

CONSEIL SCIENTIFIQUE DE L'INSTITUT NATIONAL DE PHYSIQUE NUCLEAIRE ET DE PHYSIQUE DES PARTICULES (IN2P3)

Réunion plénière du mardi 9 février et mercredi 10 février 2021 par VISIOCONFERENCE

Accélération d'électrons par laser-plasma

motivation, physique, applications de l'accélération à l'accélérateur: EuPRAXIA activités en France et à l'IN2P3

Arnd Specka, LLR, École polytechnique, Palaiseau

Remerciements:

Ralph Aßman, Patrick Audebert, Arnaud Beck, Kevin Cassou, Antoine Cauchois, Antoine Chancé, Brigitte Cros, Marie-Emmanuelle Couprie, Nicolas Delerue, Ali Fahad, Adrien Leblanc, Ali Mahjoub, Francesco Massimo, François Mathieu, Phi Nghiem, Julien Prudent, Sandrine Dobosz, Pascale Monot, Medhi Tarisien, Cédric Thaury, and tout ceux que j'ai pu oublier (mes excuses)

Motivation: Evolution de l'énergie Vs des collisionneurs e⁺/e⁻ et p/p

- croissance en énergie

 machines de plus en plus grandes
- longueur des LINACs déterminée par le gradient accélérateur

Evolution des énergies obtenues en accélération laser-plasma

- gradients en ALP 10 à 100 fois supérieurs aux LINAC RF
- évolution des énergies maximales plus rapide

$$W = q \times E \times L$$

Plasma wave driven by strong electric fields (1979)

1-D linear theory: plasma wave = forced electron density oscillation

1-D linear approximation $a^2 \ll 1$ 1-D linear approximation $n_h/n_0 \ll 1$

$$\left(\frac{\partial^{2}}{\partial\xi^{2}} + k_{p}^{2}\right)\frac{\delta n}{n_{0}} = -k_{p}^{2}\frac{n_{b}}{n_{0}}$$
space
charge force

acceleration of electrons (and positrons)

drive beam	plasma medium	accelerating structure
e+/e-beam	plasma wakefield acceleration (PWFA [*]) *) PWFA: historical misnomer SLAC,DESY,FRASCATI	dielectric structured wakefield acceleration (D SWFA)
proton beam	seeded self-modulation AWAKE@CERN	
laser beam	laser wakefield acceleration (LWFA) ALMOST EVERYWHERE	dielectric laser acceleration (DLA)

laser plasma acceleration of protons (and ions)

Chirped Pulse Amplification democratized LWFA

Laser wakefield acceleration <u>experiments</u> are "easy" if you have the laser.

Principe physique d'accélération laser de particules ALP: électrons

• laser de puissance à impulsion courtes: >50TW, 20-100fs, >1 J, focalisé

- accélération d'électrons: laser wakefield acceleration (LWFA)
 - cible gazeuse (plasma sous-dense)

densité électronique: $n_e \sim 10^{16} - 10^{19} \text{ cm}^{-3}$

- ionisation par effet de champ
- séparation des charges => onde plasma: $\lambda_P \sim 300 \mu m 10 \mu m$
- v_{PH} (onde) = v_G (laser) => onde relativiste

Simulation of laser plasma acceleration in blowout regime

J. Derouillat et al., Comput. Phys. Commun. 222, 351-373 (2018)

Accélération laser-plasma d'électrons : limitations

- Diffraction du laser: longueur de Rayleigh
 - remède: (auto-focalisation), guidage par capillaire, décharge
- Déphasage du paquet et de l'onde plasma (γ_{el} > γ_{onde})
 - remède : rampe de densité d'électrons décroissante, multi-étage

 Z_{R}

Main driving application: Compact X-ray sources

Relativistic electron beam +

magnetic ondulator

plasma undulator l

laser beam

SASE FEL 100'seV - keV

M. Fuchs et al, Nature Physics, Vol 5, November 2009

"Betatron" radiation 1keV – 10's keV

Compton backscatter 10's keV - MeV

S. Corde et al, Reviews of Modern Physics, Vol 85 (2013) S. Kneip et al, Nature Physics Vol 6 December 2010

Applications pour sources de rayonnement

O. Lundh et al, Med. Phys. 39 (6), June 2012

100 150 Depth (mm)

50 mm

150 mm

20 40 Mylar window

Injection

200

50 100 150 200 Depth (mm)

c)

beam

Phantom

loa

(mGy/nC)

30 SO

30 %

Magnet

09/11/202

State if the art of the art of laser wakefield acceleration experiments (2020)

