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Abstract
Quantum computing is a new set of technologies implementing quantum bits (qubits) and operators

on them. The first generation of quantum computers is now available but these are technically limited
(low number of qubits and low decoherence time) and a lot of theoretical work is needed to fully exploit
them. The QC2I project is a master project from IN2P3, created in 2021. It is composed of 22 members
(researchers, engineers and students) working on quantum computing for high energy physics. The
thematics covered by the project are mainly oriented on computation and algorithms. They are divided
in three main themes: simulation of complex quantum systems, preparation of the quantum computing
revolution and quantum machine learning.

1 Introduction
Quantum computers are new devices exploiting the laws of quantum mechanics to perform different compu-
tations. The properties of the quantum space (the Hilbert space), especially its exponential size make the
quantum computers very appealing to perform calculations that are very memory-consuming in the tradi-
tional computing world. This remark has been noticed by Richard Feynman himself, in a keynote speech in
1982 [1].

Some quantum systems are so complex,
especially when the number of degrees
of freedom increases, that their simula-
tion on classical computers becomes im-
possible. For these complex quantum sys-
tems “Let the computer itself be built of
quantum mechanical elements which obey
quantum mechanical laws”.

Richard Feynman, 1982

This idea took plenty of time to be realised by hardware devices, but at the turn of 2020, some implementations
became usable for limited problematics. These techniques can be very valuable for the high energy physics
field and a master project, named QC2I, has been created at IN2P3 to design applications and algorithms
for our activities.
This memoir is organized in two parts. Since the quantum technology is very recent, sections 2 to 4 describe
in detail the foundations of the quantum computation and computers. These sections can be skipped without
inconvenience by aware readers. In the last sections, 5 to 10, the QC2I project is presented.
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2 Quantum bits
2.1 Mono-qubit algebra
The building blocks of quantum computers are qubits. They have properties that remind the bits of our
traditional computers but are described by quantum mechanics. As bits, they have two states, denoted |0〉
and |1〉 in the Dirac notation. However, due to the superposition principle, they can be in any of the mixed
states:

q = a |0〉+ b |1〉 (1)

with a and b two complex coefficients obeying the normalization relation |a|2 + |b|2 = 1. This normalization
constrains the values of a and b, which can be reduced to only two real parameters often represented as two
angles. A very useful representation of a qubit is the Bloch sphere, represented on Figure 1.

Figure 1: The Bloch sphere. Any point on the surface of the sphere is representing a possible state of a
qubit. These points can be described by only two angles θ and φ. Any evolution of the qubit is isomorphic
to a rotation on the sphere.

Any point on that sphere is a possible state for a qubit (such state is denoted |ψ〉 on the figure). It is defined
by the two angles θ and φ. Any evolution of a qubit is isomorphic to a rotation around the x, y and z axes.
Some points are remarkable on this sphere. The canonical basis |0〉 and |1〉 are the 1 and -1 points on the
z axis. The equatorial points represent Hadamard states, specifically 1√

2 (|0〉 + |1〉), denoted |+〉, and its
opposite, 1√

2 (|0〉 − |1〉), denoted |−〉. These two states compose another very often used basis. Note that the
Bloch sphere is just a convenient representation but is not completely intuitive. Especially |0〉 and |1〉 are
orthogonal in the Hilbert space and antipodal on the Bloch sphere.
The two basic operations on a traditional bit are copying and reading. These two operations can not be
realized easily on qubits due to their quantum nature. The perfect copy is completely forbidden by the
“no-cloning theorem” [2]. Some approximate cloning procedures exists but they are expensive in terms of
needed qubits and thus rarely used in real applications. The reading of a qubit is also complicated. The
internal state of a qubit is not measurable. The only thing we can access is a statistical projection on the
z axis (on the |0〉, |1〉 basis). In fact, when “reading” a qubit, we obtain a pure state, i.e. |0〉 or |1〉. To
access the θ angle, it is necessary to setup multiple times the same state and to take the mean of the different
measurements. The Born rule stipulates that for a qubit q = a |0〉+ b |1〉, the probability to get |0〉 is |a|2 and
the probability to get |1〉 is |b|2. This measurement is a destructive operation, the wave function collapses
during the measurement and if another measurement is performed on the same system, it will give always
the same result. An effective way of doing measurement is to perform a bunch of setups and measurements
(typically 1000) and to deduce the value of |a|2 from the empirical mean. The phase (the φ angle) can not
be measured directly.
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Any qubit can evolve under the application of an operator. These mono-qubit operators are 2x2 complex
matrices (under canonical basis). These matrices have to be Hermitian. They can be decomposed in products
of rotations around the axes. The three basic rotations around the x, y and z axis are respectively represented
by the following matrices

Rx(2ϕ) =
[

cos(ϕ) −i sin(ϕ)
−i sin(ϕ) cos(ϕ)

]
, (2)

Ry(2ϕ) =
[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
, (3)

Rz(2ϕ) =
[
e−iϕ 0

0 eiϕ

]
=
[
cos(ϕ)− i sin(ϕ) 0

0 cos(ϕ) + i sin(ϕ)

]
. (4)

