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Requirements and constraints for real-time data analysis

Efficient hardware trigger selection: neural network implementations on FPGAs
ATLAS, CMS, OWEN, THINK

Efficient software trigger selection: heterogeneous systems with GPUs EAX:IE-,!T,&,\,ST
LHCb
Summary
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Real-time data challenges
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Courtesy Alex Cerri, LHCP 2022

25 TB/s processed in software
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https://indico.cern.ch/event/1109611/contributions/4790644/attachments/2444912/4189341/ACerri_LHCP_2022_v3.pdf

Efficient signal selection

¢ (nb)

. http://www.hep.ph.ic.ac.uk/~wstirin/plots/plots.html
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LHCb: Mainly beauty and charm

* Signal rates at MHz level

* No local criteria for selection - Efficient hardware trigger not possible
* Readout full detector

~

- Real-time analysis and selection fully in software

ATLAS & CMS: Mainly Higgs properties, high p_new phenomena

* Local criteria for selection - Efficient hardware trigger possible
* Hardware trigger necessary (cannot read out full data stream)
- First reduction in hardware to manageable level,
second reduction in software

D. vom Bruch



Which co-processor is best for which workload?

(Softwa re level triger )

* High-bandwidth processing power
* No strict latency requirement
* Data obtained from server

N J

Graphics Processing Units (GPUs)
Higher latency

Connection via PCle » bandwidth limited
Very good floating point performance
Low engineering cost

Backward / forward compatibility

Hardware level triger A
* Fixed, low-latency
* Data obtained from detector

J

Field Programmable Gate Arrays (FPGAs)
* Low & deterministic latency
* Connectivity to any data source » high bandwidth
* Intermediate floating point performance
* High engineering cost

* Not so easily backward compatible
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FPGAs — High Level Synthesis for Neural Networks

FPGA: thousands of logic blocks, 1/O blocks,
connected via programmable interconnect

/ [
* Traditionally, programmed with hardware description | B e, e _w:,—d lJH
languages (Verilog, VHDL) < long development time f;‘“ = 13%3 T 8 _Li: —<d
* Increasingly more high-level languages (HLS) developed O W) —s Ty e Ney 8T J:Ar;
* Challenges: FINTERCONNECT % g g g g 3 =:, ::D g E /O BLOCKS
*  Fitinto resource constraints of FPGA M dggggﬂgg;g g
| :

*  Preserve model performance

* Specialized hardware blocks emerging implementing
functions for Neural networks such as tensor blocks

LOGIC BLOCKS

Source: National Instruments
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https://www.ni.com/fr-fr/innovations/white-papers/08/fpga-fundamentals.html

ATLAS: LAr calorimeter energy calculation

Exchange of full readout electronics of LAr calorimeter for Run 4
-> Cope with higher pileup and level 1 trigger rate increase of factor 10

Off-detector board (LASP) responsible for computation of energy,
designed by CPPM

Challenge: Recover filter performance for increased pileup and fit into
O(100 ns) timing constraint

Recursive Neural Networks (RNN) used for energy reconstruction

LSTM (single)

LSTM (sliding)

Challenge: fitinto FPGA resources and implement in HLS language  yanija-ran (siiding)
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https://link.springer.com/article/10.1007/s41781-021-00066-y

ATLAS: RNNs on FPGAs

AREUS Simulation
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Demonstrated for the first time that

Energy reconstruction of RNNs is more performant than
filtering algorithms

RNNSs can fit within resource usage and latency requirements of

FPGA

Demonstrator using Stratix 10 works successfully
RNN implementation on Intel FPGAs added to HLS4ML toolkit

Currently producing first prototype with next generation
FPGAs: AGILEX from Intel
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https://link.springer.com/article/10.1007/s41781-021-00066-y

ATLAS: Resources & Visibility

* Close collaboration between CPPM and Dresden University to use Neural Networks for energy calculation
* LAPP designed and produced main off-detector board for Run 3 upgrade
* CPPM & LAPP coordinate ATLAS group responsible of firmware design of the board

* CPPM team visible within LAr collaboration, especially after quick proof-of-concept of RNN usage
* Joined HLS4ML developers, implementations & optimizations very well received

* Project-funded:
AIDAQ project from AMIDEX since 2019 in collaboration with Dresden

