Exploring the primordial Universe with QUBIC The QU Bolometric Interferometer for Cosmology

J.-Ch. Hamilton (APC-CNRS-IN2P3, Paris, France) on behalf of the QUBIC Collaboration

Challenges for the primordial B-modes quest

Instrumental Systematics \lesssim 1%

Polarized Foregrounds \gtrsim primordial B-modes

Challenges: addressed by **QUBIC & B.I.**

Small signal

 $B.I. \rightarrow$ High sensitivity with fewer detectors

I024 Superconducting Bolometers
Ultra-Wide-Band design (increase Nγ)

End-To-End Simulations: σ(r)=0.01 (3 years) [Hamilton, Mousset et al. QUBIC I] (JCAP 2022)

Challenges: addressed by **QUBIC & B.I.**

Small signal

 $B.I. \rightarrow$ High sensitivity with fewer detectors

Instrumental Systematics

B.I. \rightarrow Natural low-systematics design

- I024 Superconducting Bolometers
- Ultra-Wide-Band design (increase Nγ)

End-To-End Simulations: σ(r)=0.01 (3 years) [Hamilton, Mousset et al. QUBIC I] (JCAP 2022)

- Original low cross-polarization design
- Self-Calibration (interferometry)

< 0.6% Cross-Polarization measured in the lab [Torchinsky, Hamilton et al. QUBIC III] (JCAP 2022) Specific B.I. feature

Challenges: addressed by **QUBIC & B.I.**

Small signal

 $B.I. \rightarrow High$ sensitivity with fewer detectors

Instrumental Systematics

B.I. \rightarrow Natural low-systematics design

Polarized Foregrounds

 $B.I. \rightarrow$ Intrinsic Spectral Sensitivity

.-Ch. Hamilton

I024 Superconducting Bolometers

• Ultra-Wide-Band design (increase Nγ)

End-To-End Simulations: σ(r)=0.01 (3 years) [Hamilton, Mousset et al. QUBIC I] (JCAP 2022)

- Original low cross-polarization design
- Self-Calibration (interferometry)
- < 0.6% Cross-Polarization measured in the lab [Torchinsky, Hamilton et al. QUBIC III] (JCAP 2022)

Specific B.I. feature

- Spectral imaging allows ~5 sub-bands for
 - 150 and 220 GHz bands: Δv/v~0.05 (TD)

Demonstrated with laboratory data at 150 GHz [Mousset, Gamboa et al. QUBIC II] (JCAP 2022)

The QUBIC Concept: adding interferometry

Fringe and Synthesized Beam data: [Torchinsky et al., QUBIC III, arXiv:2008.10056v3] (Special issue on QUBIC in JCAP, 2022)

and and and and

Bolometric Interferometry \Leftrightarrow Synthesized Beam Map-Making

We scan the sky with our PSF

 $d(t) = \int B_s \left(ec{n} - ec{n}_{
m ptg}(t)
ight) Sky(ec{n}) {
m d}ec{n}$

QUBIC PSF (BI Synthesized beam)

Back to the synthesized beam: real calibration data

Interpeak distance is related to the shortest baseline $D/\lambda =>$ function of wavelength

[Torchinsky et al., QUBIC III arXiv:2008.10056v3] (Special issue on QUBIC in JCAP, 2022)

Peaks distance evolution w.r.t. Frequency opens the path to Spectral Imaging !

Unique to BI !

200x200 pix

10 '/pix,

[Torchinsky et al., QUBIC III arXiv:2008.10056v3] (Special issue on QUBIC in JCAP, 2022)

The sea and and

10

Moon spectrum measurement (Salta, July 2022, few hours)

To be improved soon a the site (less sky noise, more integration time)

Spectral-Imaging simulations

Update of <u>[Mousset, Gamboa et al., QUBIC II, arXiv:2010.15119v1]</u> (Special issue on QUBIC in JCAP, 2022) + [Mathias Regnier, PhD thesis, in progress]

and the set of the set

APC - Paris - France hamilton@apc.in2p3.fr CS IN2P3 July 3rd, 2023 - Paris

CNIS

Sensitivity forecasts (3 years QUBIC FI): $\sigma(r) = 0.01$

13

CNIS

BI as a complement to CMB-S4: foreground mitigation

Non-minimal dust model: <u>Dust SED decorrelation</u> (Corr_length = 15:3x smaller than current constraints)

[Régnier, Manzan et al., submitted]

BI as a complement to CMB-S4: foreground mitigation

Non-minimal dust model: <u>Dust SED decorrelation</u> (Corr_length = 15:3x smaller than current constraints)

B.I. is needed to complement direct imaging: Dust decorrelation is to be expected from realistic dust

CNIS

• Classical

imagers:

for the second

Frequency maps → Component separation

- Spectral resolution limited by bandwidth $\Delta v/v \sim 0.25$
- Requires accurate noise covariance in map space

Frequency maps TOD **Components** maps Band 0 20 ADU 500000 1000000 Ó Map Component Band 1 Making Separation 10 ADU -10500000 1000000 Band 2 0 ADU -20 500000 1000000

Classical Imager Pipeline

Classical Map-making (in each band) $\vec{y} = H \cdot \vec{s} + \vec{n}$

frithink man

Frequency Mapmaking Bolometric Interferometer Pipeline

CS IN2P3 July 3rd, 2023 - Paris

Classical Map-making

(in each band)

 $\vec{y} = H \cdot \vec{s} + \vec{n}$

Frequency Map-making

 $ec{y} = \sum^{N_{rec}-1} H_j \cdot ec{s}_j + ec{n}$

i=0

17

A CONTRACTOR OF THE OWNER

Classical imagers: Frequency maps → Component separation

• B.I.: frequency sensitivity in TOD

⇒ directly build components maps from TOD

- Full Spectral-Imaging resolution
- Richer spectral modeling
 - Spectral index variations
 - Emission lines (CO, ...)
- Simpler noise covariance

