different tasks operate in parallel on different data

▪ Example

– Task1 – FFT, Task 2 – Frequency Filter, Task3-Inverse FFT

Task 1 Task 2 Task 3

Data 3

Data 4

Data 2 Data 1

Data 0

Programmable Solutions Group 13

Heterogeneous Computing Systems

Modern systems contain more than one kind of processor

▪ Applications exhibit different behaviors

– Control intensive (Searching, parsing, etc…)

– Data intensive (Image processing, data mining, etc…)

– Compute intensive (Iterative methods, financial modeling, etc…)

▪ Gain performance by using specialized capabilities of different types of processors

Programmable Solutions Group 14

Example Heterogeneous System

Modern computing platform contains many dissimilar processors

▪ Multi-core, general purpose, central processing units (CPUs)

▪ Digital Signal Processing (DSPs) processors

▪ Graphics Processing units (GPUs)

▪ Field Programmable Gate Arrays (FPGAs)

CPUs DSPs GPUs FPGAs

Challenge: How to build a software ecosystem for a heterogeneous platform?

Programmable Solutions Group 15

Traditional Approach to Heterogeneous Computing

▪ Write software for each software programmable architecture CPU, GPU, DSP

– Using different languages and vendor specific tools

▪ Develop custom parallel hardware for FPGA

– Fine-grained parallelism

– Write HDL

– Simulation, timing closure, on-chip verification etc.

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group 17

What is OpenCL™?

▪ Open Computing Language (OpenCL™) - Framework for

heterogeneous computing

– General purpose programming model for multiple platforms

– Host API and kernel language

– Low-level Programming language based on C/C++

– Provides increased performance with hardware acceleration

▪ Open, royalty-free standard

– Managed by Khronos* Group

– Intel® is an active member

– http://www.khronos.org

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

http://www.khronos.org/
http://www.khronos.org/
http://www.intel.com/
http://www.google.com/
http://www.fujitsu.com/
http://www.ibm.com/
http://www.amd.com/
http://www.arm.com/
http://www.nvidia.com/
http://www.ti.com/
http://www.samsung.com/
http://www.ericsson.com/mobileplatforms

Programmable Solutions Group 18

Two Sides of OpenCL™ Standard

▪ Kernel Function

– OpenCL™ C

– Software that runs on accelerators (OpenCL devices)

– Usually used for computationally intensive tasks

▪ Host Program

– Software running conventional microprocessor

– Supports efficient plumbing of complicated concurrent programs with low overhead

– Through OpenCL host API

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Host Accelerator

C/C++

API

OpenCL™

C

Used together to efficiently implement algorithms

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group

Mapping OpenCL Programs

19

x86

PCIe

ACL

Compiler
Standard

C Compiler

SOF X86 binary

OpenCL

Kernel + Host Program

host.ckernel.cl

Programmable Solutions Group 20

Traditional FPGA Design Flow

Synthesis (Mapping)
• Translate design into device-specific primitives

• Design optimized

• Quartus® synthesis or other 3rd party tools

Design specification

Design entry/RTL coding
• Behavioral or structural description of design

• Possibly with the help of high-level tools

RTL functional simulation
• Use 3rd party simulators

• Verify logic model & data flow

LE
DSP

M20K I/O

module dut(…);

always @(…)

…

endmodule;

