Jiangmen Underground Neutrino Observatory (JUNO) at IN2P3

Status of the project

Conseil scientifique IN2P3 26-27 Octobre 2021

- Mariangela Settimo¹ on behalf of the JUNO-France collaboration
 - ¹ SUBATECH, Université de Nantes, IMT-Atlantique, CNRS

The Jiangmen Underground Neutrino Observatory

 $ar{
u}_e$ interaction: Inverse Beta Decay (IBD) $ar{
u}_e + p
ightarrow e^+ + n$

The main goal: the neutrino Mass Ordering (MO)

Mass Ordering (quasi) in-vacuum (independent of δ_{CP}): unique result!

Interference between slow (solar) and fast (atmospheric) oscillation modes

Large detector volume (20 kilo-tons of Liquid scintillator) • Unprecedented energy resolution: 3%/VE (MeV) and energy scale accuracy (<1%)

The main goal: the neutrino Mass Ordering (MO)

Mass Ordering (quasi) in-vacuum (independent of δ_{CP}): unique result!

Oscillation parameters determination

Precision to sub-percent level for Δm^2_{21} , $sin^2\theta_{12}$ and Δm^2_{31} in 6 years of data

Interference between slow (solar) and fast (atmospheric) oscillation modes

	Δm^2_{31}	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$
JUNO 6 years	${\sim}0.2\%$	${\sim}0.3\%$	${\sim}0.5\%$	$\sim \! 12\%$
PDG2020	1.4%	2.4%	4.2%	3.2%

A vast physics program

Supernova v~ 5k in 10s for 10kpc

26.6 GWth, 53 km

NMO, oscillation parameters

 Additional rare events physics studies (proton decay, sterile v,...)

Mariangela Settimo

The JUNO Detector

Where we are: Civil construction

Where we are: Instrumentation

LPMT (20")

22416 LPMT produced and tested; Electronics under mass production

SPMT (3")

All 26000 SPMT produced and tested Potting and acceptance test ongoing. Electronics under production

Acrylic sphere

100% flat panel produced; Radiopurity control in progress Cleaning strategy being defined

Top Tracker

Already at JUNO site, full electronics chain being finalized, mechanical structure well defined

Liquid Scintillator

200 tons of LAB filled into the 5 kt LAB tank AI_2O_3 column plant installed in the LS surface hall

Calibration system

Calibration house: Production completed

Steel structure

Production: 95% finished anchors of SS structure and lifting platform: installed

.... (and many more)

Project timeline

Detector Installation in 2022

2017

 Start PMT testing Top Tracker arrived! Daya Bay LS tests

2018

- PMT potting start
- **Delivery of** surface buildings
- Start production of acrylic sphere
- **OSIRIS** was • funded
- TAO working group formed

2019-20

- Electronics production starts
- Civil work and lab preparation
- Det. construction starts

Det. assembly ٠

2021-22

Data **Taking**

- completed
- Det. filling & ٠ comissioning
- TAO construction ٠

JUNO collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz
Brazil	PUC	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	UEL	China	UCAS	Italy	INFN Catania
Chile	PCUC	China	USTC	Italy	INFN di Frascati
Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova
China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia
China	CIAE	China	Zhengzhou U.	Italy	INFN-Roma 3
China	DGUT	China	NUDT	Latvia	IECS
China	ECUST	China	CUG-Beijing	Pakistan 💦	PINSTECH (PAEC)
China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow
China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR
China	IHEP	Czech	Charles U.	Russia	MSU
China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.
China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT
China	Pekin U.	France	Subatech Nantes	Thailand	PPRLCU
China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G
China	IGG-Beijing	Germany	TUM	USA	UC Irvine
China	IGG-Wuhan	Germany	U. Hamburg		* 5

Collaboration established in 2014 Now : ~700 collaborators, 77 institute members

11

JUNO International structure

The IN2P3 teams

National organisation chart and main sub-systems and contributions

48 members: 18 scientists and 30 technical staff members

> 3 PhD completed and 3 ongoing

Main physics contributions

- Measurement of v oscillations
- Dual calorimetry calibration for MO
- Radioactivity control for MO
- Muon reconstruction and cosmogenic background for MO
- Core Collapse Supernova Neutrinos (CCSN)

Scientific contributions

Oscillation parameters determination

JUNO (6 years): measurement of $(\theta_{12}, \Delta m^2_{21}, |\Delta m^2_{31}|)$ to a precision better than 1%

	Δm^2_{31}	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$
JUNO 6 years	${\sim}0.2\%$	${\sim}0.3\%$	${\sim}0.5\%$	$\sim \! 12\%$
PDG2020	1.4%	2.4%	4.2%	3.2%