ANR JCJC since 2021

Lack of permanent resources can lead to loss of engineering knowledge

Physicists G. Aad, E. Monnier , ,

g & s A et e People at CPPM involved in NN
Postdoctoral researchers | T. Calvet (2020-2021), N. Sur (2021-2024) developments and corresponding firmware
Electronic engineers R. Faure (2022) (not LASP board)

N

Doctoral students . Chiedde (2020-2023), E. Fortin (2020-2022), L. Laatu (2020-2023)
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CMS: HGCAL reconstruction

* High Granularity Calorimeter (HGCAL) for Run 4
* 5D detector: position, energy, timing

* 1M channels used for L1 trigger

* Latency constraints of a few micro seconds

* Reconstruct 3D clusters of energy as input for L1

* Used in central L1 system to build electrons, photons,

hadronic taus and jets

Cluster properties

Er,ﬂ',@,

o(E), a(n), o(®),

Nz, CE-E/H energy fractions,
Shower lengths, ...

Courtesy L. Portales CALOR 2022
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https://indico.cern.ch/event/847884/contributions/4833233/

CMS: Energy reconstruction with machine learning

Roc curve 9 cm window

* Run 1: Boosted Decision Trees (BDTs) in lookup tables e e oemser
—— AUC binary O = 0.99744
* Limitation: Number of block RAM on FPGA + WP binary @ 035075
10714 —— AUC ternary Q= 0.99825

WP ternary = 0.98450

* Study implementation of actual models such as BDTs and NNs

BDTs & fully connected networks can be implemented with Conifer g
1 Courtesy E. Ferro, Master’s thesis

Fully connected NNs and CNNs can be implemented with HLS4ML

103 4

CMS simulation Preliminary 00 0z 04 06 08 10
, . —_— .
mm photon Eem

Bl pion

* Looking into Graph Neural Networks (GNNS) due to irregular
Courtesy S. Ghosh Lepton Photon 2021 geometry of HGCAL

* Mostly applied in offline reconstruction so far
> Move to real-time in L1 trigger next
* Tested as isolated components

- Move to real hardware system, connect with rest of firmware

0.4 0.6 . ; D.vom Bruch 11
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https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://webthesis.biblio.polito.it/15937/
https://indico.cern.ch/event/949705/contributions/4555989/

CMS: Resources & Visibility

LLR has been protagonist in CMS L1 trigger development
Project manager of L1 trigger system: A. Zabi (LLR)

Coordinator of algorithm developments for HGCAL trigger primitives generation: J.-B. Sauvan

Long-standing involvement and strong collaboration with University of Split (Croatia), Imperial College (London, UK)

GPU (for training) & FPGA platforms funded by P210 Labex, ANR, TGI HL-LHC

Project funded:
ANR HiGranTS since 2018 (PI: J.-B. Sauvan)

ANR OGCID since 2021 (PI: F. Magniette)

Joint international project with Imperial Collegee

Physicists F. Beaudette. J.-B. Sauvan, A. Zabi
LLR Research engineers | E. Becheva, F. Magniette
Doctoral students | A. Hakimi. J. Motta
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LHCb: Full detector readout in Run 3

* Luminosity increase of factor 5 in Run 3 » hardware trigger no longer efficient due to signal saturation

* Two challenges:
1)  Connect sub-detectors to server-farm - FPGA card (PCle40 card developed by CPPM)

2) Use best suited computing architecture for reconstruction of particle collisions at 30 MHz

- Partial reconstruction fully implemented on GPUs (Allen project co-led by LPNHE & CPPM)

REAL-TIME
ALIGNMENT &

CALIBRATION
6%

5TB/s atE
§ : EVENTS
30 MHz non-empty pp : OFFLINE

5 - 0.5-1.5 — PROCESSING
FULL TB/ PARTIAL DETECTOR MHz - FULL DETECTOR
3
. RECONSTRUCTION . ' RECONSTRUCTION ' 26%
??EI«ITDCSS: & SELECTIONS EUEEER & SELECTIONS 10 FULL
(GPU HLT1) 70-200 (CPU HLT2) P EVENTS
S
GB/s
All numbers related to the dataflow are
taken from the LHCb 8% ANALYSIS
r Trigger and Online TDR TURBO PRODUCTIONS &

USER ANALYSIS

EVENTS

r mputing M | TDR
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LHCb: Readout board PCle40/400

Run 3: 40 Tbit/s » PCle40 card developed
* Receives data from sub-detectors and transfers it to the server memory for event building via PCle connection
* Local data processing occurs on the card using only the information from the links connected to it