Static timing analysis
• Verify performance specs can

be met

Board simulation & test
• Simulate board design

• Program & test device on board

Place & route (Fitting)
• Assign primitives to locations

• Route the resources

tclk

Programmable Solutions Group 21

FPGA High Level Design with OpenCL™

Goal: Design FPGA custom hardware with C-based software language

▪ Benefits

– Makes FPGA acceleration available to software engineers

– Debug and optimize in a software-like environment

– Significant productivity gains compared to hardware-centric flow

– Easier to perform design exploration

– Abstracts away FPGA design flow and FPGA hardware

__kernel void _foo (__global float *x) {

int i …

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 22

Compiling OpenCL™ to Intel® FPGA

▪ Custom hardware generated automatically for

each kernel

– Get the advantages of the FPGA without the

lengthy design process

▪ Organized into functional units based on

operation

▪ Able to execute OpenCL™ threads in parallel

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Load Load

Store

Host

Interface

DDR/

QDR

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group 24

OpenCL™ Platform Model

▪ One Host with one or more OpenCL™ Devices

– Each Device is composed of one or more compute units

▪ Memory divided into Host Memory and various types of Device Memory

Host

Host

Memory

OpenCL Device

Compute

UnitCompute

Unit Compute

Unit

Device

Memory

OpenCL Device

Compute

UnitCompute

Unit Compute

Unit

Device

Memory

OpenCL Device

Compute

UnitCompute

Unit Compute

Unit

Device

Memory

OpenCL Device

Compute

UnitCompute

Unit Compute

Unit

Device

Memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

OpenCL™

Platform

Model

Device

Global

MemoryDevice

25

Heterogeneous Platform Model

Host

x86

Host

Memory Global

Memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 26

Intel® FPGA OpenCL™ Device

Each device is made of many independent compute units

▪ Each compute unit is custom built from kernel code

OpenCL™ Device

Compute Unit

Load

Store

Load Load

Write Store

Host

Interface

DDR/

QDR

Compute Unit

Compute Unit

Op

Op Op

Op

Op

Op

Read

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 27

OpenCL™ Platform Layer and Runtime Layer API

OpenCL™ API divided into two layers

▪ Platform Layer API

– Discover platform and device capabilities

– Setup execution environment

▪ Runtime Layer API

– Executes compute kernels on devices

– Manage device memory

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 28

Platform Layer API

Setup device execution environment

– Necessary to allow for heterogeneous environments and multiple devices

▪ Tasks

– Allows host to discover devices and capabilities

– Query, select and initialize compute devices

– Create compute contexts to manage OpenCL™ objects

Typical Platform Layer Steps
1. Query platforms

2. Query devices

3. Create a context for the devices

Programmable Solutions Group 29

Context

Abstract containers that manage host device interaction

▪ Purpose

– Coordinates the mechanisms for host-device interaction

– Manages the device memory

– Keeps track of kernels to be executed on each device

OpenCL™ Platform DeviceDevice

KernelsKernelsKernels

Memory

Objects
Memory

Objects
Memory

Objects

Devices

Queues

Context

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 30

Runtime Layer API

Execute kernels on the device

▪ Tasks

– Memory management

– Run kernels on the device

– Host/device synchronization

Typical Runtime Layer Steps
1. Create a command queue

2. Write to the device

3. Launch kernel

4. Read results back from the device

Programmable Solutions Group 31

Command Queue

Mechanism for host to request action by the device

▪ Each command queue associated with one device

– Each device can have one or more command queues

▪ Host submits commands to the appropriate queue

▪ Operations in the queue will execute in-order for Intel® FPGAs

Device Command Queue

Read from Device

Write to Device

Execute Kernel

Programmable Solutions Group 32

Host / Device Physical Memory Space

▪ The host and the device each has its own physical memory space

– Data needs to be physically located on a device before kernel execution

▪ Use OpenCL™ API functions to allocate, transfer, and free device memory

– Using memory objects through command queues

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 33

Data Transfers Calls

Use Read and Write Host API calls to explicitly transfer data from/to the device

▪ Commands placed on the command queue

▪ If kernel dependent on the buffer is executed on the accelerator device, buffer

is transferred to the device

▪ Runtime determines precise timing of data movement

Programmable Solutions Group

Terminology

34

OpenCL / Poker table

Host -> Card dealer

Context -> Table

device -> Player

cmd queue -> player hands

kernel -> card

Programmable Solutions Group

How they interact…..

Dealer sits at the card table and determine the player
The host selects the devices and places them in a context

The dealer selects cards from the deck and deals them (in hand)
Host select kernels from program, add them on the cmd_queue

Each player looks at their hand and decides what to do
Each device process kernel from the device queue

Dealer respond to host during the game
Host receive events from the devices and invokes event-handling queue

The dealer look at player and decide who won
Once all kernel are done the host receive the results

35

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group 37

OpenCL™ Kernels

Functions that run on OpenCL™ devices

▪ Begins with the keyword __kernel

▪ Returns void

▪ Pointers in kernels should be qualified with an address space

– __private, __local, __global, or __constant

▪ Kernel language derived from ISO C99 with certain restrictions

__kernel void my_kernel (__global float *data) {

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 38

Kernel Example

__kernel void my_kernel (__global float *a,

__global float *b,

__global float *c,

int N)

{

int index;

for (index = 0; index < N; index++)

c[index] = a[index] + b[index];

}

Programmable Solutions Group 39

Compiling OpenCL™ Kernel to FPGAs

Kernels are compiled offline using an Offline Compiler (AOC)

▪ Kernels are first translated into an AOC Object file (.aoco)

– Represents the FPGA hardware system

▪ Object file used to generate the AOC Executable file (.aocx)

– Used to program the FPGA or Flash

// kernel.cl

__kernel void KernelName(…)

{

int index;

for (index = 0; index < N; index++)

c[index] = a[index] + b[index];

}

aoc

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 40

OpenCL™ Kernels to Dataflow Circuits

Each kernel is converted into custom dataflow hardware (Compute Unit)

▪ Gain the benefits of FPGAs without the lengthy design process

▪ Implement C operators as circuits

– HDL code located in <SDK Installation>/ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the kernel

▪ May replicate circuit to accelerate algorithm

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 41

Compilation Example

Kernel compiled into dataflow circuit with flow control

▪ Includes branch and merge units For Entry

For End

__kernel void my_kernel (__global float *a,

__global float *b,

__global float *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

aoc

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions Group

FPGA

Altera’s OpenCL Flow

42

Intel’s OpenCL SDK for FPGA takes a system level view

▪ Board Support Package (BSP)
– “Chassis” to hold the newly created kernel

▪ Kernel Compiler
– Optimized pipelines from C

▪ System Integrator
– Merge all together and generate partial reconfiguration files for FPGA