A special operator, denoted H, named the Hadamard operator, allows to get a half mixed state |+〉 (resp.
|−〉) if applied on |0〉 (resp. |1〉):

|+〉 = 1√
2

(|0〉+ |1〉) (5)

and
|−〉 = 1√

2
(|0〉 − |1〉) (6)

The matrix of the Hadamard operator is

H = 1√
2

[
1 1
1 −1

]
. (7)

2.2 Multi-qubit algebra
The qubits can be associated to form a system. The notation represent all the combined states of the different
qubits of the system. For example, here is a two qubit system

a |00〉+ b |01〉+ c |10〉+ d |11〉 (8)
where a, b, c and d are complex coefficients. The Born rule is applied again, and the probability to measure
|00〉 is |a|2, and so on.
Some multi-qubit states can be obtained using the Kronecker product,[

a
b

]
⊗
[
c
d

]
=
[
ac ad
bc bd

]
. (9)

These are separated states, but some states called entangled states can not be obtained in this way. The
operators for multi-qubit systems are also Hermitian matrices of size 2n× 2n for a n-qubit system. They can
also be obtained by the Kronecker product, if they don’t contain entanglement.
A most important operator is called CNOT, which stands for “controlled not”. It takes as input 2 qubits, a
control one and a target one. If the control qubit is |0〉 then the target qubit is left unchanged. If it is |1〉,
then the target is flipped.
Thus we obtain the following transformations

|00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉 ; (10)

The corresponding matrix is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (11)

3



It has been demonstrated that CNOT and the three rotations define a complete set of operators allowing to
access any state of a multiple qubit system, just as the NAND gate can reproduce any mix of traditional
logic operators.
In particular, they can induce entanglement. The figure 2 shows a quantum circuit, producing a state of two
entangled qubits.

Figure 2: Entanglement circuit. The Hadamard operator H mixes the state of the first qubit. The CNOT
operator creates the entanglement itself, linking the wave functions of the two qubits until decoherence. The
measurement of the two qubits always gives two similar results regardless of the distance between them.

The operators are represented as boxes applied between the qubits (represented as lines):

|00〉
→
H

1√
2

(|00〉+ |10〉)
→

CNOT
1√
2

(|00〉+ |11〉). (12)

The produced state gives two entangled qubits. Even very far from one another, they will always be measured
with the same outcome. This has been referred to as the EPR paradox in local space theories and has been
tested extensively (up to 1200 km).
For more informations about qubits and their algebra for quantum computing, [3] is the reference book.

3 Quantum computers
There exists plenty of ways to implement qubits with physical systems: energy levels (most often fine struc-
ture) of atoms, superconducting currents... Figure 3 shows several promising implementations with pros and
cons.
The two most mature technologies are now the superconducting loops and trapped ions. For both of them,
real quantum computers have already been realized. In particular, the big companies Google https://
quantumai.google and IBM https://quantum-computing.ibm.com have invested in superconducting loops.
They have respectively implemented a 54 and a 53 qubits computer. The trapped ions are developped by
some small companies like IonQ (11 qubits) https://ionq.com and AQT (20 qubits) https://www.aqt.eu.
The key parameters are

• the number of available qubits,

• the connectivity of the qubits (i.e. on which pairs of qubits we can perform direct CNOTs),

• the decoherence time (d), which is the time before the quantum system is perturbed by the environment
and looses its accuracy,

• the necessary time to apply a gate (g). This is a complicated notion, because any gate has to be
transformed into a series of hardware specific operations and there is often a 2 to 3 factor between the
number of gates in the original circuit and the one that is actually executed on the hardware,

• the error rate, i.e the percentage of “bad” measurements obtained on a dedicated setup.
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Figure 3: The different physical implementations of qubits. Credit: (GRAPHIC) C. Bickel/Science; (DATA)
Gabriel Popkin.

The two parameters d and g can be shrinked in one more interesting parameter

G = g

d
, (13)

which expresses the number of gates that can be applied on the system before decoherence.
We are now experiencing what is called the NISQ era. NISQ stands for “Noisy Intermediate Scale Quantum”.
It means that our system has very few qubits (less than 100) which are quite noisy. On top of this, the
topology of the implemented quantum computer is far from being complete and the emulation of standard
gates consumes a lot of additional gates. All this means that we can only implement very simple circuits now
but the field is evolving very quickly and we can hope to get better machines very soon.

3.1 Trapped ions
The trapped ion technology is probably the easiest to implement. Positive ions are trapped in an oscillating
electro-magnetic field (Paul’s trap) as show on Figure 4. They stand in line, regularly distributed by Coulomb
repulsion. They must be in a vacuum environment to avoid decoherence but they can remain at room
temperature.
As explained by Figure 5, the first three energy levels of the ions are used to implement the qubits. The base
level corresponds to the |0〉 state. The first excited level corresponds to the |1〉 state. It has to be meta-stable
to guarantee the perenity of the quantum information. Mixes of the two pure states can be obtained by Rabi
oscillations at resonnance, implemented by a laser (red on the figure) focused on the ions. The third level is
used for reading. Another laser (blue on the figure) is applyied on the ion, giving energy to reach the third
level from the base level. This third level has to immediately come back to base level by emitting photons.
Thus, when illuminated, the ion emits light if it is in the |0〉 state but not if it is in the |1〉 state. Only a few
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Figure 4: Left: Ions trapped in a Paul’s trap. The positive electrodes constrain the ion line longitudinally
and an oscillating magnetic field (represented on the right) prevents them from escaping by the sides.

atoms can meet these requirements. The most commonly used are alkaline earth atoms (Be+, Mg+, Ca+,
Sr+) or ytterbium (Yb+).

