La calorimétrie Partie I

Vincent Boudry LLR, École polytechnique

École du détecteur à la mesure Bénodet, juin 2018

Mon parcours...

15 ans de H1 (collisionneur e-p HERA)

- Thèse : Test des modules du calorimètre Fe-**2Ar** (+ la recherche de lepto-quarks)
- Le calorimètre arrière «SpaCal» (+ structure du proton à «petits x »)
- Luminomètre : Calorimètre à 0° à Fibre Cherenkov

CALICE–ILD → International Linear Collider (ILC) [+ CEPC, CLIC, FCC-ee]

- Construction & tests de prototypes de calorimètre super-granulaires optimisés pour le «Particle Flow»
 - SiW-ECAL : calo silicium
 - SDHCAL : Fe-GRPC
 - Simulations \rightarrow optimisation détecteur \oplus techniques de reconstruction

Enseignement Travaux Expérimentaux & M1 à Polytechnique

- Nal + PM (2 voies)

Plan

Introduction

- Historique
- Les interactions des particules dans la matière
 - Interactions hadronique, réponse en temps, ...
 - Oh les belles gerbes !
- Principe de la mesure en calorimétrie
 - Calorimétrie électro-magnétique & hadronique
 - Mesures de la performance

Techniques de base de détection

- Optique : Scintillateurs & Čerenkov
- Electronique en milieu condensé (Solide & Liquide)
- Détecteurs Gazeux

En pratique :

- Quelques exemples
- Effets annexes, et considérations «pour ingénieurs»
 Techniques avancées, la pratique et le futur...
 - Quelques ruses...
 - Le futur de la calorimétrie : dual readout vs. particle flow.
 - ILC & CMS-HGCAL

Mercredi

Vendredi

la calorimétrie : Introduction

Pour quoi ?

Mesure de l'énergie de particules **par arrêt complet** (⊥ philosophie trajectographes)

– «Calorimètre ≅ bloc de matière dense instrumenté»

Mesure des neutres :

- Electromagnétique : γ
- Hadronique : n, K^0_{L}

Mesurer l'énergie des électrons & positrons : e^{\pm}

Mesurer l'énergie des hadrons chargés. h^{\pm}

Identifier les leptons : électrons, μ , τ 's

- Muons \simeq trace dans le détecteurs
- $-\tau \sim jets$

Mesurer les jets (~quarks) \rightarrow «Energy Flow» «Particle Flow»

 $\gamma c \tau$ = parcours moyen > taille de trajectographe $\blacktriangleright K^0_L, \pi^{\pm}$ μ, p, n » 100 m ØB P.L $\sigma_{\rm E}/E$ Trajectographes $P = a \ p \oplus b$ Calorimètres $\sigma_{\rm F}/E \approx a/\sqrt{E} \oplus b$ E ou p

Vincent.Boudry@in2p3.fr

La calorimétrie

1903 : P. Curie & A. Laborde : vrai calorimètre*. 1930 : 1ère « vraie » mesure (e- du ²⁰⁷Bi)

1949 : Cristaux Nal + photo-multiplicateur :

- spectroscopie γ pour le nucléaire.
- Bon marché, stable, «pas mauvais» (↔ batterie au Pb p)

Système plus complexe \rightarrow Phys. Nucl

- Photons en coïncidences dans les réactions
 - Tomographie par émission de positrons (TEP)

En Physique des Particules

- Chambres à bulles = trajectographes
 - analyse magnétique
- Remplacement des ch. à bulle par des Ch à Fil Multi prop.
- 1^{ers} grands calorimètres dans les années 70
- De + en + gros et plus complexes (environnement)
 - LHC : CMS & Atlas

* https://fr.wikisource.org/wiki/%C5%92uvres_de_Pierre_Curie/44

→ Bolomètres Fil métallique Fig. 1

Ordres de grandeur

```
1 \text{ GeV} = 10^9 \text{ eV}; × 1.6 10^{-19} = 10^{-10} \text{ J}
```

```
M_Z c^2 \sim 100 \text{ GeV} = 10^{-8} \text{ J}
```

 $-\Delta T (1 \text{ g d'eau}) = 10^{-8} / (4.18 \text{ J/cal}) = qq nK$

But : Passage d'une particule (mip) dans 1 cm de mat ~ qq MeV

 \rightarrow domaine des bolomètres (à qq 0,1°K)