FPGA
Board Support Package

kernel.cl

Kernel

Compiler
Integrator

Kernel

Programmable Solutions Group 43

FPGA Architecture for OpenCL™ Implementation

FPGA

Host Interface

D
D

RProcessor

External

Memory Controller

& PHY

External

Memory Controller

& PHY

Custom Built

Kernel System

Kernel

Pipeline

Kernel

Pipeline

On-Chip

Memory

Global Memory Interconnect

On-Chip

Memory

Local Memory InterconnectLocal Memory Interconnect

Precompiled periphery (BSP)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 44

Partial Reconfiguration

▪ Reconfigures part of the FPGA while

others continues operation

▪ Every aocx file represent a set of

concurrent OpenCL kernels

▪ Allows kernels to be swapped while

maintaining host-device

communication

Partial Region

Kernel Set C

Kernel Set B

Kernel Set A

BSP Peripherals

(Static Region)

Programmable Solutions Group 45

Intel FPGA Preferred Board for OpenCL

▪ Intel® FPGA Preferred Board for OpenCL™

– Available for purchase from preferred partners and Intel

– Passes conformance testing

▪ Download and install Intel FPGA OpenCL compatible BSP from vendor

– Supplies board information required by the offline compiler

– Provides software layer necessary to interact with the host code including drivers

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

http://www.intel.com/

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group

PCIe link

Host Application
uses Kernels

Partial Reconfig of
Kernels

Device Host Machine

OpenCL

Kernels

OpenCL™ Execution Flow

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group

Mapping Multithreaded Kernels to FPGAs

49

The most simple way of mapping kernel functions to FPGAs is to

replicate the unrolled hardware for each thread

– Inefficient and wasteful

Better method involves taking advantage of pipeline parallelism

– Attempt to create a deeply pipelined representation of a kernel

– On each clock cycle, we attempt to send in input data for a new thread

– Method of mapping coarse grained thread parallelism to fine-grained

FPGA parallelism

Programmable Solutions Group

Example Datapath for Vector Add

50

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Programmable Solutions Group

Example Datapath for Vector Add

51

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Programmable Solutions Group

Example Datapath for Vector Add

52

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Programmable Solutions Group

Example Datapath for Vector Add

53

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+

0

Work item IDs

Programmable Solutions Group

Example Datapath for Vector Add

54

On each cycle the portions of the

datapath are processing different threads

While thread 2 is being loaded, thread 1

is being added, and thread 0 is being

stored

Load Load

Store

2

3

4 5 6 7

8 work items for vector add example

+

0

1

Silicon used efficiently at steady-state

Work item IDs

Programmable Solutions Group

Execution of Threads on FPGA

Better method involves taking advantage of pipeline parallelism

▪ Throughput = 1 thread per cycle

55

t0

t0

t1

t2

t3

t4

t5
C

lo
c
k
 C

y
c
le

s

t1

t2

t3

4 5 6 7

Pipeline Parallelism

Programmable Solutions Group

Pipeline parallelism execution

56

▪ A typical OpenCL™ kernel can have hundreds of pipeline stages

▪ This means, hundreds of simultaneous in-flight threads executing on

the kernel.

▪ Very efficient usage of the inferred Hardware for maximize throughput

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features

Programmable Solutions Group 58

SDK Components

▪ Offline Compiler (AOC)

– Translates your OpenCL™ C kernel source file into an Intel® FPGA hardware image

▪ Host Libraries

– Provides the OpenCL host API to be used by OpenCL host applications

▪ AOCL Utility

– Perform various tasks related to the board, drivers, and compile process

Programmable Solutions Group 59

Intel® FPGA SDK for OpenCL™ Directory Structure

Directory Description

bin Main compiler and utility executables

windows64/bin

linux64/bin

Runtime DLLs and other executables

This should be in your path.

board Design files related to specific supported boards

ip IP cores required for kernel compilation

host Files used by the compilation flow for user programs.

host/include
OpenCL™ API header files, and the interface files used to compile

and link a user host program. Add this directory to the include file

search path when compiling an OpenCL host program.

host/windows64/lib

host/linux64/lib

host/arm32/lib

The OpenCL host runtime libraries. Add this directory to the library

file search path when linking an OpenCL host program.

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 60

Offline Kernel Compiler (aoc)

▪ Compiles kernels for a specific board defined by a board support package

▪ Generates aoco, and aocx files

▪ For detailed info on supported kernel constructs see the Intel® FPGA SDK for

OpenCL™ programming Guide
There are many other debugging, optimization, and build options.