Figure 5: Energy levels of trapped ions and laser action schematics. Left and middle: The base level
corresponds to |0〉 and the first excited state to |1〉 (this level should be meta-stable). The readout transition
from the base level to the second excited level induces fluorescence if the qubit is in |0〉 state. Credit: https:
//www.oezratty.net/wordpress/2018/comprendre-informatique-quantique-qubits/. Right: The mix
between |0〉 and |1〉 evolves like a cosine when the Rabi oscillation is at resonnance.

The multi-qubit gates are tricky to obtain. Ions can not interact directly because of the Coulombian repulsion.
To implement these, we can use the motion of the whole line of ions for which there exists two collective
proper modes. With a laser, it is possible to couple the quantum state of an ion to this collective mode and
vice versa. Thus, by transitivity, it is possible to couple two ions.
The two main providers of trapped ions are IonQ (Maryland) and AQT (a spin-off of Innsbruck University).
IonQ already sells machines, namely the Aria processor, which presently handles 11 qubits and should be
extended up to 160 ions, and shares quantum computation time via the Amazon Web Services (AWS).
The linear arrangement is not very convenient if the number of ions becomes big. Thus, new architectures
are designed on chips (2d Paul trap) where all ions are trapped on the surface of a chip and can migrate to
different zones to be measured or to interact with other ions. The lasers are replaced by a combination of
magnetic and microwave fields. A complete overview of this new technology is available in [4].
The main advantage of this technique is that it does not require a low temperature and that the decoherence
time is very high (a few seconds). The cons are the focused lasers and the few number of implementable
qubits. These downsides should be solved by the next generation of trapped ions composed of 2d traps
where each ion can be displaced on the chip by a magnetic field, to go to specific zones with specific goals
(entanglement, measurement, loading, etc.).

3.2 Superconducting loops
Using superconducting loops is another way to implement qubits. The basic idea is to build a superconducting
loop interrupted by a Josephson junction. As shown in Figure 6, the Cooper pairs go through this barrier by
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tunnel effect, inducing a small current. The qubit is encoded in the phase of this current. The rotations are
controlled by conducted microwaves and the measurements are done by a magnetometer inside the circuit.

Figure 6: Superconducting loop implemented with Josephson junction. Credit https://www.oezratty.net/
wordpress/2018/comprendre-informatique-quantique-qubits/

The multi-qubit operations are performed through dedicated qubits named “transmon” for transmission line
shunted plasma oscillation qubit. They are superconducting charge qubits (to reduce their noise sensibil-
ity) and they are controlled by microwaves. The only implementable operation with the transmons is the
Conditional Phase (CP), whose matrix is

CP (γ) =


eiγ/2 0 0 0

0 e−iγ/2 0 0
0 0 e−iγ/2 0
0 0 0 eiγ/2

 . (14)

The CNOT can be implemented from the CP operation by combination with rotations this way:

CNOT12 = ei
5π
4 Rx2(π2 )Rz2(π2 )Rx2(π2 )Rz2(π)Rz1(π2 )× CP (π2 )Rx2(π2 )Rz2(3π

2 )Rx2(π2 ). (15)

Many big actors of the traditional computing have invested in this technology, including IBM, Google and
Intel. The two main constraints are the superconducting temperature and the very short decoherence time.
On another hand, with this technology, it is possible to implement a big number of qubits with reasonable
connectivity (53 for IBM, 54 for Google). These machines are available through the IBM-Q portal (the
smaller processors are even accessible for free).

4 Quantum machine learning
The problematics of quantum machine learning (QML) is to implement neural-network-like models and
gradient descent on quantum computers. Due to the limitations of the NISQ era, the full implementation of
a model as complicated as a full neural network is impossible nowadays, but some basic models can be used.

4.1 Variational hybrid quantum-classical algorithms
As stated in [5], a way to optimize a quantum model is the variational hybrid technique. The principle
is to encode the parametrized model in a parametrized quantum operator U(x, θ) applied on the data x.
This operator is measured by the standard procedure and the error calculation is performed on a classical
computer. The error is then back-propagated on the parameters on the classical computer (for example with
a gradient descent) until the error is small enough. The constraint for this technique is that the quantum
operator (U) must be differentiable with respect to its parameters (θ).

4.2 First generation quantum neural network
Two seminal papers describe the first implementation of quantum neural network (QNN) in 2018 [7] and [6].
They use the same kind of declination of the variational hybrid technique. Figure 7 recapitulates the four
steps of the process.
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Figure 7: First generation neural network hybrid process from [6]. The system is composed of four steps
running iteratively during the training. Step 1 is encoding (projection of data onto the Hilbert space). Step
2 is the model itself (linear), step 3 is the measurement and step 4 is the computation of the loss function,
partial derivatives and optimization.

