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Outline

● Requirements and constraints for real-time data analysis

● Efficient hardware trigger selection: neural network implementations on FPGAs
• ATLAS, CMS, OWEN, THINK

● Efficient software trigger selection: heterogeneous systems with GPUs
• LHCb

● Summary
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Real-time data challenges

LHC Run 3 (2022)

LHCb: pp collisions at 30 MHz, 
→ 5 TB/s → processed in software

LHC Run 4 (~2029)

CMS & ATLAS
pp collisions at 40 MHz, 

Hardware trigger rate increased: 
100 kHz → 1 MHz

→ 6 GB/s processed in software

LHC Run 5 (~2035)

LHCb undergoes Upgrade II
25 TB/s processed in software

Courtesy Alex Cerri, LHCP 2022

https://indico.cern.ch/event/1109611/contributions/4790644/attachments/2444912/4189341/ACerri_LHCP_2022_v3.pdf
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Efficient signal selection

LHCb: Mainly beauty and charm
● Signal rates at MHz level
● No local criteria for selection → Efficient hardware trigger not possible
● Readout full detector

→  Real-time analysis and selection fully in software

ATLAS & CMS: Mainly Higgs properties, high pT new phenomena 
● Local criteria for selection → Efficient hardware trigger possible
● Hardware trigger necessary (cannot read out full data stream)

→ First reduction in hardware to manageable level, 
second reduction in software

Luminosity of 2x1033 cm-2s-1
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Which co-processor is best for which workload?

Graphics Processing Units (GPUs)
● Higher latency
● Connection via PCIe → bandwidth limited
● Very good floating point performance
● Low engineering cost
● Backward / forward compatibility

Field Programmable Gate Arrays (FPGAs)
● Low & deterministic latency
● Connectivity to any data source → high bandwidth
● Intermediate floating point performance
● High engineering cost
● Not so easily backward compatible

Hardware level triger

● Fixed, low-latency
● Data obtained from detector

Software level triger

● High-bandwidth processing power
● No strict latency requirement
● Data obtained from server
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FPGAs – High Level Synthesis for Neural Networks

● Traditionally, programmed with hardware description 
languages (Verilog, VHDL) → long development time

● Increasingly more high-level languages (HLS) developed
● Challenges: 

• Fit into resource constraints of FPGA
• Preserve model performance

● Specialized hardware blocks emerging implementing 
functions for Neural networks such as tensor blocks 

Source: National Instruments

FPGA: thousands of logic blocks, I/O blocks, 
connected via programmable interconnect

https://www.ni.com/fr-fr/innovations/white-papers/08/fpga-fundamentals.html
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ATLAS: LAr calorimeter energy calculation

● Exchange of full readout electronics of LAr calorimeter for  Run 4
→ Cope with higher pileup and level 1 trigger rate increase of factor 10

● Off-detector board (LASP) responsible for computation of energy, 
designed by CPPM

● Challenge: Recover filter performance for increased pileup and fit into 
O(100 ns) timing constraint

● Recursive Neural Networks (RNN) used for energy reconstruction
● Challenge: fit into FPGA resources and implement in HLS language

Comp. And Soft. For Big Science 5, 19 (2021)

https://link.springer.com/article/10.1007/s41781-021-00066-y
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ATLAS: RNNs on FPGAs

● Demonstrated for the first time that 
• Energy reconstruction of RNNs is more performant than 

filtering algorithms 

• RNNs can fit within resource usage and latency requirements of 
FPGA

● Demonstrator using Stratix 10 works successfully
● RNN implementation on Intel FPGAs added to HLS4ML toolkit
● Currently producing first prototype with next generation 

FPGAs: AGILEX from Intel

Comp. And Soft. For Big Science 5, 19 (2021)

https://link.springer.com/article/10.1007/s41781-021-00066-y
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ATLAS: Resources & Visibility
● Close collaboration between CPPM and Dresden University to use Neural Networks for energy calculation
● LAPP designed and produced main off-detector board for Run 3 upgrade
● CPPM & LAPP coordinate ATLAS group responsible of firmware design of the board