Option Description

-help or -h Help for the tool

-c Creates .aoco object file and sets up a Quartus® Prime hardware design project

-rtl Creates .aocr file that links all of the .aoco files

-board=<board name> Compile for the specified board

-list-boards Prints a list of available boards

aoc –board=<my board> <my kernel file>

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 61

Compiling the Host Program

▪ Include CL/opencl.h or CL/cl.hpp

▪ Use a conventional C compiler (Visual Studio*/GCC)

▪ Add $INTELFPGASDKROOT/host/include to your

file search path

– Recommended to use aocl compile-config

▪ Link to Intel® FPGA OpenCL™ libraries

– Link to libraries located in the
$INTELFPGASDKROOT/host/<OS>/lib directory

– Recommended to use aocl link-config

Standard

C Compiler

main() {

read_data(…);

manipulate(…);

clEnqueueWriteBuffer(…);

clEnqueueNDRange(…,sum,…);

clEnqueueReadBuffer(…);

display_result(…);

}

Intel FPGA

Libraries

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 62

AOCL Utility

Host Compilation Commands (Use in your makefile)

aocl compile-config Displays the compiler flags for compiling your host program

aocl link-config Shows the link options needed by the host program to link with libraries

aocl makefile Shows example Makefile fragments for compiling and linking a host program

Board Management Commands (Functionality Provided by BSP)

aocl install Installs a board driver onto your host system

aocl diagnose Runs the board vendor’s test program

aocl flash <.aocx> Programs the on-board flash with the FPGA image over JTAG

View Kernel Compilation Report

aocl report Displays kernel execution profiler data

Run aocl help or aocl help <subcommand> for detailed information about the tool

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features

Programmable Solutions Group 64

Kernel Development Flow and Tools

Modify kernel.cl

Emulator (< 1 min)

HTML Report (~1 min)

Loop Optimization Report

Detailed Area Report

Architectural Viewer

Profiler (Full compile time)

Functional bugs?

Loop inefficiencies?

Undesired hardware structure?

Sub-optimal memory

interconnect?

Done

Poor performance?

Programmable Solutions Group

Enable kernel functional debug on x86 systems

▪ Quickly generate x86 executables that represent the kernel

▪ Debug support for

– Standard OpenCL™ syntax, Channels, Printf statements

65

Emulator

aoc –march=emulator <kernel file>

aoc

Compiler

./kernel_tb…

…

Running …

kernel void accel(…) {

…

gid = get_global_id(0);

out[gid]=proc(data[gid]);

…

}

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 66

HTML Report

Static report showing optimization, area, and architectural information

▪ Automatically generated with the object file (aoc –rtl)

– Located in <kernel file folder>\reports\report.html

▪ Dynamic reference information to original source code

▪ Loop Analysis Optimization report

– Information on how loops are implemented

▪ Area report

– Detailed FPGA resource utilization by source code or system block

▪ Architectural viewer

– Memory access implementation and kernel pipeline information

Programmable Solutions Group 67

HTML Loop Analysis Optimization Report

▪ Actionable feedback on pipeline status of loops

– Shows loop carried dependencies and bottlenecks

– Especially important for single work-item kernels since they have an outer loop

▪ Shows loop unrolling status

▪ Shows loop nesting relationship

Programmable Solutions Group 68

HTML Area Report

Generate detailed estimated area utilization report of kernel code

▪ Detailed breakdown of resources by source line or by system blocks

▪ Provides architectural details of HW

– Suggestions to resolve inefficiencies

Programmable Solutions Group 69

HTML System Viewer

▪ Displays kernel pipeline implementation and memory access implementation

▪ Visualize

– Off-chip memory

– Load-store units

– Accesses

– Stalls

– Latencies

– On-chip memory

– Implementation

– Accesses

Programmable Solutions Group 70

HTML Kernel Memory Viewer

Helps you identify data movement bottlenecks in

your kernel design. Illustrates:

▪ Memory replication

▪ Banking

▪ Implemented arbitration

▪ Read/write capabilities of each memory port

Programmable Solutions Group 71

Profiler

▪ Inserts counters and profiling logic into the HW design

▪ Dynamically reports the performance of kernels

Kernel Pipeline

Load

Store

+

Load

Memory Mapped

Registers

aoc --profile <kernel file>

kernel void accel(…) {

…

gid = get_global_id(0);

out[gid] = a[gid]+b[gid];

…

}

Programmable Solutions Group 72

Collecting and Viewing Profile Information

▪ Compile kernel with aoc --profile option

– .source file generated containing source information

▪ Run host application with generated aocx file

– Performance counters will collect profile information

– Host saves a profile.mon monitor description file to working directory

▪ View statistical data using the profiler GUI

– Optionally provide .source file to view source code of profiled application

aocl report <kernel file>.aocx profile.mon [<kernel file>.source]

Programmable Solutions Group 73

Profiler Reports

▪ Get runtime information about kernel performance

▪ Reports bottlenecks, bandwidth, saturation, and pipeline occupancy

– At data access points

Heterogeneous Parallel Computing

Intro to OpenCL for Intel FPGAs

OpenCL™ Platform model and Host-side Software

Executing OpenCL Kernels
Writing & compiling kernels

Launching kernels

Harnessing Pipeline parallelism

The Intel FPGA SDK for OpenCL
SDK components

Debug Tools

FPGA-specific Features (channels, libraries)