The first step is the encoding of the data on a set of qubits (projection in the Hilbert space). There are
plenty of different techniques to encode this data. Some are minimizing the number of qubits, some other are
minimizing the encoding time. The most used technique, which has become a consensus in the community,
is the angle encoding. The input values must be normalized over [0; 2π] and then the real values are encoded
as an angle in the qubit with respect to z axis through a Ry rotation. This allows to encode a real number
without any discretization. This technique requires one qubit per input.
The second step is to build a parametrized quantum operator that combines the data to obtain a sufficiently
expressive model to allow classification or regression. Different structures can be used, often regular ones.
Two main generic structures are frequently used, the so-called TTN and MERA, presented in Figure 8 from
[8]. All the Ui operators are parametrized and their parameters will be the adjustable part of the model.

Figure 8: TTN and MERA operators from [8]. TTN is the simplest of the mixing operators, it assembles the
data by pairs, hierarchically. The MERA model comes from statistical physics and is a bit more elaborate.

The third step is the measurement of the result qubit. It can be one of the input qubits after application of
the operators, or it can be a dedicated qubit (called ancillary qubit).
The last step is executed on the classical part of the system. A loss function is calculated from the mea-
surement and a numerical derivative is calculated to update the parameters by a gradient descent with the
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traditional formula
df

dx
(x) = (f(x+ ε)− f(x− ε))

2ε +O(ε2) (16)

Many derivations of this concept have been successfully tested for the high energy physic problematics. The
survey [9] gives a nice overview of these different efforts.
Nevertheless, a bunch of drawbacks comes with this first generation of QNN. First, it is greedy in terms of
qubits and thus it can be usefull only on very small data. The second drawback comes from the linear nature
of the quantum operator. It is easy to demonstrate that a Hermitian operator is linear in its inputs. Thus the
result can not be better than a linear classifier. As the Hilbert space is very big, the encoding can be viewed
as projection of the data in a bigger space and the quantum operator as a linear classifier. This is typical of
kernel methods, not a neural networks. This has been spotted by Maria Schuld in a paper [10]. Finally, the
numerical differentiation is not very powerfull on noisy systems such as quantum computers. The equation
(16) is accurate only if ε is very small. But on noisy systems, a small value of ε will be lost in the noise.
Hopefully, new techniques will arise to solve these problems.

4.3 Second generation quantum neural network
The two problems of the linearity and of the use of qubits have been solved jointly by the elaboration of a
new kind of operator, the re-uploading operator, that has been exposed for the first time by Perez-Salinas et
al. in [11]. The principle, as stated in Figure 9, is to use only one qubit initialized to |0〉. Then a sequence of
operators is applied to this qubit, depending not only on the parameters (θi) but also on the input itself (x).
The quantum operators are linear in their inputs but not in their parameters. Thus, uploading x multiple
time increase the complexity of the resulting expression in x. In fact, the number of re-uploading defines the
degree of the polynomial expression induced by the application of the operators.

Figure 9: Re-uploading operator from [12]

The same authors have proven in [12] that this kind of sequence of operators is a universal approximator
as neural networks are. This allows to integrate the non-linearity of the neural network directly inside the
quantum operator and gives us hope to implement real quantum neural networks in the near future.
The second drawback, the numerical differentiation has been solved by the discovery by Mitarai et al. of a
nice property of some quantum operators [13], called shift parameter rule. This can be summarized by the
following equation

∂G

∂θ
= G(θ + s)−G(θ − s), (17)

where G is the operator, θ the parameter and s is a constant that we can choose conveniently.
This means that for these operators, the derivative can be calculated by applying them two times. Note that
contrary to the numerical differentiation, this is an exact value. Here is a simple example. Let us consider
G(x) = sin(x). We know that

sin(a+ b)− sin(a− b) = 2 cos(a) sin(b). (18)

Thus

∀s, ∂G

∂x
= cos(x) = sin(x+ s)− sin(x− s)

2 sin(s) . (19)
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The relation is true for any value of s, thus we choose conveniently π/2 which gives

∂G

∂x
= sin(x+ π/2)− sin(x− π/2)

2 . (20)

This comes from the trigonometric nature of this operator. It has been demonstrated by Crooks in [14], that
all quantum operators can be decomposed in parts on which the shift parameter rule can be applied. This
allows to differentiate any quantum operators and to use this true derivative to apply gradient descent. This
technique is the base of the Pennylane software [15], which is a powerful tool, widely used by the community
to implement hybrid learning systems https://pennylane.ai.

5 The QC2I Project
QC2I is a computing master project supported by IN2P3. Its goal is to explore the possible applications
of the emerging quantum computing technologies to particle and nuclear physics problems as well as to
astrophysics. Its main tasks are

• to identify, within IN2P3, scientists/engineers/technicians who are interested in using quantum tech-
nologies,

• to facilitate the access and training on quantum computers,

• to identify milestone applications for nuclear/particle physics and astrophysics,

• to design dedicated algorithms and proof of principle applications.