• General analysis

- 4 independent approaches (IN2P3 in two of them)
- Common inputs (energy resolution, non-linearities, backgrounds)

Sub-percent Precision Measurements of Neutrino Oscillation Parameters with JUNO

> **Draft for Collaboration publication** (Participation to the Edition)

• **SPMT independent analysis (event correlated with LPMT)** for solar oscillation parameters (θ_{12} , Δm^2_{21})

Background control for $\bar{\nu}_e$ spectrum

Impact of residual background on the neutrino spectrum

Event rate pe	r day	sign	al	Bacl	eground	
Selection	IBD efficiency	IBD	Geo- νs	Accidental	$^{9}\mathrm{Li}/^{8}\mathrm{He}$	I
-	-	83	1.5	-	84	
Fiducial volume	91.8%	76	1.4		77	
Energy cut	97.8%			410		1
Time cut	99.1%	73	1.3		71	
Vertex cut	98.7%	1		1.1		
Muon veto	83%	60	1.1	0.9	1.6	
Combined	73%	60			3.75	

5

12

Blue: IN2P3 contributions

- (1) Accidentals (material radioactivity)
 - **Radiopurity control**
 - Fiducial volume cuts
 - Time/space coincidence for prompt and delayed signals

(2) Cosmogenic (⁹Li/⁸He)

 Muon reconstruction/veto (Top Tracker, Central detector, Water Pool)

(3) **Geo-neutrino**

U/Th decays in the Earth's mantle/crust

Radioactivity measurements

Measurements by gamma spectroscopy at PRISNA and LSM

SPMT contributions: PMT+ HV divider: 66%, UWB: 21%, Potting: 13% (150 mHz in fiducial volume, <300 mHz requirement)

Acrylic sphere: K/U/Th <10⁻¹² g/g requirement (256 panels, 580 tons)

3 complementary methods to select the acrylic panels:

- Neutron activation (Milano) \rightarrow concentration K/U/Th in volume \bullet
- ICPMS (IHEP) \rightarrow U/Th in volume \bullet
- Laser Ablation-ICPMS (CENBG/IPREM): U/Th on surface
- Radon requirement in the Water Pool : Activity < 10 mBq/m³
- Radon measurements of critical materials in 2018-2021: PMTs, electronics, liner
- Validation of the liner and the critical materials by Radon diffusion and Radon emanation measurements

Requirement 200 mHz achieved!

Core Collapse Supernova Neutrinos (CCSN)

- Galactic CCSN rate ~ 1-3 / century. One expected during JUN
- Energy spectrum and Real time evolution of the neutrino signals
- Constrains CCSN models and progenitor masses; Hints on v prope
- Multiple detection channels, dominated by IBD and pES (~ 7000 even

O operation	Channel	Туре	Num. event expected (SN@	
	$\overline{\nu}_e + p \to e^+ + n$	CC	$\simeq 5000$	
	$\nu + p \rightarrow \nu + p$	NC	$\simeq 2000$	
erties	$\nu + e^- \rightarrow \nu + e^-$	NC	$\simeq 300$	
nts at 10 kpc)	$\nu + {}^{12}C \to \nu + {}^{12}C^*$	NC	$\simeq 300$	
	$\nu_e + {}^{12}C \to e^- + {}^{12}N$	CC	$\simeq 100$	
	$\overline{\nu}_e + {}^{12}C \to e^+ + {}^{12}B$	CC	$\simeq 100$	
	,			

Enormous explosion and rate of events : Major challenge for electronics and DAQ

- Impact of SPMT electronics on CCSN detection and ensure enough buffer on
- <5% charge loss at the maximum peak rate

Impact of SPMT electronics s m 140 01] SN 3 kpc - with electronics SN 3 kpc (true hits) SN 5 kpc (true hits) SN 5 kpc - with electronics SN 10 kpc (true hits) →→ SN 10 kpc - with electronics 120 Bage 뿐 ₩¹⁰⁰ 3 kpc Worst case: 25% hits loss 2% charge loss) 0.2 0.3 0.1 0.5

- Vertex/Energy Reconstruction of CCSN events;
- Event selection for multiple detection channels and spectrum unfolding
- Extension to MM-trigger and transient sources

Technical contributions

Overview SPMT system

Main responsibilities

SPMT production, potting, tests: China **UWB:** Chile \rightarrow production China HV splitter board: Chile ABC (readout board): IN2P3 **GCU:** China + Italy (developed for LPMT) **DAQ:** China

Asic Battery Card (ABC): IN2P3 responsibility

Participation to:

- SPMT specifications and company selection
- UWB conception and preliminary tests
- UW Connectors and cables (designed by AXON-France, produced by AXON-China)
- GCU board: participation to the interface firmware with ABC
- DAQ: collaboration with China

Readout board: ASIC Battery Card (ABC)

Hardware

Designed in 2016 \rightarrow 4 prototype versions produced Performance tests and thermal studies \rightarrow ABC_v0 for SPMTs acceptance tests in China

ABC_v1.2 mass production @ FEDD (June - Oct 2021): 220 boards

- \rightarrow ABC acceptance tests and calibration
- Deliver to China by December 2021

Firmware and DAQ

- ABC test firmware (successfully used for SPMT acceptance tests)
- ABC final (physics) firmware : in progress
- ► ABC+GCU firmware *in progress*

• Charge and time measurements • Trigger-less operation mode • Discriminator Signal digitized on FPGA to overcome CATIROC dead time

2000 CATIROC produced and tested in 2019

CATIROC: an integrated chip for neutrino experiments using photomultiplier tubes

ABC and SPMT acceptance tests

- Acceptance and calibration of the 220 ABC
- Final (physics) Firmware test on the complete SPMT electronics chain (ABC+GCU)

3 test-benches (HV splitter + ABC_v0 and software) delivered to China; commissioned Jan 2020

- Acceptance Test of all the 26000 **SPMTs** at Guangxi University
- 10000 SPMTs already tested, 1% rejected or to be re-tested (JUNO-SPMT publication)

The Top Tracker system : overview

- Use existing modules from OPERA's Target Tracker
- New electronics chain and supporting structure

- 64000 electronic channels

- Expected rate (radioactivity) 50 kHz/PMT
- Muon Track reconstruction: 0.2° precision

Main responsibilities

Electronics: IN2P3 + INFN/CAEN (see next slide)

Electronics developments for the TT

Components of a TT wall :

- 16 PMTs •
- 16 Read Out Board (ROB) \bullet
- •

16 Front End Board (with MAROC by OMEGA) 1 Concentrator Board (CB): responsible for the L1 trigger

connector

Spartan 6

Components Global system

Global Trigger Board (GTB): 2 kHz event rate

1200 FEB produced and tested

80 boards

TT electronics tests and prototype

All FEB and connection cables delivered to China in August 2021

Concentrator Board start mass production by end of 2021

TT prototype @ IPHC

- - Also used for µ flux measurement and simulation/reconstruction validation

16 ROB arrived from INFN for CB+ROB tests

- 4 layers of scintillateur, 1/16 of a TT wall surface
- 2 FEB + ROBs per layers
- CB validation (HW/FW)

Software contributions

- JUNO software

27

Computing resources

Data Backup in the European Computing Center:

- Shared resources between Italy (CNAF), France (CCIN2P3) and Russia (JINR and MSU)
- MoU under definition
- in-kind participation to running costs (under evaluation)

Estimated CC-IN2P3 contribution:

2000 cores

200 TB (disk)

(*) 40 GB/s produced at DAQ level, event selection on the local farm to reduce data to 60-70 MB/s before transfer to IHEP

Computing resources: ~ 12k CPU cores

• Data quality: 1000 cores • Reconstruction: 6000 cores • Simulation: 3000 cores • TAO: 2000 cores

1PB/yr (tape)

Financial resources

Top Tracker (in-kind contribution) : ~3.2 M€

Hardware contributions: SPMT: ~600 k€ TT: ~700 k€

Yearly contributions: Functioning costs: ~200 k€ Running costs: ~100k€

Computing costs (in-kind contribution): under evaluation

Conclusions

JUNO on the forefront in neutrinos physics in the next decade

- JUNO detector installation in 2022
- IN2P3 participation to the installation reduced by conparticipation under evaluation)

Data taking expected soon

IN2P3 leading role in SPMT and TT systems

- French expertises recognized and demanded.
- ▶ Further technical participation to TAO (limited to supply 4 ABC).
- Solid and coherent participation to the physics program

JUNO included in the national roadmap of the research infrastructure 2021

IN2P3 participation to the installation reduced by covid pandemic (remote installation strategies or limited on-site

ply 4 ABC). ram MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR, DE LA RECHERCHE ET DE L'INNOVATION Liberté Égalité Fraternité

Direction générale de la recherche et de l'innovation

Paris, le 1-1 OCT. 2021

Monsieur,

Suite à la réunion du Comité directeur des infrastructures de recherche le 13 juillet 2021, j'ai le plaisir de vous informer que JUNO sera inclus dans la Feuille de route nationale des infrastructures de recherche 2021, avec le label IR.