Programmable Solutions Group

Accelerator

75

Traditional OpenCL™: Host-Centric Architecture

All communication to/from kernels done through global memory

Device Global Memory

User

Kernel

CU

Host CPU

User

Kernel

CU

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 76

Idea: Communication without Global Memory

▪ Kernel-to-kernel communication done directly on-chip

▪ IO-to-kernel communication done without the host

Accelerator

Device Global Memory

User

Kernel

CU

Host CPU

User

Kernel

CU

Programmable Solutions Group 77

Implementing FIFOs with Channels / Pipes

▪ Use FIFOs instead of global memory for efficient communication to/from kernel

compute units

▪ Supported with Intel® FPGA’s channels extension and OpenCL™ 2.0 pipes

▪ Works well with applications fitting into the general streaming template

– E.g. Wireline Processing, Financial HFT Applications, Video Pipelines

I/O I/O

Global Memory Buffer

FIFO

Kernel0

Kernel1

Kernel2

KernelN

FIFO

FIFO

FIFO

FIFO

FIFO

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 78

Channels / Pipe Features

▪ Provides FIFO-like communication mechanism

▪ Each call site is unidirectional

▪ Allows BSP-specific I/O communication with kernel compute units

▪ Advantages

– Leverage internal bandwidth of the FPGA

– Avoid the bottleneck of using off-chip memory

– Reduces overall latency by allowing concurrent Kernel execution

– Reduce storage requirements when data is consumed as it is produced

Kernel CUKernel CU

FIFO

Channel
Write Read

Programmable Solutions Group 79

Kernel-to-Kernel Channel Performance Gains

▪ Standard

– If communication between kernels is required, host forced to launches kernels

sequentially

– Kernel 1 writes to global memory, kernel 2 reads from global memory

▪ With channels

– Host can launch kernels in parallel

– kernel 1 writes to channel as kernel 2 reads from it

Kernel 1 Kernel 2

Kernel 1

Channel Access

Kernel 2

Programmable Solutions Group 80

IO Channel Performance Gains

▪ Standard

– Data needs to be written to global memory first before kernel can process it and then

read back after processing

– Limited by PCIe* bandwidth and memory throughput

▪ With IO channels

– Kernel can run while data flows across network interface

– System running at speed of network interface

Kernel 1Writing to Global Buffer Reading from Global Buffer

Kernel 1

Reading from IO Channel

Writing to IO Channel

Programmable Solutions Group 81

I/O Channels

▪ Channels used with input or output features of a board

– E.g., network interfaces, PCIe interfaces, camera interfaces, etc.

▪ Behavior defined by the Board Support Package (check board_spec.xml)

▪ Declaration of I/O channel using the io attribute

▪ Usage same as other channels

– data = read_channel_intel(udp_in_IO);

<channels>

<interface name=“udp_0” port=“udp0_out” type=“streamsource” width=“256” chan_id=“eth0_in”/>

<interface name=“pcie” port=“tx” type=“streamsink” width=“32” chan_id=“pcie_out” />

</channels>

channel QUDPWord udp_in_IO __attribute__((io(“eth0_in”)));

channel float data __attribute__((io(“pcie_out”)));

Programmable Solutions Group 82

OpenCL™ Libraries

Create libraries from RTL or OpenCL™ source and call those library functions

from user OpenCL code

Why use RTL modules?

– You want to use optimized and verified RTL modules in OpenCL™ kernels without

rewriting the modules as OpenCL functions

– You want to implement OpenCL kernel functionality that you cannot express

effectively in OpenCL

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group 83

OpenCL™ Libraries

VHDL

OpenCL

Verilog
User OpenCL code

kernel…

… = my_divfd(…);

module

my_divfd(…)

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

OpenCL Library

Intel® FPGA SDK for

OpenCL™ Offline

Compiler

OpenCL Compiler

Executable File

(.aocx)

Custom module is

packaged as a library
Function within the library is

called in your OpenCL kernel

Compiler takes as

input the kernel and

the library

Programmable Solutions Group

When you need (or want) to use your own boards with OpenCL

▪ Framework of host software and FPGA interface design to enable the use of

OpenCL™ on a custom board

▪ FPGA design, software, and board bring up skills required

▪ Custom BSP provides

– Timing-closed Hardware

– MMD software layer (drivers)

– Some AOCL utility function

84

Developing a custom Board Support Package

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

Programmable Solutions Group

Working with custom boards

Remember the concept of BSP

▪ Board Support Package (BSP)
– Initial FPGA image as “Chassis” to hold the newly created kernel

Programmable Solutions Group 86

BSP includes some software stuff as well…

FPGA

Host Interface

D
D

R

External

Memory Controller

& PHY

External

Memory Controller

& PHY

Precompiled FPGA periphery and SW stack (BSP)

Host

PCIe Root Port

System Driver

Kernel Driver

User Mode Driver

HAL

OpenCL API

User Application

User Application

Programmable Solutions Group 87

References and Documentation

▪ Intel® FPGA OpenCL collateral

– https://www.intel.com/content/www/us/en/software/programmable/sdk-for-

opencl/overview.html

– Intel FPGA SDK for OpenCL™ Getting Started Guide

– Intel FPGA SDK for OpenCL Programming Guide

– Intel FPGA SDK for OpenCL Best Practices Guide

– Free Intel FPGA OpenCL Online Trainings

▪ Khronos* Group OpenCL Page

▪ OpenCL Reference Card

– https://www.khronos.org/files/OpenCLPP12-reference-card.pdf

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.khronos.org/files/OpenCLPP12-reference-card.pdf

Programmable Solutions Group 88

• High-level parallel computing as the way to
solve performance bottlenecks problems of
your processing systems.