The project has three main directions: Prepare the Quantum Computing Revolution (PQCR), Quantum
Machine Learning (QML) and Complex Quantum Systems Simulation (CQSS). Denis Lacroix (IJCLab) is
the scientific director of the project and Bogdan Vulpescu (LPC) is the technical director.
The group is composed of 22 members from the following IN2P3 laboratories:

• IJCLab (5.5 members)

• LPC (2 members)

• LPNHE (3 members)

• LLR (6.5 members)

• CC-IN2P3 (2 members)

• LUPM (1 member)

• APC (1 member)

• LPSC (1 member)

The members have different status: researcher, director of research, engineer, postdoc and PhD student.
The project has been launched in 2021 after the success of a workshop organized by Denis Lacroix, Andrea
Sartirana, Bogdan Vulpescu, Volker Beckman, Marcella Grasso, and Guillaume Hupin. The workshop title
was “Journées thématiques de l’IN2P3: quantum computing, state of the art and applications”. It has been
held on September the 6th 2019 and 70 participants have expressed their interest for the field.
The project has been funded since its creation with a budget of 5k€ in 2021 and 20k€ in 2022.
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6 Complex Quantum Systems Simulation in QC2I (Resp. Denis
Lacroix)

Anticipating the progress that will be made in the technological developments of future quantum computers
with increasing number of qubits and with increasing fidelity of these qubits, activities have been started at
IN2P3 (i) to understand these new technologies with their pros and cons, (ii) to explore how new technologies
can be employed to describe complex physical systems and, (iii) to identify pilot applications where quantum
processors can be used as a disruptive technology. One of the first anticipated application of quantum
computers is the description of complex quantum systems themselves. Among the most challenging ones, we
can mention the case of many-body systems, where the size of the Hilbert space to treat grows exponentially
with the number of single-particle degrees of freedom. In IN2P3, we have started to scrutinize how quantum
computers can be employed for the description of atomic nuclei. In nature, atomic nuclei are among the
most challenging many-body systems and might strongly benefit from breakthroughs in quantum computing.
The nuclear many-body problem has specific aspects that are hard to treat via classical calculations, like the
highly non-perturbative nature of the interaction, the importance of multi-body interactions, or the necessity
of using the concept of symmetry breaking/symmetry restoration. Yet, possible implementations of quantum
algorithms in the nuclear context have been scarcely explored so far. Several works have been initiated to
prepare the use of quantum technologies.

6.1 Description of symmetry preserving/symmetry breaking/symmetry restora-
tion in quantum computers

Symmetries are important properties in physical problems. One might use the symmetry to reduce the
complexity of a problem or, in some highly non-perturbative situation, it might be advantageous to break some
symmetries in order to grasp internal correlations of a many-body problem. This is for instance the case of
particle number symmetry [the U(1) symmetry] to treat superfluidity or the rotational invariance to describe
the effect of deformation in atomic nuclei. The possibility to break symmetry is a crucial aspect that allows
to design theories for open shell nuclei. One drawback of breaking symmetries is that these should be restored
to provide observables comparable with experiments. Symmetry breaking ansatzes, and most importantly,
quantum algorithms for symmetry restoration have been proposed in Ref. [16]. The method of symmetry
restoration is taking advantage of the standard Quantum-Phase-Estimation method (QPE) to project the
many-body wave-function onto its components that respect the symmetry under interest. The restoration
of the symmetry is performed by measuring the ancillary qubits used in the QPE. A schematic illustration
of the method is given in Fig. 1. In this article, applications were made on the pairing Hamiltonian. Such
applications are relevant for small superfluid systems. The method has been further illustrated and improved
for the case of total spin projection in Ref. [17]. In addition, in Ref. [17], we have shown how to reduce
the number of operators used to project on the total spin from a quadratic to a linear number of operators
together with removing the difficulty that states with good angular momentum are highly degenerated. The
symmetry restoration is a crucial milestone for the description of atomic nuclei and in other physical systems
where several symmetries can be spontaneously broken.

6.2 Finding eigenvalues and eigenvectors of many-body Hamiltonians
As a natural follow-up of the symmetry restoration problem, we used strongly entangled states obtained by
symmetry restoration as variational trial states to be used in a Variational Quantum Eigensolver (VQE).
The VQE method is a hybrid technique where, given a parametrized ansatz, the energy is computed on the
quantum computer while the optimization is made on a classical device. We have shown how the projection
after variation (PAV) and variation after projection (VAP) methods, that are nowadays the state of the art
in quantum theory, can be transposed on quantum computers [18]. These two algorithms offer the possibility
to obtained highly entangled/optimized trial states that could be used in a second step for post-processing.
We extensively investigated different methods for the post-processing: the methods that have been proposed
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Figure 10: Schematic illustration of the symmetry restoration method for the case of the particle number
symmetry. The measurement of ancillary qubits projects the system’s wave-function onto a given particle
number. At each event, i.e. each measurement, the system has a precise particle number that varies from
one event to the other.

are the QPE, the Quantum Krylov and a new strategy based on the generating function of the propagator
exp(-iHt) [19]. As an illustration of the effect of purification of the state prior to postprocessing, we show
in Fig. 11 the result of the QPE approach after preparing an optimized state in the HF, Quantum-PAV and
Quantum-VAP with a varying number of ancillary qubits that determines the precision on the eigenvalues
of the Hamiltonian. We see for instance in this figure that the Quantum-PAV techniques leads to a highly
purified state with strong overlap with the exact ground state on Figure 11-i.