Besoin d'une amplification physique du signal d'ionisation

Analyse des processus microscopiques

8/83

Principe de la calorimétrie en PHE

On fait interagir les particules

- (Conversion des neutres en chargés)
 - γ (gamma) \rightarrow paire e+e- par interaction em
 - h⁰ (hadrons neutres) : interaction forte
 - v (neutrinos) \rightarrow interaction faible (courant chargé)
- Multiplication par réaction → Gerbes EM & Hadronique

Puis mesure des traces chargées

 les seules laissant un signal

 $E_{\text{total}} \propto \sum \ell_{\text{traces}} \propto \text{Nombre de messagers emis (photons, e}^-)$ $\propto \text{Nombre de messagers mesurés}$

On doit fournir

- De la matière (bcp !) pour interagir (radiateur)
- un milieu sensible aux traces chargée (senseur)

Radiateurs & senseurs

Vincent.Boudry@in2p3.fr

- lorimètre homogène
- identiques → Calorimètre homogène
 entrelacés → Calorimètre à échantillonnage
 La calorimétrie Bénodet 2018

Messager = électrons, photons*

Les interactions dans un bloc de matière

Glossaire

em/EM: électromagnétique

E: énergie

p: impulsion

m: masse

- facteurs relativistes : $\beta = v/c$; $\gamma = 1/\sqrt{(1-\beta^2)} = E/m$

Z: numéro atomique des atomes (nbre d'électrons=nbre de protons)

A : masse atomique (nombre de nucléons = Nb proton + nb neutrons)

Bremsstrahlung = radiation de freinage

Č = Čerenkov (émission de lumière par effet superluminique [dans un milieu]) X_0 : longueur de radiation

 λ_{had} : longueur d'interaction hadronique

Interactions purement EM

Chargés

Rayonnement de freinage

Photons

Les muons

Vincent.Boudry@in2p3.fr

Les muons

Vincent.Boudry@in2p3.fr

Les muons

Vincent.Boudry@in2p3.fr

Les photons dans la matière

«Tout ou rien»

- Section efficace σ(E)
 [Barn/atome, cm²/g, cm⁻¹]
- Atténuation exponentielle dans la matière
- Effet Photo-Électrique
 - ~ Z^5 / E^3
- Effet Compton
 - Et autres diffusions
 - Rayleigh (λ>taille diff.)
 - ~ Z

Création de Paires

• $\sim Z^2$

Effets photo-nucléaires...

Vincent.Boudry@in2p3.fr

Interactions des particules chargées

La calorimétrie – Bénodet 2018

Gerbes électromagnétiques

Big European Bubble Chamber filled with Ne:H₂ = 70%:30%, 3T Field, L=3.5 m, X₀=34 cm, 50 GeV incident electron

Electron gerbant dans des plaques de plomb dans une chambre de Wilson (1949)

La calorimétrie – Bénodet 2018

Profils longitudinal ; Longueur de radiation X₀

Caractérisation transverse de la gerbe : rayon de Molière

rayon du cylindre contenant 90% de l'énergie. varie comme l'inverse de la densité

99% est contenu dans $r = 2 R_{M}$

Quelques propriétés générales et utiles

Quelques chiffres

	$R_M = X_0 E_s / E_c$								
	X_0 =	$=\frac{71}{Z(Z)}$	(sol. & liq.) $E_c = rac{610}{Z+1.24} { m MeV}$						
Matériau	Ζ	A	ho / g cm ⁻³	X_0 / cm	R _M / cm	E _c / MeV			
Si	14	28	2,33	9,4	4,9	40,0			
Argon liquide	18	40	1,4	14,0	7,9	37,0			
Fer	26	56	7,9	1,8	1,7	22,0			
Cuivre	29	64	8,9	1,4	1,5	20,2			
Plomb	82	207	11,35	0,56	1,6	7,4			
Uranium	92	238	18,9	0,32	1,1	6,2			
Tungstène	74	184	19,3	0,32	0,8	8,1			
Nal			3,67	2,59					
Air			0,001	30420					