Components Mapmaking Bolometric Interferometer Pipeline

CS IN2P3 July 3rd, 2023 - Paris CDTS

[Régnier et al., in preparation]

Classical Map-making

(in each band)

 $\vec{u} = H \cdot \vec{s} + \vec{n}$

Frequency Map-making

Components Map-making

 $ec{y} = \left(\sum_{j=0}^{N-1} H_j \cdot A_j
ight) \cdot ec{c} + ec{n}$

 $ec{y} = \sum^{N_{rec}-1} H_j \cdot ec{s_j} + ec{n}$

i=0

- Classical imagers: Frequency maps → Component separation
- B.I.: frequency sensitivity in TOD
 - ⇒ directly build components maps from TOD
 - Full Spectral-Imaging resolution
 - Richer spectral modeling
 - Spectral index variations
 - Emission lines (CO, ...)
 - Simpler noise covariance

July 3rd, 2023 - Paris

CNIS

TOD Wide band Uide band Component Separation Map Making Spectral-imaging based: Frequency Information in TOD Only possible with B.I.! Frequency Mapmaking Bolometric Interferometer Pipeline

QUBIC /

- Classical imagers: Frequency maps → Component separation
- **B.I.: frequency sensitivity in TOD** •
 - \Rightarrow directly build components maps from TOD
 - Full Spectral-Imaging resolution
 - **Richer** spectral modeling
 - Spectral index variations 0
 - Emission lines (CO, ...) 0
 - Simpler noise covariance

First TOD \rightarrow **Components MapMaking (parametric) !** Nominal noise - 3 components: CMB, Dust, CO line

CNIS

CO

line

QUBIC WBS

and a substance of the second and the

J.-Ch. Hamilton APC - Paris - France hamilton@apc.in2p3.fr

CS IN2P3 July 3rd, 2023 - Paris

CNIS

	2023	20	24	2025	2026	202	27	
QUBIC Instrument phases	Data Taking with TD	Upgrade to FI (~ANR funded)		Data Tak	ing with Fl		QUBIC2 (SO, S4 ?)	
Proposal Scientific phases and objectives	Phase 1: QUBIC TD Science On-Sky demonstration of BI → First spectro-imaging results on bright Galactic regions		Phase 2: QUBIC FI Science σ(r) = 0.01 (with Planck) → Self-Calibration operational → Constraints on diffuse dust SED in the "clean" QUBIC field → SED of bright Galactic regions					

OUBIC - Ist Bolometric Interferometer - inaugurated in Nov. 2022 - Commissioning is on its way !

• Sensitivity to primordial B-modes: $\sigma(r)=0.01$ (3 years)

• Self Calibration & Low cross-polarization (measured XPol < 0.6% : a few times better than competitors)

Welcome

to join us !

QUBIC Commissioning: Cryogenic yield 50%

AND ALL OF ALL

23

until early June

CNIS

QUBIC Commissioning: Sky Dips

QUBIC Timeline curve for TES#128 (2023-May-24 18:37 UTC) Array P87, ASIC #1, Pixel #245, Temperature 322 mK, Feedback Relay: 100kΩ, Heater OFF

J.-Ch. Hamilton APC - Paris - France hamilton@apc.in2p3.fr

24

QUBIC Commissioning: Carbon Fibers

25

QUBIC Commissioning: Sky Scans (ongoing analysis)

J.-Ch. Hamilton APC - Paris - France hamilton@apc.in2p3.f

		2023	20	24	2025	2026	20	27	
	QUBIC Instrument phases	Data Taking with TD	Upgrade to FI (~ANR funded)		Data Ta		QUBIC2 (SO, S4 ?)		
	Proposal Scientific phases and objectives Prist spectro-imaging results on bright Galactic regions			Phase 2: QUBIC FI Science σ(r) = 0.01 (with Planck) → Self-Calibration operational → Constraints on diffuse dust SED in the "clean" QUBIC field → SED of bright Galactic regions					
	• OUBIC - 1st • Sensitivity to • Self Calibrat • Bl: Spectral-Ir	Bolometric Interfer o primordial B-modes: <u>s</u> tion & Low cross-polarizati maging:	<u>ometer - i</u> <u>5(r)=0.01 (</u> 3 ion (<mark>measure</mark>	naugurat years) ed XPol < 0	ed in Nov. 2022 - C	Commissioning is on than competitors)	<u>its way !</u>	Welcome to join us !	
	 Improve Foreground Mitigation (Δv/v 5-8 times better than imager) : <u>crucial for realistic dust</u> Direct TOD→Components approach including external (Planck data) Ultra-Wide-Band design: a unique focal plane covering [130-250 GHz] (with notch filter) => σ(r)=0.009 (3 years) [alternative way of improving CMB detectors sensitivity: increase number of photons with increased bandwidth] 							AP special Issue QUBIC (2022)	
	Bolometric Intel OUltra-Wie Possible	erferometry beyond Q de-Band ⇒ increase freque to incorporate a BI in a	UBIC ncy coverage SO or S4 S	of simple de AT tube wi	tectors (TES, MKIDs) ⇒ i th MKIDs for a unifyi i	Gain in mapping speed (sen 1 g IN2P3 contribution (+	nsitivity) ! + INFN,))
Q	JCh. Hamilton APC - Paris - France hamilton@apc.in2p3.	fr PYC	China Ca			CS IN2P3 July 3rd, 2023 - Paris	CNTS		7