Property	State of the art value [*]	Laser driver	Reference	Remarks
Energy	3 GeV (± 15%, ~50pC) 7.8 GeV (± 5%, ~5pC)	26J/30fs/30um 31J/30fs/60um	Kim (2017) - GIST Gonsalvez (2019) - LBNL	In single stage
Energy spread	1% (@ 10pC, 200MeV) 5-30% (@50-3GeV) 5% -100% (@ 400MeV, 80pC) 0.4% -20% (@ 300-350MeV,~10pC)	1.1J/35fs/20um 1-5J/20- 50fs/15-30um 2-5J/30fs/30um 2-3J/33fs/32um	Rechatin (2009) - LOA Many references (2010-2018) Mirzaie (2015) Shangai MOE Wang(2016) Shangai MOE	Still one order from FEL application requiring 0.1%
Normalized transverse emittance	~ 0.1 π mm.mrad (@250MeV, ~15pc) ~ 0.01 π mm.mrad (@200MeV-600MeV)	1.5J/30fs/20um	Weingartner (2012) - MPQ Qin (2018) - Shangai MOE	Measurement at the resolution limit
Bunch length	5-10 um	1.1J/35fs/20um	Lundh (2011) - LOA Kaluza(2014) - Jena Heigholt(2015) - UMu	Measurement at the resolution limit
Charge	~ 300 pC (@ 300-350MeV, 12-17%) <mark>>1nC</mark> (@ 330 MeV >15%-)	2.5J/40fs/20um 10J/40fs/>25u m	Couperus (2017) - Jena Götzfried(2020) - LMU	Beam loading
Repeatability	<mark>2.4%E, 11%Q</mark> (@1Hz, 368MeV, 25pC) 4%-11% E, 23%Q (@1kHz, 2.5MeV, 3pC)	2J/42fs/25um 10mJ/25fs/6um	Maier (2020) - DESY/UHH Rovige (2020) - LOA	
Repetition rate	~ 1 Hz @ >1 GeV ~ 1 kHz @ 1-3 MeV	>25J/30fs/>30u m ~mJ/ <25fs /6um	Kim (2017) - GIST, Gonzalves (2019) He (2015)- UMi, Salehi(2017) - UMd Guenot (2017) - LOA	Limited by laser

Table courtesy of K. Cassou

State if the art of the art of laser wakefield acceleration experiments (2021

Property	State of the art value [*]	Laser driver	Reference	ter
Energy	3 GeV (± 15%, ~50pC) 7.8 GeV (± 5%, ~5pC)	26J/30fs/30um 31J/30fs/60um	Kim (2017) - C nên	on! stage
Energy spread	1% (@ 10pC, 200MeV) 5-30% (@50-3GeV) 5% -100% (@ 400MeV, 80pC) 0.4% -20% (@ 300-350MeV,~10pC)	1.1J/35fs/20u 1-5J/20- 50fs /	eurs من المالية المالية المالية من المالية المالية المالية المالية المالية المالية	Still one order from FEL application requiring 0.1%
Normalized transverse emittance	~ 0.1 π mm.mrad(@250MeV, ~ t_0	U Meller Jrs/20um	Weingartner (2012) - MPQ Qin (2018) - Shangai MOE	Measurement at the resolution limit
Bunch length	5-10 um erience recontro	1.1J/35fs/20um	Lundh (2011) - LOA Kaluza(2014) - Jena Heigholt(2015) - UMu	Measurement at the resolution limit
Charge	~ ine exp rais (viev, 12-17%)	2.5J/40fs/20um 10J/40fs/>25u m	Couperus (2017) - Jena Götzfried(2020) - LMU	Beam loading
Re AUC	Q (@1Hz, 368MeV, 25pC) B E , 23%Q (@1kHz, 2.5MeV, 3pC)	2J/42fs/25um 10mJ/25fs/6um	Maier (2020) - DESY/UHH Rovige (2020) - LOA	
Repe 7. rate	~ 1 Hz @ >1 GeV ~ 1 kHz @ 1-3 MeV	>25J/30fs/>30u m ~mJ/ <25fs /6um	Kim (2017) - GIST, Gonzalves (2019) He (2015)- UMi, Salehi(2017) - UMd Guenot (2017) - LOA	Limited by laser

Table courtesy of K. Cassou

Progrès récents

Module accélérateur 10GeV LBNL, guidage, contrôle plasmas longs PRL 122, 084801 (2019) Fonctionnement en cadence pendant 24h, reproductible DESY, LUX Laser plasma accelerator: PRX 10, 031039 (2020)

Automatisation de l'optimisation par Intelligence Artificielle

JAI, UK consortium and DESY et CLF UKRI, Shalloo et al, Nat comm (2020) 11:6355 |

Courtesy B. Cros, GDR APPEL

Conseil scientifique IN2P3 09-10/II/2021 ... and Builds a European Distributed Facility

•

1. Lean overall **EuPRAXIA management**

- Ten clusters: Collaborations of institutes on specific problems, developing solutions, technical designs, driving developments with EuPRAXIA generated funding → expertise of all labs required opportunities
- **3.** Five excellence centers at existing facilities: Using pre-investment, support tests, prototyping, production with EuPRAXIA generated funding (F, UK, D, P, ELI)
 - . One or two construction sites at existing facilities with EuPRAXIA generated funding:
 - Beam-driven at Frascati/INFN (Italy).
 - Laser-driven at CLF/STFC (UK), CNR/Frascati/INFN (Italy) or ELI-Beamlines.