6.3 Solving quantum equation of motion on a quantum computer
More recently, we also investigated how collective excitations can be obtained using the quantum equation
of motion (qEOM) method. The method is general and can lead to a set of approximations of the collective
problem with increasing complexity. At lowest order, it leads to the so-called RPA method that is standardly
used in nuclear physics using classical computers. The next order leads to the so-called second RPA that is at
the limit of what can be done currently on most powerful classical computers. The qEOM has been applied
for a schematic model (the Lipkin model that corresponds to the problem of a set of degenerated two-level
systems) that is relevant for the nuclear many-body problem. Using a combination of the qEOM together
with Gray code encoding on qubits and symmetry-preserving trial state, we have obtained very encouraging
results using real computers provided in the IBM Cloud [20].

6.4 Treatment of non-Markovian effects on qubits
Although it is slightly different from the previous works, we mention that there are currently intensive works
on the theoretical description of qubits coupled to one or several environments. These activities are relevant
in the context of computing in NISQ devices. We mention the recent works [21] and [22].
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Figure 11: Illustration of the QPE method applied on the operator exp(-iHt) after having prepared an
optimized state with different levels of sophistication: HF state (top), Quantum-PAV (middle) and Quantum
VAP (bottom). From left to right, different numbers of ancillary qubits are used, leading to different precisions
in the extracted eigenvalues. The height of the peaks correspond to the amplitudes of the initial state
decomposed on the eigenstates of the Hamiltonian. On the left side, the exact eigenenergies are indicated.
We see that the Quantum VAP is highly purified and is mainly composed of the ground state at variance
with other states. Figure taken from Ref. [18].

6.5 Collaborations
The number of permanent scientists in IN2P3, mainly theoreticians, working on the description of complex
quantum systems in quantum computers is still rather limited (mainly IJCLab and LPSC). Currently, there
are two PhD students and one postdoc being trained on this topic and contributing to this subject. In
addition, in recent years, several new collaborations are emerging. This is the case with a starting strong
collaboration with the scientists in CEA-Saclay working on many-body systems. We also initiated regular
discussions, with Atos especially, for future use of quantum devices. At the international level, two ongoing
collaborations with the US have been initiated, one for the description of collective excitations (Western
Michigan University) and one of quantum information in neutrino oscillations (Univ. of Wisconsin). Discus-
sions on future collaborations have been initiated also with the Quantum Initiative in CERN and scientists
in Trento, Italy. The IN2P3 teams working on many-body systems will also take part of the “National QC
infrastructure research program” and will take the lead of the WP4.1 on “Quantum simulation of nuclear
many-body systems”. Regarding the access to real quantum devices, up to now, tests on real machines have
been made mainly through the quantum IBM cloud. With the national project, a new machine provided by
Pasqal and based on Rydberg atoms technology will be also accessible. Other accesses are or will also be
explored (CERN Hub, Amazon, . . . ).
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7 Prepare the Quantum Computing Revolution (Resp. Bogdan
Vulpescu)

The goal of this thematics is, on one side, to aggregate talents from IN2P3 to create a group of enthusiasts
and give them some insights on the quantum computing, but also to work on the differents possibilities to give
them access to resources to be able to test these new techniques and eventually to concretize in in different
domains covered by IN2P3. The different goals can be summarized in five points:

• identifying current and future quantum ressources that could be used for our projects,

• facilitating the transition of technicians/engineers/physicists to this new technology through the orga-
nization of meetings/schools/workshops,

• identifying pilote applications where the quantum supremacy can be decisive to solve problems relevant
for the IN2P3 fields,

• developing quantum algorithms specifically dedicated to our science domain,

• contributing to the quantum revolution.

For the first part of the task, a survey has been performed to identify all the forces inside the IN2P3. The
results of this survey show different typologies of profiles and interest of the members of the group, as shown
in Figure 12.

Figure 12: Different results from the survey

This preparatory work allowed to constitute a group of 22 persons motivated by the quantum computing,
with very different profiles.
Different meetings have been organized:

• two general assemblies have been organized to share informations and structure the group,

• multiple sessions have been organized to share theoretical informations between participants, mainly
under the form of a journal club,
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• two tutorials have also been organized to give an overview of some technology aspects, one on the
implementation of circuits on IBM quantum computers (B. Vulpescu) and one on the quantum machine
learning (F. Magniette).

Several tools have been deployed to help participants to communicate and share informations and codes:

• a QC2I website with many ressources listed https://qc.pages.in2p3.fr/web/,

• a “newsletter” to broadcast the news,

• a GitLab group of projects, hosted by the IN2P3 computation center, allowing the members of the
group to share their codes and the tutorials,

• a chat is online for casual discussion,

• a mailing list is also available on which all the announces of quantum computing related events are
forwarded.

Recently, a section of the QC2I budget for this year was dedicated to be spent on the quantum resources
available on the Amazon Web Services (IonQ, DWave, Oxford Quantum Circuits). Several accounts have
been created, allowing the members of the group to perform simulations and to execute their codes on real
quantum devices.

