

Participation of IN2P3 physicists in Hyper-Kamiokande

ILance, LLR, LPNHE, OMEGA

Hyper Kamiokande in a nutshell

- MSW effect
- Non-standard interactions

- Transient SN ν: constrain SN profile models
- Relic SN ν : constrain cosmic star formation

 $n-\bar{n}$ oscillation

- Observe CP violation for leptons at 5σ
- Precise measurement of $\delta_{\rm CP}$
- High sensitivity to ν mass ordering

J-PARC accelerator neutrinos

Tokai to HK: heritage from T2K

Accelerator upgrade

Power increase (500kW \rightarrow 1.3 MW)

x2.7 more stats per s (wrt T2K-I) $\nu/\bar{\nu}$ flux uncertainty < 5% thanks to NA61

Tokai to HK: heritage from T2K

Accelerator upgrade

Power increase (500kW →1.3 MW) x2.7 more stats per s (wrt T2K-I)

 $\nu/\bar{\nu}$ flux uncertainty < 5% thanks to NA61

Magnetized near detector @280 m

Used for T2K Oscillation Analysis for >10 y

Being upgraded now for T2K-II

Systematics uncertainties under control from Day-1 of HK

Tokai to HK: what will be new?

Accelerator upgrade **JPARC** Power increase (500kW →1.3 MW) x2.7 more stats per s (wrt T2K-I) $\nu/\bar{\nu}$ flux uncertainty < 5% thanks to NA61 Magnetized near detector @280 m 2.5° Off-axis Flux Used for T2K Oscillation Analysis for >10 y Being upgraded now for T2K-II Systematics uncertainties under control from day 1 of HK Intermediate Water Cherenkov Detector (IWCD/E61) Measure ν interactions on Water 1.0° Off-axis Flu High stats. sample of ν_e interactions Needed to reach final HK goal for systematics uncertainties

Tokai to HK: what will be new?

Super Kamiokande

	Super Kamiokande	Hyper Kamiokande	
Site	Mozumi-yama	Tochibora-yama	
Number of ID 20" PMTs	11129	>20,000	
Photo-coverage	40%	>20%	
Single-photon efficiency/PMT	~12%	~24%	
Dark rate/PMT	~4 kHz	~4kHz	
Time resolution of 1 photon	~3 ns	~1.5 ns	
Total/fiducial mass (kton)	50 / 22.5	260 / 187	

Fiducial volume x8

ightarrow non-beam u physics

Beam neutrino event rate x 20

ightarrow beam u physics

Start operations in 2027 with 240 kt.MW and an assumed runtime $10^7 \ \mathrm{s}$ per year

20" PMTs, mPMTs and readout

Hyper-**K**amiokande

Inner detector composed of

- 20k+ 20" PMTs (Hamamatsu R12860)
- ~5k mPMTs (19 3" R12199-02 PMTs)
 - → Better SNR, directionality, timing

Size of detector requires an in-water electronics

Construction status

Survey completed

Excavation on-going

New main building

Everything on track! ✓

HK schedule

Strong engagement of Japan: ~500 M\$ for construction

→Expected from other countries: ~100 M\$

International contributions being formalized (MOU expected in 2022)

Hyper-Kamiokande Physics

Solar physics

Rare events

Supernovae modeling and Early Universe

Hyper-Kamiokande

Neutrinos oscillation

 $\int \Delta m_{sol}^2$

 $\mathbf{\square} \nu_{\tau}$

Fast CP-violation discovery

Known mass ordering (KM3NET)

 \rightarrow If $\delta_{\rm CP}=-\pi/2$, CP violation <u>discovered before</u> any other LBL- ν experiment

ightarrow <u>Fastest experiment</u> to survey possible δ_{CP} values

	$\delta_{\rm CP} = -\pi/2$		All δ_{CP}	
	3σ	5σ	50% 5σ	70% 3 <i>σ</i>
Hyper Kamiokande	0.5 y	2 y	5 y	5 y
DUNE (staged*)	4 y	8 y	10 y	13 y

^{* 2} modules@1.2 MW y1; 3 modules y2; 4 modules y4; @2.4 MW y7

DUNE CDR <u>arXiv:2002.03005</u> IUPAP Neutrino panel <u>report</u>

Mass ordering sensitivity with atmospherics

If not discovered by T2K/SK, Nova, Orca or Juno before 2027, HK can determine MO after 6-10 years via atmospheric ν

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ —	→ 3.8 σ
ordering	0.60	4.9 σ —	\rightarrow 6.2 σ