Main Project Milestones & Deliverables

ALP electrons : Contexte Français

IN2P3

- IJCLAB < LASERIX
 - Installation PALLAS
 - R&D Cible plasma (cellule)
 - Diagnostics faisceau (durée)

• LLR

- Expériences sur APOLLON
- Diagnostics faisceau (spectro)
- Simulation (SMILEI)

• CENBG

Accélération d'ions à partir de cibles gazeuses (APOLLON +..)

SOLEIL

Experience COXINEL (LEL)

CEA

• LIDYL (IRAMIS): **<UHI100**

- Expériences sur APOLLON et UH100

DACM (IRFU)

- Dynamique de faisceau, simulations

INP

- LOA (ENSTA): **<Salle jaune**, LaplaceHC
- LULI (EP): <u>Apollon</u>
- LPGP:
 - Expériences sur APOLLON et UH100
 - R&D cellule de gaz

Des nombreuses collaborations en cours et passés

GDR "APPEL" depuis 2019 (B.Cros & N.Delerue)

http://gdr-appel.fr/

- Conjoint: IN2P3 et INP: Échanges scientifique entre membres de communautés avec pratiques très différente ationale en physique nucléaire,
- Définir: Contribution EuPRAXIA
- De l'interaction laser-plasma aux accélérateurs
- Accélération électrons FT ions
- 2021: feuille de route nationale ES
 - Lancement FDR:28-I-2021
 - Redaction été 2021
- Panorama des projets futurs
 - LOA: LAPLACE "haute énergie" et "haute cadence" CPER
 - IJCLAB: PALLAS PACIFICS
 - LULI: APOLLON phase multi-PW (5-10PW)
 - IRAMIS: installation de UHI100 à l'Orme des M.

Groupement de Recherche Accélérateurs Plasma **PompEs par Laser**

ALP-ions (CENBG): ALP-ions à partir d'un jet de gaz surcritique

Slide: Medhi TARISIEN (CENBG) Plasma tailoring : pour sculpter les profils de densité de la cible → Contrôle des mécanismes d'accélération

"Over-critical sharp-gradient plasma slab produced by the collision of laser-induced blast-waves in a gas jet: Application to high-energy proton acceleration" J.-R. Marques, et al., **Phys Plasma, 28, issue 2, (février 2021)**

- Simulations PIC SMILEI (CELIA) Thèse J. Bonvalet (f) 135° 45° 60° 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} $d^{2}N_{p}/d\theta$ dE_{kin} (deg MeV)⁻¹
- Manip novembre 2020 PHELIX
 → Résultats très encourageants
- Manip avril 2021 PICO2000

CENBG

leadar

Masterprojet IN2P3 ALPe (≥2016)

• Axes principales

- Préparation des expériences sur APOLLON (LLR,IJCLAB)
- Developpement code plasma particle-in-cell SMILEI (LLR)
- Diagnostics paquets courts ETALON (IJCLAB)

Réalisations

- Spectrometres magnétique pour APOLLON
- Détecteur d'électrons hors vide et sous vide
- Cluster de calcul pour prototypage SMILEI (HPC) ng)
- Code SMILEI: schémas innovants, envelope, AM, PML
- Premiers experience sur APOLLON (commissioning)
- Avenir
 - Accélération e sur APOLLON 1PW et multi-PW
 - Developpement spectrometer imageur pour caractérisation taisceau

APPOLLON laser: Long Focal Area (electron acceleration)

MP-ALPe : Development Simulation PIC:

- Collaboration Open Source:
 milei) LLR,LULI,Maison de la Simulation
- Méthode SDMD pour optimisation des communications et couplage avec solveur spectral (Derouillat & Beck Journal of Physics: Conference Series 1596, 2020)
- Modèle d'enveloppe cartésien => speed-up ~ 5x (Massimo et. al., PPCF 2019)
- Modèle d'enveloppe en AM => speed-up ~ 100x (Massimo et. al., Journal of Physics: Conference Series 1596, 2020)
- Inclusion de l'ionisation en modèle d'enveloppe (Massimo et. al., PRE 2020, in press)
- Solveur spectral modes azimutaux AM
- (Thèse I. Zemzemi)
- Modélisation de laser réalistes (APOLLON)
- Dévelopments en courd:
 - perfectly matched layer (boundary conditions->speedur ⁸/₄
 - Laser modelisation laser en AM (exploitation)
 - GPU (nécessite soutien fort à la MdS)