Combinaison de matériaux :

$$1/X_0 = \sum w_j / X_j$$

$$\omega_i$$
 = poids relatifs

La calorimétrie – Bénodet 2018

Vincent.Boudry@in2p3.fr

22/83

 $\frac{1}{R_M} = \frac{1}{E_s} \sum \frac{w_j \, E_{cj}}{X_j}$

Les interactions hadroniques

Matière hadronique (≡ lourds ↔ leptons ≡ légers)

- Baryons : constitués de 3 quarks
 - p, n, Δ++, ...
- Mésons : constitués de paires quark–quark
 - $\pi^{\pm,0}, K^{\pm}, K^{0}_{L,S}$

Chargés / Neutres \rightarrow interaction EM et faibles

+ interactions hadroniques

- Collisions dures sur noyaux $\rightarrow N$ secondaires
- Collision quasi-élastiques
 - échange de charge (ex : $K_{^0L} + p \rightarrow K_{^+} + n$)
- Diffusion multiple
- Désintégrations « en vol » :
 - $\pi^{_0} \rightarrow 2\gamma \ (\tau \sim 10^{-15} s) \rightarrow gerbes \ EM$

Interaction hadroniques

Processus beaucoup plus complexes

Source principale de fluctuation: réponse différente

- aux particules électromagnétiques, γ, e
- et aux particules hadroniques, p, K, π

fraction de π^0 (e/h)

Longueur de radiation X_0 , Longueur d'interaction λ_{int} :

Dans un domaine d'énergie, la probabilité d'interaction dans un intervalle dx donné est essentiellement indépendante de l'énergie (loi exponentielle), on peut donc définir la longueur caractéristique d'interaction

Contribution to the cross section γ Carbon in barns/atom

Laboratory beam momentum (GeV

 π^+ p and π^- p cross sections

Gross section (mb)

section (mb)

10 5

Quelques chiffres

Pratique

Base de données

- PDG : Particle Data Book http://pdg.web.cern.ch/pdg/
- NIST : http://www.nist.gov/pml/data/index.cfm
 - X-COM : σ_γ(E)
 - Calculs de range
 - estar : electrons
 - pstar : protons
 - astar : α

Nuclear properties

- http://www.exphys.uni-linz.ac.at/Stopping/

Profil des gerbes hadronique

M. De Naurrois

Vincent.Boudry@in2p3.fr

Vincent.Boudry@in2p3.fr

By courtesy of Mathieu de Naurois

Tunt P

Autopsie d'une gerbe hadronique

Collisions dures

- production de secondaires
- populations
 - ~30% π⁺
 - ~30% de π-

- + fragments de noyaux
 - neutrons rapides
 - dés-excitations
 - n

La fraction EM

À chaque collision :

- π produits ~ à égalité : π⁺, π⁻, π⁰
 - $\pi^0 \rightarrow$ gerbe EM «locale»

red - e.m. component blue - charged hadrons

Fraction f_0 de π^0 dans chaque interaction Avec les mains :

$$egin{aligned} &-F_0 = f_0 + (1 - f_0) \ f_0 \ &+ (1 - f_0)^2 \ f_0 \ &+ \ldots \ & F_0 \ &= 1 \ & (1 \ f_0)^n \ f_0 \ & f_0 \ &+ \ldots \ & f_0 \ & f$$

$$-F_0 = 1 - (1 - f_0)^n$$
 pour n générations

Vincent.Boudry@in2p3.fr

La non-linéarité → facteur e/h Calorimètres compensants

Réponse d'un calorimètre aux hadrons :

$$egin{aligned} R_{\mathrm{h}} &= arepsilon_{\mathrm{e}} E_{\mathrm{e}} + arepsilon_{\mathrm{h}} E_{\mathrm{h}} \ &= & \left(arepsilon_{\mathrm{e}} \ F_{\mathrm{0}} + arepsilon_{\mathrm{h}} \left(1 extsf{-} F_{\mathrm{0}}
ight)
ight) E \end{aligned}$$

$$- E_{\rm e}$$
 = Energie EM

- $E_{\rm h}$ = énergie hadronique
- $\varepsilon_{\rm e}$ = fraction d'énergie EM détectée
- $\varepsilon_{\rm h}$ = fraction d'énergie Hadronique détecté