* Card is generic enough to be re-used by other experiments: ALICE, Belle-II, Mu3e

PCle40 card

* Towards Run 5: increase bandwidth and processing power by factor 10
* Run 4: PCle400 card to transfer 400 Gbit/s via PCle connection
* Run 5: Transfer 800 Gbit/s via ethernet connection using more powerful FPGA

* Add more local processing to the board in the future to reduce processing load of HLT

D. vom Bruch 14



LHCb PCle40/400 Resources & Visibility

* PCle40 developed at CPPM

R. Le Gac: Scientific project leader
J.-P. Cachemiche: Technological project leader
* PCle400 card developed within R&T Project PCle400 by CPPM, CENBG, 1JCLab, LAPP, LPC Caen
* Interest of various laboratories in innovative technology
* Might be used by upgraded ALICE and Belle-II
* CPPM team is natural candidate to lead next generation board project, but suffers from retirement of key engineers

h Physicists R. Le Gac

CPPM ! : : 3 :
Research engineers | K. Arnaud. P. Bibron. J.-P. Cachemiche, J. Langouet
Physicists S. T'Jampens

LAPP ‘ ) U
Research engineers | G. Vouters
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LHCb: High Level Trigger 1 on GPUs

Side View ECAL HCAL

* Decode binary payload of five sub-detectors
SciFi ~ RICH2

* Reconstruct charged particle trajectories P = _.

* ldentify muons and electrons

* Reconstruct primary and secondary decay vertices
* Select pp-bunch collisions based on Gl 2

Single-track properties Ay ' \ AR U

Secondary vertex properties

upgrade

* Manageable amount of algorithms with highly parallelizable tasks
* ldeally suited for parallel architecture of GPUs

Raw data — > [ GPU ] —— P Selected events

D. vom Bruch 16



LHCb: High Level Trigger 1 on GPUs (“Allen”)

LHCb

)

40 Thit/s ¢ 30 MHz

Vs

\_

N
170 servers ( event building )

[ GPUs HIT1

J

J

1-2 Tbit/s i ~1 MHz

\_

Server farm

buffer on disk
calibration and alignmen

J

Y

( HLT2

)

J

80 Gbit/s ¢

Tier-0

CERN-LHCC-2020-006

Cost saving

* Originally planned CPU implementation of HLT1

* GPU trigger saves O(1M) Euros compared to CPU option
* Saving on network between the server farms and processor cost
e Comparison of CPU & GPU option: arXiv:2105.04031

~

J

GeForce RTX 3090 (GPU)

RTX A6000 (GPU)

RTX A5000 (GPU)

GeForce RTX 2080 Ti (GPU)

AMD MI100 (GPU)

2 x AMD EPYC 7502 (CPU)-

2 x Intel Xeon E5-2630 v4 (CPU)

Chose RTX A5000 for Run 2022

Need O(200) GPUs to procoess
HLT1 @ 30 MHz

LHCb 2021
Allen.vir7

0

100 120 140 160

Allen throughput (kHz)

20 40 60 80
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https://cds.cern.ch/record/2717938?ln=en
https://cds.cern.ch/record/2722327?ln=en
https://arxiv.org/abs/2105.04031

LHCb: HLT1 on GPUs performance

LHCb-FIGURE-2020-014
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Ran GPU trigger at 30 MHz on real data
for the first time last week

@ LHcp: TOP - X
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https://cds.cern.ch/record/2722327?ln=en

LHCb: Real-Time Analysis Resources & Visibility

* RTAin LHCb has received wide recognition in the community both for Run 2 and Run 3 RTA system
* Project leader of LHCb RTA: V. Gligorov (LPNHE)
* Co-leading Allen (HLT1 on GPUs): V.V. Gligorov (LPNHE), D. vom Bruch (CPPM)

* Accomplished by combining competences of several laboratories in terms of reconstruction software, trigger system
development, DAQ integration: CPPM, 1JCLab, LAPP, LPNHE

* Funded largely by
Two ERC grants: RECEPT (PI: V.V. Gligorov), ALPaCA (from 2022, PI: D. vom Bruch)

Two ANR grants: BACH (PI: Y. Amhis), ANN4Europe (PI: V. Gligorov)

* Allen provides a natively cross-architecture framwork

Long-term maintenance and continuous support from engineers and applied physicists crucial to support wide range of use-cases