8 Quantum Machine Learning (Resp. Frédéric Magniette)
Developments around the QML have been essentially done by LLR and IJCLab. In a common effort, we
obtained a grant from the P2IO Labex, funding a two year postdoctoral position. Yann Beaujeault-Taudière
has been recruited on this grant, and is dedicated to this subject. He has integrated the team on the first of
December 2021.
The works on QML have followed two opposite directions, that should combine eventually. One direction is
purely theoretical and consists in searching for mathematical correspondance between quantum re-uploading
operators and traditional perceptrons. The other direction is driven by engineering goals, mainly to under-
stand and implement QML models to study their expressivity and classifying power on a set of adapted
benchmarks.

8.1 Theoretical approach
A lot of well-working models have been developed on the artificial neural network paradigm. It would be
very interesting to use them in the quantum context. To be able to perform this, we need to find an easy
way to implement this model on a quantum computer. The effort has been concentrated recently on hybrid
systems and architectures that do not relate directly with the neural network formalism (kernel methods).
Unfortunately, the two models have a lot of mathematical differences, namely, the difficulty to implement
non-linearity with the quantum operators. But on the other side, there are really interesting properties of the
quantum system that can be used. For example, the amplitude amplification technique used in the Grover
algorithm could replace the traditional training to find the optimal parameters of a model.
In the first part, we will describe how the multi-layer perceptron can be integrated in a quantum system.
The mathematical model of a multi-layer perceptron is very simple as long as we can implement a non
linearity. A single layer has the form

Ŷ = σ(WTX +B), (21)

and its composition in multiple layers is simply the composed form

Ŷ = σ(WT
1 σ(WT

2 . . . σ(WT
n X +Bn) + · · ·+B2) +B1). (22)
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On the quantum side, the apparition of non-linearity can only be implemented through the re-uploading
technique with a caracteristic equation which is radically different:

Zn =
〈
0|U†nZUn|0

〉
, (23)

where Un is a composition of Hermitian operators which have the same matrix representation but with
different parameters. Some recurrences can be established to obtain the general form of these operators.
To obtain the mathematical match between these two very different forms, it is necessary to decompose
the non-linearity of the perceptron to integrate parts of it inside the operator recurrence. The Fourier
decomposition is a good candidate for this and it gives enough constraint on the nature of the usable operators.
Once the mono-layer perceptron is modeled with the re-uploading operator, it can be composed linearly to
provide multi-layer perceptron as shown in Figure 13. This work has given interesting results that will be
published soon.

Figure 13: The mono-layer perceptron quantum model is composed to obtain a multi-layer perceptron. The
geometry of the hidden layers is reproduced by the size of the qubit vectors at each step (mi). Due to the
sequential nature of the operation, the qubits can be reused from one layer to another.

In this second part, we focus on a very recent work, trying to get rid of the hybrid method by adapting
the Grover algorithm to find the optimal parameters of a quantum model. The Grover algorithm, published
in 1996 in [23], solves the problem of searching in an unstructured database. By a smart mechanism of
amplitude amplification, it exploits the quantum parallelism to extract information from a list of n entries,
without reading the entries one by one (one nice example is to find a name in an address book by knowing only
the phone number). The complexity of implementation is only O(

√
n), while the traditional implementations

need O(n). Such a technique has been used to optimize the parameters of a QML problem in [24]. The
main drawback is that the parameters need to be discretized into a sum of decreasing angles (π, π/2, π/4...)
multiplied by binary inputs. This induces a loss of precision but also the need for a lot of qubits (to inject
the binary factors).
We are working on the exact evaluation of the induced loss of precision but also on a possibility to keep the
parameters real all along the computation. This work is in a preliminary stage.

8.2 Engineeral approach
The second part of our work is oriented on a pragmatic approach. Returning to the fundamentals of machine
learning, we test different models on different data to measure their performance and their flexibility. The
main difficulty to test the quantum models is that only a very few qubits are available (on real quantum
computers but also in simulations that become intractable due to the computational complexity).
The first work has been to select different benchmarks to test the models. The constraint to select such
dataset is the small number of inputs associated with complex functions to approximate. We have selected
different functions known for their complexity in terms of machine learning and their non-linearity. The
first benchmark is a set of 1d functions often used in machine learning: cosine, sigmoid, hyperbolic tangent,
ReLu... For the 2d tests, we have chosen different shapes traditionally hard to solve in statistics systems like
horizontal and vertical lines, recurrent shapes... Figure 14 shows some of the selected challenges. Finally,

16



we have taken well-known particle physics problems, namely particle identification based on variables of
interest. These variables are form factors extracted from particle showers in a sampling calorimeter. We
made an analysis of these variables with BDT and sorted them in order to take the most significant ones
depending on the number of inputs of our model.

Figure 14: 2D Challenges adapted to quantum machine learning. Each input is just composed of the co-
ordinates of the points and the label is the color (binary). The different challenges correspond to different
complex problems for neural networks.