Rapport

 $e/h = \varepsilon_{e} / \varepsilon_{h}$

Signal (in energy units) obtained for a 10 GeV energy deposit

e/h =

- $\sim 1 \rightarrow$ calorimètre à compensation
- $\neq 1 \rightarrow$ calorimètre non-compensant

Bilan énergétique

Résultats de simulations (par ex.FLUKA, GEANT4)

– basé sur des mesures de $\sigma_{\rm eff}$ d'interaction

Particule	No	mbre	Er		
	Pb	Fe	Pb	Fe	
Pions	1.2%	2.1%	19%	21%	
Protons	3.5%	8%	37%	53%	
Energie de liaison nucléaire			32%	16%	En
Recul			2%	5%	
Neutrons d'évaporation	32%	5%	10%	5%	
Neutrons de cascade	5.4%	5%			

Les effets nucléaires dépendent beaucoup du matériau (!)

Les effets des neutrons difficiles :

- $-\sigma$ pas toujours bien connues
- Effets des senseurs (présence d'Hydrogène)

Composante neutronique secondaire

En général temps caractéristiques ~qq ns (30 cm / ns)

Sauf pour

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - \rightarrow temps de thermalisation

Composante neutronique secondaire

En général temps caractéristiques ~qq ns (30 cm / ns)

Sauf pour

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

Vincent.Boudry@in2p3.fr

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture ✓
 à basse énergie
 - \rightarrow temps de thermalisation [courtesy of F. Simon, MPI Munchen]

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture ✓
 à basse énergie
 - \rightarrow temps de thermalisation [courtesy of F. Simon, MPI Munchen]

Vincent.Boudry@in2p3.fr

En général temps caractéristiques ~qq ns (30 cm / ns)

Sauf pour

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture ✓
 à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

Vincent.Boudry@in2p3.fr

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *◄* à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

Vincent.Boudry@in2p3.fr

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

La calorimétrie – Bénodet 2018

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture
 à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

En général temps caractéristiques ~qq ns (30 cm / ns)

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

Vincent.Boudry@in2p3.fr

En général temps caractéristiques ~qq ns (30 cm / ns)

Sauf pour

- les des-excitations nucléaires
- les n

Vincent.Boudry@in2p3.fr

- σ_{eff} de capture *×* à basse énergie
- → temps de thermalisation [courtesy of F. Simon, MPI Munchen]

47/83

En général temps caractéristiques ~qq ns (30 cm / ns)

Sauf pour

DRUID, RunNum = 0, EventNum =

- les des-excitations nucléaires
- les n
 - σ_{eff} de capture *×* à basse énergie
 - \rightarrow temps de thermalisation

DRUID. RunNum = 0. EventNum =

sans neutrons

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

avec neutrons

Rappel

Calorimétrie = mesure de l'énergie des particules (passant le trajectographe) par arrêt

- $e^{\scriptscriptstyle\pm}$ et $\gamma \rightarrow$ gerbes dans le calorimètre EM (ECAL)
 - ~30 X₀ ~ 20 cm de mat dense
 - r ~ 2 R_M ~ qq cm ; (R_M = R_{90%})

 $\text{Hadrons} \rightarrow \text{gerbe dans le ECAL et le HCAL}$

- $\lambda_{int} \sim 30 X_0$
- $\quad Gerbes: L_{_{95\%}} \sim 8 \ \lambda, \ R_{_{95\%}} \sim 1.5 \ \lambda$
- Grosse fluctuation (composante EM, forme, ...)

Muons

- ... ne font que passer...
 - Calorimètre (si suffisamment segmenté) + ch. magnétique = trajectographe

Information en temps

$e^+ e^- \rightarrow t \bar{t} \ a 500 \text{ GeV}$; couleur = temps

Vincent.Boudry@in2p3.fr

L'élaboration d'un calorimètre : les critères

Le détecteur parfait

infini (pas de pertes)

Sans bruit

Infiniment précis

Linéaire

Précis spatiale^t & angulaire^t

Rapide

Homogène

Stable

Identification

Séparation de particles La calorimétrication det 2018

+ Bon marché...

Les détecteurs réels

Un expérimentateur...

infinie (sans pertes)

Sans bruit Infiniment précise Linéaire

Rapide

Stable

Homogène Identification Position & angle

Séparation

+ Bon marché...