Physicists V. Gligorov, F. Polci
LPNHE | Postdoctoral researchers | M. Fontana. C. Agapopulou
Software engineers A. Bailly-Reyre, N. Garroum
Doctoral students A. Scarabotto, T. Fulghesu
1ICLab Physicists W _ngh'ts._F.'I\Iacheibrl. P. Robbe
Doctoral students F. Volle. V. Vayeroshenko
’ Phyvsicists A. Poluektov. R. Le Gae. D. vom Bruch
CPPM ' ;
Doctoral students V. Dedu
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OWEN (Optimized Waveform for Electronic Nodes)

* Proposed new experiment to search for neutrinoless double beta () YA (g
R2D2: RAREDECAYS WITH
decay [ '. RADIAL DETECTOR s »

* High pressure gaseous Time Projection Chamber (TPC)

* For the first time process raw signal just after charge amplifier
> classify signal versus background with neural network

* OWEN project:

Develop versatile charge amplifier for low capacitance detector
Use Al in embedded system for real-time signal selection

Change control & command system based on user’s experience

Requirements for real-time analysis
* Fixed, low-latency
* Data obtained from detector
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OWEN: Developments, Resources, Visibility

* Determine signal waveform parameters and energy, perform particle identification in real-time
* Use machine learning approaches for this inverse problem

° Cu re nt statUS: OneEvent multiEvent Trace Generator DIU‘EI‘S

30000

| 30000

Low noise charge amplifier developed 20000
20000

Embeeded data acquisition system built tagging events 10000 1

4]

ADC Unit

to test Al algorithms

—10000

* Future plans: 20000 | :Of :
Single DAQ board with more powerful FPGA performing all iy . a= Q&i 2 )
digital data processing steps T N N K™ K™ o
Open source framework for embedded neural network models Courtesy F. Druillole

* Financed by IdEx Programme Emergence (2019-2022)

Physicists A. Meregaglia. C. Jollet, F. Piquemal
LP21 Research engineers | F. Duillole, P. Hellmuth, A. Rebii
Bordeaux | Electrical engineers | R. Bouet

Doctoral students P. Charpentier
Subatech | Doctoral students | V. Cecchini

D. vom Bruch
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THINK: Testbed of various processor types

THINK project combines use cases and inputs from different experiments

Project length: 2020 — 2023, to be extended

Provide tools to select best suited hardware for given problem without conducting costly studies

First step: Compare instantiation of Neural Networks on several hardware architectures:

FPGAs, GPUs, Tensor Processing Unit (TPU) engines, neuromorphic chips, embedded tensor blocks
Metrics: Computing performance, cost, manufacturer information, learning curve, speed of implementation

Synthesis of comparison will soon arrive on the THINK website - Classification binaire ,
= 2 coordonnées (X etY) enentrées ( [0, 1)

= 1 sortie qui représente la catégorie des entrées (0 ou 1)

Labs involved: > 0 pour la partie EER /1 pour la partie []

1||I
i

il

LPC Caen, LAPP, LPNHE, CENGB, IRFU/AIM, LLR, CPPM e ——

““llin

il
””“Hlllillw-

G
I

‘|j
I

I

chl : Multinomial ch3 : Left/Right ch4 : Circles ch5 : Above/Under Func

(35) (24 801) (658 951) (156 050)
ché : Per.iodic strips R chjcu-cle ) ch8 P:éi‘n"aunrjla:FIl.ag
(156 050) (156 050) (156 050)
Courtesy F. Magniette
D. vom Bruch y 9 22


https://think.in2p3.fr/

Summary

* Strong historical involvement of French groups real-time data analysis
* Held various roles of responsibility and made major contributions to both hardware and software-level triggers

* Incremental changes and simple extrapolation of methods not sufficient for computing demands of future
experiments

* Move towards heterogeneous computing solutions: In line with European Strategy for particle physics and
Roadmap of the HEP Software Foundation

Full HLT on GPUs (LHCb)
Processing Al algorithms on FPGAs (ATLAS, CMS, OWEN)

* Two of the priorities of the “Calcul, algorithmes et données” working group of IN2P3 Prospectives:
Efficient usage of accelerators like GPUs and FPGAs

Lead in the domain of Al of IN2P3 related science domains

To continue the success story of computing and data science at IN2P3, we rely on the ability to
attract and train experts in the field to build long-term teams of both physicists and engineers.

D. vom Bruch 23


http://cds.cern.ch/record/2691414
https://hepsoftwarefoundation.org/organization/cwp.html
https://box.in2p3.fr/index.php/s/DmJMpRkpdXWcaQY

Thanks to...