• OpenCL™ SDK with Intel® FPGAs facilitates
the adoption of heterogeneous computing.

• We went through the basics of the OpenCL™
standard and how compile and run OpenCL™
programs using the available Intel® FPGA
tools.

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of Khronos

francisco.perez@intel.com

CNRS DAQ Seminar – Frejus, November 2018

Programmable Solutions Group 90

• Understand the concept of high-level

synthesis for Intel® FPGAs

• Use the Intel HLS Compiler to synthesize,

functionally verify, and simulate design IP for

Intel FPGA

• Understand how the component executes on

the FPGA

Introduction to high-level synthesis with the Intel® HLS Compiler

HLS flow

HLS interfaces for integration in Platform Designer

Introduction to high-level synthesis with the Intel® HLS Compiler

HLS flow

HLS interfaces for integration in Platform Designer

Programmable Solutions Group 93

High Level Synthesis

Synthesize a C/C++ function in to an RTL implementation

▪ Develop the component in a software environment

▪ Functionally verify the component within a software environment

▪ Seamlessly integrate with hardware simulation environment

▪ Optimize design using software-centric tools and reports

▪ Integrate generated IP easily within traditional FPGA design tools

Programmable Solutions Group 94

Intel® HLS Compiler

C++

Intel® HLS

Compiler

Qsys

Quartus

Prime

HLS

Libraries

(planned)

Intel IP

Architectural

Iterations

Functional

Iterations

Algorithms

Accelerate FPGA design by raising abstraction layers to C++

Accelerated Development

▪ Untimed C++ to optimized RTL

▪ Fast functional debug iterations

▪ Export to Platform Designer IP Library

Optimized Results

▪ Increased Fmax with Pipeline insertion

▪ Increased throughput with Parallelism

▪ Map to device hardware resources

▪ Ability to target hard floating-point blocks with Intel FPGAs

Programmable Solutions Group

Accelerate FPGA Development Cycles

RTL vs Untimed C++ Functional Verification Times

Design

Creation

Functional

Verification

RTL

Synthesis

Place &

Route

Gate Level

Verification

Design

Creation

Functional

Verification

RTL

Synthesis

Place &

Route

Gate Level

Verification

Traditional RTL Design Methodology

HLS Design Methodology

Design RTL Sim

Time

C Sim Time Acceleration

AES Encryption 22 mins 46 ms 29,000x

Huffman Encoding 13 mins 52ms 15,000x

Optical Flow ~2 Days 10 seconds 12,000x

Complex FIR Filter 4.5 min 63 ms 4,200x

Fast Functional iteration Cycle

Benchmark performed using the following hardware & software

• Intel® HLS v0.9, ModelSim-SE-64 10.4d, Hardware: 2x8-core Intel Xeon ES-2680 @2.7 GHz, 256 GB RAM

Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks

http://www.intel.com/benchmarks

Programmable Solutions Group 96

Automatically Verified RTL

Generated RTL is verified to the

original C++ System Model

▪ New top-level C++ testbench

executable is generated that

supports ModelSim co-simulation

▪ Simulation files automatically

generated and executed

Design_tb.cpp

Design.cp

p

Design_tb.exe

Design.vh

d

ModelSim

GCC

Intel® HLS

Compiler

Verification Flow Outputs

Design Source Inputs

Programmable Solutions Group 97

Easier Design Reuse Enabled through Abstraction

Easily reuse C++ based IP in multiple

projects (building libraries)

▪ Parametrize with directives

– Performance

– Interfaces

– Memories

C++ Source easier to modify vs RTL

Generate Library IP for use by Qsys Pro

System design environment

Platform Designer

Intel®

HLS

Compiler

PD IP Library

Project A Project B

Introduction to high-level synthesis with the Intel® HLS Compiler

HLS flow

HLS interfaces for integration in Platform Designer

Programmable Solutions Group 99

Intel® HLS Compiler

▪ Targets Intel® FPGAs

▪ Command-line executable: i++

▪ Builds an IP block

– To be integrated into a traditional FPGA design using FPGA tools

▪ Leverages standard C/C++ development environment

▪ Goal: Same performance as hand-coded RTL with 10-15% more resources

IP
HLS

Compiler
C/C++

Source

Platform

Designer

Programmable Solutions Group 100

HLS Procedure

Intel® HLS

Compiler

HDL IP

C/C++ Source

Functional

Iterations

Architectural

Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP

• Examine compiler generated reports

• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group

#include "HLS/hls.h"
#include "assert.h"
#include "HLS/stdio.h"
#include "stdlib.h"

component int accelerate(int a, int b) {
return a+b;