% de pertes de fuite

Résolution

Non Linéarité

Vitesse + empilement + Taux d'occupation

Variations (⊃ radiations)

Inhomogénéité δ

Efficacité & Pureté

Précision position & Angle

% Confusion (e/π, hadrons, jets isolés, 2 jets) €€€ !! < 10% machine ?

Vincent.Boudry@in2p3.fr

Comment on estime l'énergie: en décomptant la longueur de trace chargée générée

Mesure de la résolution

$$a \oplus b = \sqrt{a^2 + b^2}$$

Fuite : $\oplus \sigma_{\text{fuite}} \sim 4 f_{\text{fuite}}$ (corrigé mais pas les fluctuations)

Fluctuations additionnelles due à la technologie

- saturations, effet de charge d'espace...

σ(E)/E
Electromagnétique

e, γ isolés

Hadronique

h isolés

Jets

Mélange : γ, h, e

Résolution : performance

La résolution

Reconstruction de la masse des W & Z⁰ dans UA2(années 80-90), CDF (2000) Pour l'ILC (année 2026?)

WW versus ZZ separation

Vincent.Boudry@in2p3.fr

$E \propto N$ La linéarité

L'étalonnage

Non homogénéités dominantes à haute énergie

instabilités en temps (radiation)

- Système de calibration
- Très dépendant des techniques utilisées

Intercalibation

- En faisceaux-test avant montage
 + calibration
- Par les cosmiques
- Par les µ du faisceau
- Par les processus physiques
 - Balance en E
 - $Z \rightarrow ee$, $\mu\mu$, $\tau\tau$

Réponse des crystaux de PbWO4 à la radiation

Figure 13: Impurity concentration increase in H1 from 91 to 98 seen by 4 and 6 mm probes.

Lecture des données

Acquisition

- Déclenchement
 - lecture de 1er niveau
 - Sommes partielles
 - lecture complète
 - Calculs de niveau 2...n \rightarrow rejet
 - Écriture
- Sans trigger

Taux d'occupation

- Physique
- Technologie machine
 - LHC : pp @ 25 ns
 - ILC : ee @ 400 ns & 5Hz
 - CLIC : ee @ 2.5 ns & 50 Hz...

Temps de lecture...

Vincent.Boudry@in2p3.fr

 $HZ \rightarrow \tau \tau ee event$

Without soft hadronic events overlaid

With 32 BX (=16 ns) "CLIC nominal 500" overlaid

61/83

La calori

Autres éléments critiques

En position

- − Liens traces ↔ dépôts calorimétrique

Angulaire

 $-\gamma$ pointant vers le vertex, un jets, une particule exotique ?

Précision en temps

- Réjection du BdF
- temps de vol (identification)
- Composante neutronique
- Physique «exotique»

Type de collisionBut de physique

Vincent.Boudry@in2p3.fr

Identification de particules

Utile pour

- Sélection d'événements
- meilleure estimation de l'énergie

Séparations

- EM vs Hadron
 - Forme des gerbes
 - Latérale / Longitudinale
 - $f_{EM} = E_{Ecal} / (E_{Ecal} + E_{hcal})$
 - densité d'énergie
 - limite (~10-4) : processus hadroniques
 - $\gamma \rightarrow \mu\mu, \pi\pi; \pi^++n \rightarrow \pi^0(\rightarrow\gamma\gamma) + p$
- γ simple vs π^0
 - 2 gerbes EM très proches...
- $\mu vs \pi / hadrons$
- Jets vs т

Particle ID with a very simple Preshower Detector

FIG. 7.33. The distribution of the full width at one-fifth maximum (FWFM) for 80 GeV electron and pion signals in SPACAL [Aco 91a].

La calorimétrie – Bénodet 2018

Choix des outils : Les capteurs

Arbre technologique

Calorimètres à échantillonnage Radiateur + Capteur

Radiateurs pour l'électromagnétique (Z élevé): Plomb Pb, Uranium U, Tungstène W attention aux propriétés physiques mais aussi mécaniques !

pour l'hadronique (bon marché, bon mécaniquement)

fer (retour de champ), inox (dans un champ), cuivre plomb, tungstène, uranium?

e/h~1

Détecteurs similaires pour les deux: scintillateurs, lumière Čerenkov, chambres à ionisation, argon liquide, liquides chauds, chambres à gaz en différents modes (prop, streamer, Geiger), détecteurs silicium.