We have tested extensively these data on different models, QNN first and second generation, traditional
multi-layer perceptrons and so on. The results are interesting. It seems that the form of the models reduce
the number of needed parameters to fit these data.
To comfort these intuitions, a simulation framework is developped, to give some objective measurements
and perform a systematic study. We aim to perform a methological comparison of the different models and
to estimate the expressivity of all of them with respect to the nature of the input data. This work should
be published in the middle term and should help the HEP community to evaluate if the quantum machine
learning can be helpful for further physics analysis.

9 Perspectives
The countries investing in the future of the quantum technologies have started their education programs
in the disciplines connected to this field. In France, many high level courses exist already on several sites,
preparing the next generation of researchers and IT engineers, with a Quantum Computing profile. In the
meantime, there will be a transition phase necessary to prepare the ground in the research laboratories (of
IN2P3) and the activities of the QC2I project have such a goal.

9.1 Future strategy for the description of complex quantum systems
The development of quantum algorithms to treat the specificities of the nuclear many-body problems is still at
its infancy. With the recent work, we have initiated different directions that can be seen as starting building
blocks for the description of atomic nuclei. In the coming years, the goal will be to apply quantum technology
in the context of the nuclear many-body problem, with three main objectives: (i) Test the pertinence of state-
of-art quantum algorithms and methods, mainly developed in other fields, in nuclear physics applications; (ii)
Design new quantum algorithms tailored to nuclear systems; (iii) Investigate the possible feedback of nuclear-
physics approaches to quantum simulations of other interacting many-body systems. Applications will be
systematically tested on simple models relevant for quantum many-body problem in the non-perturbative
regime. Ultimately, our targeted goal is to make applications of ab-initio methods that starts from bare
interaction based on modern techniques like the Effective Field Theory. These methods are particularly
challenging on classical computer and still restricted to a small fraction of the nuclear chart. We anticipate
the following roadmap:

• Development of a set of realistic model Hamiltonians encoded on quantum computers for light nuclei
(with a nucleon number A < 12) to be used as test-bed for the algorithms. The development of a
Hamiltonian on qubits is strongly impacted by the encoding method. The different encoding method
(Jordan-Wigner, Standard Binary, Gray code,...) will be systematically investigated.
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• Application to nuclear systems of existing many-body ansatzes used in quantum simulations and de-
velopment of new quantum algorithms based on symmetry breaking/symmetry restoration.

• Application of these ansatzes using two different techniques (a) we wish to test different implementations
of the Variational Quantum Eigensolver (VQE) and, (b) we would like also to explore the possibility to
develop Green’s functions on quantum computers that are among the most powerful approaches used
nowadays on classical computers for many-body nuclear structure calculations.

• Another direction that will be explored is the possibility to directly formulate the nuclear many-body
problem on a lattice using pionless effective field theory.

• In all these developments, it will be necessary to increase the expertise of the working team for the use
of noisy devices.

9.2 Future strategy for the quantum machine learning
Our strategy for quantum machine learning is divided in different parts, depending on the evolution of the
quantum computers maturity.
For the short term, we plan to make an implementation of the converting system between multi-layer per-
ceptrons and their quantum counterparts. As these techniques are approximations, we need to evaluate the
degree of degradation induced by the approximations and draw some kind of Pareto front to choose the im-
plementation with respect to the desired precision. Presently, the multi-layer perceptron is implemented as a
piling of mono-layer perceptrons separated by a measurement operation. This kind of implementation is not
very efficient, due to the number of setups necessary to perform a measurement. We plan to try to integrate
multiple layers directly into the re-uploading operator. We have seen that some composed functions appear
(like sin(sin(x))) and they can be approximated directly by Fourier decomposition. This would provide a
very efficient implementation of the multi-layer perceptron and ease its training. We plan also to use our
implemented framework to perform a big methodological study to gain intuition on what kind of operators
can be useful depending on the nature of the input data. New benchmark data will be specifically designed
and tested.
For the middle term, we plan to implement a real application on physics data. This could be linked to some
already existing machine learning project at IN2P3 to find a real application and compare the performance
obtained on quantum systems with the traditional implementations. As a lot of different implementations
have already been tried with first-generation QNNs, it should be easy to compare them with the second
generation of QNNs.
For the long term, we anticipate the development of better quantum computers that should appear on the
market in the near future. If the number of qubits increases and the error rate decreases, we can consider
full quantum systems. To prepare this important step, we plan to develop and implement systems based on
Grover algorithm, allowing to perform the parameters optimization directly in the quantum circuit. This
should provide a considerable gain in the training time due to the quantum parallelism. The quantum search
has a complexity in O(

√
n) while the traditional optimization has a O(n) complexity. There already exist

articles on this subject like [24] but they use an approximation based on a decomposition of the parameters
in decreasing power of Π, consuming a lot of qubits. We plan to work on a fully continuous solution, reducing
jointly the decomposition error and the consumption of qubits.
This way, we could imagine two kind of applications. First should be to transfer the traditional model to
quantum system and perform very quickly the optimization, reducing the training time for the models. The
second objective is more ambitious, it consists of developping quantum systems that can be integrated directly
in our detector systems (off-detector electronics), to perform very quickly complicated neural network tasks
online (for example in the trigger of big experiment like LHC detectors).
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