}

int main() {
srand(0);
for (int i=0; i<10; ++i) {

int x=rand() % 10;
int y=rand() % 10;
int z=accelerate(x, y);
printf("%d + %d = %d\n", x, y, z);
assert(z == x + y);

}
return 0;

}

Example Component/Testbench Source

main() becomes testbench for

component accelerate()

i++ -march=<fpga family> --component accelerate mysource.cpp

accelerate() becomes an FPGA

component

– Use --component i++ argument or

component attribute in source

101

Programmable Solutions Group

Cosimulation

Cosimulation: combines x86 testbench with RTL simulation

▪ HDL code for the component runs in an RTL Simulator

– Verilog

– RTL testbench automatically created from software

▪ main() and everything else called from main runs on x86 as the testbench

▪ Communication using SystemVerilog Direct Programming Interface (DPI)

– Allows C/C++ to interface SystemVerilog

– Inter-process communication (IPC) library used to pass testbench input data to RTL

simulator, and returns the data back to the x86 testbench

102

Programmable Solutions Group 103

Cosimulation Verifying HLS IP

The Intel® HLS compiler automatically compiles and links C++ testbench with an

instance of the component running in an RTL simulator

▪ To verify RTL behavior of IP, just run the executable generated by the HLS

compiler targeting the FPGA architecture

– Any calls to the component function becomes calls the simulator through DPI

src.c

lib.h

i++ -march=<fpga family> src.c

a.exe|out

a.prj/verification/

Data

IP Function Call

Programmable Solutions Group 104

C/C++ Functions to Dataflow Circuits

Each component function is converted into custom dataflow hardware

▪ Gain the benefits of Intel® FPGAs without the length design process

▪ Implement C/C++ operators as circuits

– HDL code located in <HLS Installation>\ip

– Load Store units to read/write memory

– Arithmetic units to perform calculations

– Flow control units

– Connect circuits according to data flow in the function

Programmable Solutions Group 105

Compilation Example

Software compiled into dataflow circuit with flow control

▪ Include branch and merge units For Entry

For End

void my_component(int *a,

int *b,

int *c,

int N)

{

int i;

for (i = 0; i < N; i++)

c[i] = a[i] + b[i];

}

i++

Load a[i] Load b[i]

a[i] + b[i]

Store c[i]

Programmable Solutions Group 106

Main HTML Report

The Intel® HLS Compiler automatically generates HTML report that analyzes

various aspects of your function including area, loop structure, memory usage,

and system data flow

▪ Located at a.prj/reports/report.html

Many Types of Reports

Programmable Solutions Group 107

HLS Procedure: Integration

Intel® HLS

Compiler

HDL IP

C/C++ Source

Functional

Iterations

Architectural

Iterations

Create Component and Testbench in C/C++

Functional Verification with g++ or i++
• Use -march=x86-64

• Both compilers compatible with GDB

Compile with i++ -march=<FPGA fam> for HLS
• Generates IP

• Examine compiler generated reports

• Verify design in simulation

Run Intel® Quartus® Prime Software Compile on Generated IP
• Generate QoR metrics

Integrate IP with rest of your FPGA system

Programmable Solutions Group 108

Intel® Quartus® Software Integration

▪ a.prj/components directory contains all the files to integrate

– One subdirectory for each component

– Portable, can be moved to a different location if desire

▪ 2 use scenarios

1. Instantiate in HDL

2. Adding IP to a Platform Designer system

Programmable Solutions Group 109

HDL Instantiation

▪ Add Components to Intel® Quartus®

Software Project

– <component>.qsys to Standard Edition

– <component>.ip to Pro Edition

▪ Instantiate component module in your design

– Use template
a.prj/components/<component>/<component>_inst.v

Programmable Solutions Group

Platform Designer System Integration Tool

110

Accelerate development

HDL

IP 1

Custom 1

IP 2

IP 3

Custom 2

Connect custom IP

and systems

Simplify integration

Catalog of

available IP

 Interface protocols

 Memory

 DSP

 Embedded

 Bridges

 PLL

 Custom Components

 Custom Systems

Automate integration tasks

Programmable Solutions Group

Platform Designer Integration

▪ Platform Designer component generated for each component:

– For PD Standard – a.prj/components/<component>/<component>.qsys

– For Platform Designer – a.prj/components/<component>/<component>.ip

▪ In Platform Designer, instantiate component from the IP Catalog in the HLS

project directory

– Add IP directory to IP Catalog Search Locations

– May use a.prj/components/**/*

– Can be stitched with other user IP or Intel® FPGA IP with compatible interfaces