Quelles épaisseurs ?

Fraction d'échantillonnage EM

Résolution vs *f*_{échant}.

Scintillateurs

- Conversion d'une partie de l'ionisation en lumière
 - fluorescence = émission immédiate
 - phosphorescence = émission retardé
- Avantages / Désavantages
 - ⊕ peu de bruit (lumière)

Organique

- peu chers
- légers, peu sensibles aux γ
- échantillonnage
 - flexibles (solide / liquide, fibres, ...)
- rapides (~0.1 ns)
- sensibles aux n (\supset H)
- Sensibilité aux radiations.
 - Récupération à l'Oxygène
- Ex : polystyrène

Inorganique

- chers
- denses, bon rendement
- homogène
 - Fragile, hygroscopique
 - Sensibilité envir (t°, rad)
- généralement lents

Ex : Nal(TI), CsI, PbWO4

ΡM

APD

HPD

SiPM

CCD

rayon X ou γ nip

Mécanismes de scintillation

Quelques scintillateurs inorganiques

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PWO(Y)	LSO(Ce)	GSO(Ce)	
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71	
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950	Prix 🔶 Compacité
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	0.89	1.14	1.38	
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.00	2.07	2.23	
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.7	20.9	22.2	
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.20	1.82	1.85	Č + optique
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No	Mécanique
Luminescence ^b (nm) (at peak)	410	550	420	300	480	425	402	440	Optique + Ampli
(310	220		420			
Decay Time ^o (ns)	230	1250	30	630	300	30	40	60	σ(t) + DAQ
Light Viold D.C (0/)	100	465	2.6	0.9	24	0	0.2	20	
Light field - (76)	100	105	3.0 1 1	34	21	0.29	85	30	σ(E)
d(LY)/dT ^b (%/ °C)	~0	0.3	-0.6	-2	-1.6	-1.9	~0	-0.1	Ctabilitá an tamp
				~0	1.2116				Stabilité en temp.
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PrimEx PANDA?	-	<u> </u>	+ Longueur abs. + résistance Rad.

a. at peak of emission; b. up/low row: slow/fast component; c. PMT QE taken out.

R.-Y. Zhu @ CALOR 2010

Lumière des scintillateurs

Courbes de lumière

Vincent.Boudry@in2p3.fr
Čerenkov

Types

- Cristaux : indice > 1,5
- Verre au Plomb
- Gels de Silice
- Fibres à quartz («Fused silica»)

Exemples : Luminomètre de H1, FCAL de CMS, DREAM Sensibilité ; RadHard

$$\cos \theta_{\gamma} = \frac{1}{n\beta} + \frac{n^2 - 1}{2n\beta} \frac{E_{\gamma}}{E_1} \text{ si } \frac{1}{n} < \beta$$

Ny:
$$\frac{d^2 N}{dx dE_{\gamma}} = \frac{\alpha}{\hbar c} \sin^2 \theta_{\gamma}$$

TB résolution en temps

Exemple : $d = 1 \text{ cm} = 5 \ 10^4 \text{ eV}^{-1}$, $dE = 0.02 \text{ eV} \Rightarrow dN \sim 7$

Vincent.Boudry@in2p3.fr

Rendements...

Isabelle Wingerter-Seez

Photo-Détecteurs

Photo-détecteurs

 $100 \text{nm} < \lambda < 1000 \text{ nm}$ $UV \rightarrow IR$

Type	λ (nm)	$\epsilon_Q \epsilon_C$	Gain	Risetime (ns)	Area (mm ²)	1-p.e noise (Hz)	HV (V)	Price (USD)
PMT*	115 - 1700	0.15 - 0.25	$10^{3} - 10^{7}$	0.7-10	$10^2 - 10^5$	$10 - 10^4$	500-3000	100-5000
MCP^*	100 - 650	0.01-0.10	$10^{3} - 10^{7}$	0.15 - 0.3	$10^2 - 10^4$	0.1 - 200	500-3500	10 - 6000
HPD*	115 - 850	0.1 - 0.3	$10^{3} - 10^{4}$	7	$10^2 - 10^5$	$10 - 10^3$	${\sim}2 \times 10^4$	~ 600
GPM*	115 - 500	0.15-0.3	$10^{3} - 10^{6}$	O(0.1)	O(10)	$10 - 10^3$	300 - 2000	O(10)
APD	300 - 1700	~ 0.7	$10 - 10^8$	O(1)	$10 - 10^3$	$1 - 10^3$	400-1400	O(100)
PPD	320-900	0.15 - 0.3	$10^{5} - 10^{6}$	~ 1	1 - 10	$O(10^6)$	30-60	$O(100)_{10}$
VLPC	500-600	~ 0.9	$\sim 5 \times 10^4$	~ 10	1	$O(10^4)$	${\sim}7$	~ 1