Sensitivity to CPV is <u>little affected</u> if we add atmospheric ν \to MO prior knowledge not really required to explore $\delta_{\rm CP}$

δ_{CP} measurement resolution

	$\delta_{\rm CP} = -\pi/2$		$\delta_{\rm CP} = 0$	
	30°	20°	15°	10°
Hyper Kamiokande		7 y	1 y	3 y
DUNE	5 y	12 y	5 y	8 y

DUNE CDR arXiv:2002.03005

Precision = sensitivity to matter-antimatter models

ightarrowHK will quickly reach precision on $\delta_{\rm CP}$ of 30° (15°) for $\delta_{\rm CP}=-\pi/2$ (0)

 \rightarrow For the ultimate precision on $\delta_{\rm CP}$ it will be important to further reduce systematics uncertainties w.r.t. T2K (ND280 Upgrade + IWCD)

 $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 \Delta m_{32}^2 = 2.509E-3$

Proton decay

Motivated by Grand-Unification Theories HK will have the best limit on $p \to e^+ + \pi^0$ for bound protons

- → about 1 order of magnitude better than current limits
- \rightarrow typical constraint $m_X \gtrsim 5 \times 10^{15} \text{ GeV}/c^2$

Thanks to its huge mass, HK will also have leading sensitivity to channels with invisible particles $(p \to \bar{\nu} K^+)$

HK is sensitive to free proton decay

Phys. Lett. B 233 (1-2) 178-182

10³⁵

10³⁵

HK 186 kton HD, 3σ
DUNE 40 kton, staged, 3σ
SK+SKGd 27 kton, 3σ

10³⁴

10³⁴

10³³

2020

2030

2040

JUNO: J. Phys. G 43 (2016) 030401 (arXiv:1507.05613) DUNE: FERMILAB-PUB-20-025-ND (arXiv:2002.03005)

Hyper-Kamiokande — CS IN2P3 October 2021

Year

Astrophysical neutrinos

Supernova neutrinos arXiv:2101.05269

Increase by ~10 in stats sensitivity wrt. SK SN1987A type ~2500 events
Galactic center: ~50000+ events

Direction (1°@10kpc) → triangulation Time profile: collapse models

 \rightarrow SN ν detected every 3 years in HK!

Gravitational waves sources

Nearby (10Mpc) neutron star mergers

→ Unique multi-messengers observatory

DSNB discovery by HK

SN-relic neutrino (SNRv) offer new constraints on cosmic star history

→Could be first detected by SK-Gd

→The spectrum will be <u>determined by HK</u>

Impact of redshift: low energy ↔ probe older stars

Sensitivity to neutron star vs black hole formation

Project Experiment approval: key dates

Conclusion of previous CS: "Le projet n'est pas actuellement approuvé au Japon et il n'y a pas suffisamment d'informations quant à l'organisation du projet pour envisager et discuter des participations directes à HK."

Aug. 2019: F

MEXT approval of HK project

Feb. 2020: HK budget

approved

May 2020:

Signature of MOU

May 2021: Groundbreaking

ceremony

2018

Hyper-**K**amiokande

Oct. 2018: IN2P3 CS discussing HK

Oct. 2019: LPNHE CS approved HK

2019

Jan. 2021: CEA CS approved HK

2020

March 2021: LLR CS approved HK

2021

Oct. 2021: IN2P3 CS discussing HK

Hyper-Kamiokande — CS IN2P3 October 2021

17

IN2P3-CEA technical contributions to HK

- ND280 Upgrade and maintenance
 - Super FGD electronics
 - High-Angle TPCs electronics & readout
- Construction of HK far detector
 - Front-end electronics
- International computing effort
 - CC-IN2P3 as T1 for HK

Computing efforts in Hyper Kamiokande

Tier model similar to CERN's Resources and data management using DIRAC Software containerized and shared via CVMFS

System similar in other IN2P3 exp. (Belle-II, CTA, LSST...)