▪ See tutorials under tutorials/usability

111

Programmable Solutions Group 112

Platform Designer HLS Component Example

▪ Example

– Cascaded low-pass filter

and high-pass filter

HLS Components

Programmable Solutions Group 113

Avalon® Interfaces

Easily connects components in an Intel® FPGA to simplify system design

▪ Standard interfaces design for interoperability

▪ HLS compiler generates Avalon® interfaces around HLS components

▪ Avalon Streaming Interface (Avalon-ST)

– Unidirectional flow of data, simple flexible interface

▪ Avalon Memory Mapped Interface (Avalon-MM)

– Address-based read/write interface typical of master-slave connections

▪ Other Interfaces

– Conduit, Tri-State Conduit, Interrupt, Clock, Reset

Programmable Solutions Group 114

Avalon®-MM Interfaces

▪ Address-based (memory-mapped) protocol that allows

components to communicate using read/write requests

▪ Master interface

– Initiates read/write transfers targeting specific address

▪ Slave interface

– Accepts and responds to transfer requests

▪ Interconnect handles decoding of master address

request to actual slave interface, backpressure,

clocking differences, etc.

▪ Associated with a clock interface

Example master/slave

connections

P
la

tf
o

rm

D
e

s
ig

n
e

r

in
te

rc
o

n
n

e
c
t

C
P

U
 /
 D

M
A

M
a

s
te

r
In

te
rf

a
c

e

S
la

v
e

 i
n

te
rf

a
c

eaddress

control

readdata

address

control

readdata

writedata writedata

Programmable Solutions Group 115

Avalon®-ST Interfaces

▪ Standard, flexible, and modular protocol for transfer of data

– Unidirectional

– Point-to-point connections

– Fully synchronous

– Supports simple and complex interface requirements

Data

source

Data

sink

Data

ready

valid

startofpacket

endofpacket

Programmable Solutions Group 116

Avalon® Interface Specification

▪ Defines the entire Avalon interface standard,

including all variations

▪ Provides reference information on additional

transfer types

– Use cases

– Waveform diagrams

▪ http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Programmable Solutions Group 117

Explicit MM Master Interface

▪ Explicitly declare Avalon-MM Master
interfaces using mm_master<> class

– Greater control over interface

– Specify attributes through parameters
dut

start

busy

a[9:0]

b[9:0]

i[31:0]

done

stall

returndata[31:0]

clock

component int dut(ihc::mm_master<int, ihc::aspace<2>, ihc::latency<0>,

ihc::awidth<10>, ihc::dwidth<32> > &a,

ihc::mm_master<int, ihc::aspace<2>, ihc::latency<0>,

ihc::awidth<10>, ihc::dwidth<32> > &b,

int i) {

return a[i]*b[i];

}

Master interface

Programmable Solutions Group 118

Streaming Interfaces

▪ Scalar function arguments become pipelined input ports on the HDL module

– Avalon Streaming interface associated with start and busy inputs

– Implicit

▪ Explicit Streaming Interfaces

– Use ihc::stream_in<> and ihc::stream_out<> template classes

– Pass by reference

– Creates Avalon Streaming interface with valid and ready signals

– Explicit control over interface

Programmable Solutions Group 119

Explicit Streaming Interface Example

a_data[7:0]

iord

iowr

busy

start

done

stall

a_valid

a_ready

b_data[7:0]

b_valid

b_ready

component

void dut(ihc::stream_in<unsigned char> &a,

ihc::stream_out <unsigned char> &b)

{

for (int i = 0; i < N; i++) {

unsigned char input = a.read();

input = 255 - input;

b.write(input);

}

}

Programmable Solutions Group 120

Memory-Mapped HLS Component in a System

UART Timer

System

Memory

Platform Designer Interconnect

HLS

Component

Component

Slave

Interface

Memory-

Mapped

Master

Slave

Memory

Processor

Data

Master SlaveI/O

Programmable Solutions Group 121

MM HLS Component with Streaming Interfaces

HLS

Component

Downstream

Component

HLS

Component

Stream

Out

Stream

In

valid

data

ready

Stream

In

Stream

Out
Upstream

Component

valid

data

ready

valid

data

ready

Platform Designer Interconnect

Processor

Data

Master

Slave

CSR

Slave

CSR

Programmable Solutions Group 122

References and Documentation

▪ Intel® FPGA high-level design tools landing page

▪ Intel HLS Compiler support page

▪ References

– Intel HLS Compiler User Guide

– Intel HLS Compiler Getting Started Guide

– Intel HLS Compiler Reference Manual

– Intel HLS Compiler Best Practices Guide

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/high-level-design/intel-hls-compiler/support.html

Programmable Solutions Group 123

• Intel® HLS Compiler increases the designer
productivity by raising the design entry
abstraction from RTL to C++

• Shortens development time through

accelerated verification

• Implements FPGA specific optimization

techniques to deliver great quality of results

Programmable Solutions Group 124

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and

may require enabled hardware, software or service activation. Performance

varies depending on system configuration. Check with your system manufacturer

or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria,

Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel

Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