PMT = Photo-multiplicateur ; MCP = Micro Channel Plate; HPD = Hybrid Photo-Diode ;

GPM = Gas Photon-Detector;

APD = Avalanche Photo-Diodes ; PPD = SiPM = Pixelized Photon Detector;

VLPC = Visible Light Photon Counters

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

Gaz nobles liquéfiés

Ar, Kr, Xe

Signal :

- ionisation + scintillation (recombinaison)
 - $w_{\text{e-h}}$ élevé mais bruit 🛰
- Excellente résolution
 - 5%/ \sqrt{E} pour NA48

homogénéité

- \odot Système cryogénique (\rightarrow Mat. morts)
- ⊖ contamination inéluctable (O)

Exemple NA48, H1, D0, ATLAS

Projets : Chambres larges biphasée
 → «CaloTPC» + Amplification gazeuse (André Rubbia)

Vincent.Boudry@in2p3.fr

Figure 13: Impurity concentration increase in H1 from 91 to 98 seen by 4 and 6 mm probes.

La calorimétrie – Bénodet 2018

Semi-Conducteurs

Collection directe de charge

- Besoin d'1 électronique d'amplification
- sous un potentiel élevé (qq 100 V)
 - Silicium de haute résistance
 - Germanium
 - Diamant (RadHard)
- ⊕ Très bon rendement
 - $w_{e-h} \sim qq eV \rightarrow \sim 100 e-h/\mu m$
 - Facteur de Fano -- meilleur que $1/\sqrt{N}$
 - Stabilité, sensibilité au mip

 \ominus Prix

Détecteurs Gazeux : amplification

Forts gains : 10⁶ – 10⁷

Temps de récupération

- (~ 1/ Gain)

Peut-être local

Géométrie

Cylindrique : Geiger

- Champ en 1/r •
- Ø qq 10 µm •

Plane

0

8

- Champ constant •
- plusieurs zone •

х

Ions

Vincent.Boudry@in2p3.fr

Détecteurs gazeux

MonBeauCalo.fr

Réponse en temps

Detector Type	Accuracy (rms)	Resolution Time	Dead Time
Bubble chamber	$10150~\mu\mathrm{m}$	$1 \mathrm{ms}$	50 ms^a
Streamer chamber	$300 \ \mu m$	$2 \ \mu s$	$100 \mathrm{ms}$
Proportional chamber	$50100~\mu\mathrm{m}^{b,c}$	2 ns	200 ns
Drift chamber	$50100 \ \mu\text{m}$	2 ns^d	100 ns
Scintillator		$100 \text{ ps}/n^e$	10 ns
Emulsion	$1 \ \mu \mathrm{m}$		
Liquid argon drift [7]	${\sim}175450~\mu\mathrm{m}$	$\sim 200~{\rm ns}$	$\sim 2 \ \mu { m s}$
Micro-pattern gas detectors [8]	$3040~\mu\mathrm{m}$	< 10 ns	20 ns
Resistive plate chamber [9]	$\lesssim 10 \ \mu { m m}$	1-2 ns	≤10 ms
Silicon strip	$\operatorname{pitch}/(3 \text{ to } 7)^f$	g	g
Silicon pixel	$2 \ \mu \mathrm{m}^{m{h}}$	g	g

• Limitation du gain.

- $\Delta S \propto \frac{\Delta E}{1 + k_B (\Delta E / \Delta x)}$
 - $-k_B$ is the Birks' constant
 - \Rightarrow must be determined for each scintillator

La calorimétrie – Bénodet 2018

α

Scintillateurs

_

fragments

I oi de Birks