→ <u>obvious synergies</u>

First 10 years of operations:

→25 PB (data + MC - mostly Far Detector)

→880 MCPU.hours

(minimal with one copy of each file)

Proposed Contribution: CC-IN2P3 as T1 site

CC-IN2P3 Tier1 for LHC (WLCG)

→ infrastructure, expertise available Low-rate data stored on tapes Disk and CPU for productions Database management

Two proposed scenarii:

- 1. ND280 data storage
- 2. Near and Far detectors data storage

First step: CC-IN2P3 as T1 site for T2K

- → integration of CC as grid site into GridPP
- → disk allocation and data transfer/

First production for HK at CC-IN2P3 completed

Contribution to HK Far Detector electronics

HKROC: new chip and readout

HK requirements fulfilled

Chip and readout board for PMT inspired by HGCROC chip

- 1. Large dynamic range: 3 gains / ch. → up to 2500 pC ✓
- 2. Excellent charge & time resolution: (<200 ps)
- 3. TSMC CMOS 130nm etching
- 4. Reduced dead-time (<50 ns): SAR ADC sampling waveform at 40 MHz √

R&D funded by X (400 k€)

HKROC delivered in Nov 2021 First tests in December 2021

- → Synergy OMEGA/LLR/IRFU
- → Use in future WC detectors!

Competitors and time constraints

Two other competitors: Japan QTC (SK chip) & Italian discrete solution HK internal review Apr-June 2022 → selection of digitizer solution

Selection criteria:

- Performances
- Group expertise
- Official engagement on fundings in June 2022

Creation of reliable Universal Time for global synchronization and stable 125 MHz frequency for front-end digitizers

Strong collaboration between LPNHE and SYRTE (Observatoire de Paris)

Calibration of clocks and GNSS antennas

Creation of a dedicated lab to study clocks and GNSS at LPNHE

Long-term studies and comparison using atomic clocks, antennas and PPS-SYRTE

→ R&D program supported by SU Emergence and ANR "Bertha"

Clock distribution

Strong collaboration between LPNHE/INFN/IRFU

Baseline proposal of time distributor modules (TDM) was finalized

Clock and Data Recovery (CDR) technology implemented using ser-des

• "Tree-like" structure

Board design shared btw CEA & LPNHE

Main distributor (53 ports)

Second distributors (16 ports)

• Slow control and asynchronous signals distribution

FE board development in collaboration with HKROC's

Other competitor: SK-based clock distribution system

- → selection of the solution in June 2022
- → Official engagement on fundings for approval

Upcoming milestones

Technological decision for HKROC and clocks

R&D almost complete

HK internal review beginning of 2022 → technological decision June 2022 MOU signature in 2022

SWOT

Strengths:

- Well-known exceptional Water Cherenkov technology
- Use of existing neutrino beam and near detector complex built for T2K, thus saving large amount of money for the long-baseline program and reducing systematics uncertainties from the first day of the experiment.
- Construction budget for Hyper-Kamiokande have been allocated by Japanese government in 2019 with a budget profile that will allow to start the experiment in 2027.

Opportunities:

- Fast measurement of CP violation, before any other experiments.
- Huge target mass, making HK the most sensitive observatory for rare events in the MeV–GeV region.
- IN2P3 groups can build on their long standing expertise in the T2K experiment to propose strong contributions in Hyper-Kamiokande. The possibility of using chips developed by OMEGA for the Hyper-Kamiokande far detector is particularly attractive from this point of view.

Weaknesses:

- Small groups at LLR and LPNHE. Mitigated by the large overlap in terms of physics case, technologies and tools between T2K, SK and HK.
- So far no other IN2P3 groups decided to join the Hyper-Kamiokande experiment.
- Hyper-Kamiokande not an IN2P3 project, undermining our visibility within the collaboration.

Risks:

- Dates for the approval by CS-IN2P3 and fundings of our proposed contributions to the HK electronics before collaboration review in Summer 2022. Missing the Summer 2022 deadline would compromise the French contributions to the Hyper-Kamiokande far detector.
- If the solutions not selected or not funded, no other planned French contributions to the far detector construction, putting our participation to Hyper-Kamiokande in jeopardy.

Conclusions and outlook

Hyper-Kamiokande has a vast and rich physics program including:

u oscillations (fast CP-violation discovery, δ_{CP} precision...)

Rare events observatory e.g. proton decay

Multi-messenger astrophysics (transient and diffuse SN detection)

→ High and quick discovery potential!

Construction started → **Operations will start in 2027**

Continuation of T2K and T2K-II

Upgraded ND280 will be HK near detector

Seamless program of world-leading measurements and discoveries from 2010 to 2040

Almost done: R&D phase for the proposed contributions on electronics and computing Used fundings from external sources (SU, Ecole Polytechnique, ANR) Technological decisions taken in <u>Summer 2022</u>

→ approval by CS-IN2P3 & recognition of HK as IN2P3 project needed to strengthen our proposed contributions to HK