Physics studies with **milei**) : APOLLON example

3D PIC Simulation of unguided, unassisted acceleration in a ~ 1 mm thick gas jet -> high yield plasma injector with (1PW)

- -> relevant for upcoming campaign on APOLLON LFA: April 2021 plasma e⁻ density
- comoving window
- laser moves to the right ۲

electron acceleration: 1nC at ~200MeV ex plasma

MP ALPe Diagnostics d'électrons: aimants et détecteurs

MP ALP-e Activités à l'IJCLab

• APOLLON:

- Mesure en ligne directe de la charge sur APOLLON.
- Participation aux expériences de qualification.
- Mesures de paquets courts:
 - Utilisation de rayonnement cohérent (Smith-Purcell) pour mesurer des paquets ultra-courts (sub-ps).
 - Expériences à SOLEIL, Frascati et Orsay (CLIO).
 - Financement par une subvention de l'ANR.
- Étude d'une cellule plasma:
 - Mise au point d'une cellule permettant de créer une pression de gaz augmentant linéairement.
 - Permettant une accélération plasma en régime linéaire.
 - Demande de financement ANR acceptée en 2019.
- Etudes de la focalisation pour l'accélération laserplasma:
 - Thèse de doctorat (Ke Wang) 2016-2019
 - Système magnétique de focalisation d'un faisceau d'électrons dans un petit volume pour ALP 2 étages.

Diagnostics LFA

Première campagne sur APOLLON ("de qualification")

- · Équipe expérimentale
- APOLLON (LULI) : laser, vide, infrastructure +++
- LLR(X): 1 dipôle 1, spectrometer et 4 détecteurs d'électrons
- LOA(ENSTA): interférométrie plasma + buses
- LIDYL(IRAMIS): gaz target exploitation
- Long focal area f=3m, 15J beam
- 12-27 nov. 2020
- Objectifs principaux: techniques!
- Rodage des procédures laser journalières
- Validation des la radioprotection
- Démonstration de répétabilité du laser
- Rodage interfaçage laser-experience
- Synchronisation. EMP

Vue de l'extérieur de la zone expérimentale

Dipôle et détecteurs sous vide

- ~800 tirs à 1 par minute (>50% at 12J sur cible) (5 jours utiles)
- Laser: Montée progressive de6 à 12J, 22 fs, « Strehl » ~60% sur cible
- Observation d'électrons accélérés en régime NL presque immédiat! Sur détecteur large bande (air), et basse et haute E (vide)
- ΔE large, E fluctuant, angle du faisceau, oscillations
- Exemple de spectre sur le dét. sous vide. écran YAG haute E (0.5-1.5GeV): ~950MeV sur <10mm (fréquemment)
- Dépouillement des données en cours, qualité des données (DQ) disparate
- Scans de densité du plasma, chirp du laser:
- Identification et résolution de nombreux problèmes techniques: alignement, synchronisation, protection EMP, motorisation, DAQ et ControleComm, cohabitation, modifications "à la volée", radioprotection, diagnostics laser tir à tir

0.46GeV

Laser spot on target

1.4 GeV

0.9GeV

09/11/2021

Qualité et reproductibilité des paramètres du faisceau d'electrons selon l'application visée

- ≻e.g. faisceau secondaires (e.g. e⁺): charge, énergie
- ➢ e.g. laser a électrons libre: dispersion énergie, émittance
- ➢ e.g. sources et imagerie X: charge, durée

Développement et fiabilisation des applications qui

- > tirent profit des propriétés uniques (courant crête, durée paquet)
- > ne sont pas pénalisées par le faible rendement énergétique du laser
- > bénéficient de la compacité (et du moindre coût?)

Transition vers un régime "machine": cadence

- >human learning -> simulations massives -> physique
- > machine learning -> développement diagnostiques faisceau e et laser

ALP electrons à l'IN2P3: CONCLUSIONS

- IN2P3: Acteur reconnu, national et international: GDR,
- Equipes=Eléments structurants apportant une démarche "projet"
- <u>ALPe</u>: collaboration ds/ expériences exploratoires « scientifiques »
- PALLAS: R&D ciblé avec une démarche « ingénieur »
- Fertilisation et valorisation mutuelle: simulations, diagnostics, cellule plasma
- Développements techniques possible grâce à un soutien de l'IN2P3 fort et continue aux équipes