G. Aad (CPPM)

J.-P. Cachemiche (CPPM)
F. Druillole (LP2I Bordeaux)
R. Le Gac (CPPM)

V. V. Gligorov (LPNHE)
J.-F. Marchand (LAPP)
J.-B. Sauvan (LLR)

D. vom Bruch
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Recurrent tasks in real-time data analysis

Raw data decoding

* Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system
Track reconstruction

* Consists of two steps:

*  Pattern recognition: Which hits were produced by the same particle? > “Track”
- Huge combinatorics when testing different combinations of hits

Track fitting: Describe track with mathematical model

53
o
N

Vertex finding

* Where did proton-proton collisions take place?

7N O W
\H\‘UH‘HH‘HH‘HH‘HH‘,H

* Where did particles decay within the detector volume?

o) Y

Calorimeter / muon detector reconstruction

* Reconstruct clusters in the calorimeter / muon detectors

* Match tracks to clusters

D. vom Bruch 26



History: HLT1 architecture choice

Proposalin TDR (2014) Updated strategy (as of 5/2020) Developed two solutions simultaneously
CERN-LHCC-2014-016 CERN-LHCC-2020-006 * Both the multi-threaded CPU & the GPU
HLT1 fulfilled the requirements from the 2014
( pp collisions ) ( pp collisions ] TDR
40 Thit/s ¢ 30 MHz 40 Thit/s ¢ 30 MHz * Detailed cost benefit analysis
— (arXiv:2105.04031)
170 servers ( event building )} 170 servers( event building ) . .
* GPU solution leads to cost savings on

¢ 30 MHz [ GPUs ] processors and the network

( Server farm * Throughput headroom for additional features
( HLT1 ) @ ¢ ~1 MHz * Decision: A GPU-based software trigger will
Y e ) allow LHCb to expand its physics reach in Run
erver farm
buffer on disk , 3 and beyond.
calibration and alignment [ calibr};giifira%% (iallsignment]
Y
( HLT2 ) ( HLYFZ ) See also arXiv:2106.07701 on
\ y L ) LHCb's energy efficiency with a
80 Gbit/s i 80 Gbit/s ¢ CPU and GPU HLT1
( storage ) ( storage

27
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https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en

Overview of GPU usage in various HEP experiments

Experiment Main tasks Event / datarate Number of GPUs Deployment date
processed on GPU
Mu3e Track- & vertex 20 MHz / 0O(10) 2023
reconstruction 32 Gbit/s
CMS Decoding, 100 kHz 2022 (tbc)
clustering, pattern
recognition in pixel
detector
ALICE Track reconstruction | 50 kHz Pb-Pb or <5 0(2000) 2022
in three sub- MHz p-p / 30 Thit/s
detectors
LHCb Decoding, 30 MHz/ 40 Tbit/s 0(250) 2022
clustering, track
reconstruction in
three sub-detectors,
vertex
reconstruction, D. vom Bruch https://arxiv.org/pdf/2003.11491.pdf  >g

muon ID, selections



https://arxiv.org/pdf/2003.11491.pdf

CPU - GPU - FPGA

Latency Connection Engineering cost FP performance Serial / Memory Backward
parallel compatibility
CPU O(10) us Ethernet, Low entry level: O(1-10) TFLOPs Optimized for | O(100) GB | Compatible,
USB, PCle Programmable with C++, serial, RAM except for
pthon, etc. increasingly vector
vector instruction
processing sets
GPU 0O(100) us PCle, Nvlink | Low to medium entry level: | O(10) TFLOPs Optimized for | O(10) GB Compatible,
Programmable with CUDA, parallel exept for
OpenCL, etc. performance specific
features
FPGA Fixed Any High entry level: Optimized for Optimized for | O(10) MB Not easily
0O(100) ns connection traditionally hardware fixed point parallel on the backward
via PCB description languages, performance performance FPGA compatible
Some high-level syntax itself
available

https://arxiv.org/pdf/2003.11491.pdf

D. vom Bruch
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https://arxiv.org/pdf/2003.11491.pdf

GPUs

Developed for graphics pipeline

General purpose computations
possible

Increasingly used for Al applications

Hardware specialized in this
direction since few years

Programmed with high-level
language

Interconnect

)
g
c

Low core count / powerful ALU
Complex control unit

Large chaches

> Latency optimized

D. vom Bruch

High core count
No complex control unit
Small chaches

- Throughput optimized
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