● CPPM team visible within LAr collaboration, especially after quick proof-of-concept of RNN usage
● Joined HLS4ML developers, implementations & optimizations very well received

● Project-funded:
• AIDAQ project from AMIDEX since 2019 in collaboration with Dresden

• ANR JCJC since 2021

● Lack of permanent resources can lead to loss of engineering knowledge 

People at CPPM involved in NN 
developments and corresponding firmware 
(not LASP board)
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CMS: HGCAL reconstruction

● High Granularity Calorimeter (HGCAL) for Run 4
● 5D detector: position, energy, timing
● 1M channels used for L1 trigger
● Latency constraints of a few micro seconds
● Reconstruct 3D clusters of energy as input for L1
● Used in central L1 system to build electrons, photons, 

hadronic taus and jets

Courtesy L. Portales CALOR 2022

https://indico.cern.ch/event/847884/contributions/4833233/
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CMS: Energy reconstruction with machine learning

● Run 1: Boosted Decision Trees (BDTs) in lookup tables
● Limitation: Number of block RAM on FPGA 
● Study implementation of actual models such as BDTs and NNs

• BDTs & fully connected networks can be implemented with Conifer

• Fully connected NNs and CNNs can be implemented with HLS4ML

● Looking into Graph Neural Networks (GNNS) due to irregular 
geometry of HGCAL

● Mostly applied in offline reconstruction so far 
→ Move to real-time in L1 trigger next

● Tested as isolated components 
→ Move to real hardware system, connect with rest of firmware

Courtesy E. Ferro, Master’s thesis

Courtesy S. Ghosh Lepton Photon 2021

https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05026
https://webthesis.biblio.polito.it/15937/
https://indico.cern.ch/event/949705/contributions/4555989/
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CMS: Resources & Visibility
● LLR has been protagonist in CMS L1 trigger development

• Project manager of L1 trigger system: A. Zabi (LLR)

• Coordinator of algorithm developments for HGCAL trigger primitives generation: J.-B. Sauvan

● Long-standing involvement and strong collaboration with University of Split (Croatia), Imperial College (London, UK)

● GPU (for training) & FPGA platforms funded by P2IO Labex, ANR, TGI HL-LHC
●  Project funded: 

• ANR HiGranTS since 2018 (PI: J.-B. Sauvan)

• ANR OGCID since 2021 (PI: F. Magniette)

• Joint international project with Imperial Collegee
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LHCb: Full detector readout in Run 3
● Luminosity increase of factor 5 in Run 3 → hardware trigger no longer efficient due to signal saturation
● Two challenges:

1) Connect sub-detectors to server-farm → FPGA card (PCIe40 card developed by CPPM)

2) Use best suited computing architecture for reconstruction of particle collisions at 30 MHz

→ Partial reconstruction fully implemented on GPUs (Allen project co-led by LPNHE & CPPM)
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LHCb: Readout board PCIe40/400

Run 3: 40 Tbit/s → PCIe40 card developed
● Receives data from sub-detectors and transfers it to the server memory for event building via PCIe connection
● Local data processing occurs on the card using only the information from the links connected to it
● Card is generic enough to be re-used by other experiments: ALICE, Belle-II, Mu3e

● Towards Run 5: increase bandwidth and processing power by factor 10
● Run 4: PCIe400 card to transfer 400 Gbit/s via PCIe connection
● Run 5: Transfer 800 Gbit/s via ethernet connection using more powerful FPGA
● Add more local processing to the board in the future to reduce processing load of HLT

PCIe40 card
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LHCb PCIe40/400 Resources & Visibility

● PCIe40 developed at CPPM
• R. Le Gac: Scientific project leader

• J.-P. Cachemiche: Technological project leader

● PCIe400 card developed within R&T Project PCIe400 by CPPM, CENBG, IJCLab, LAPP, LPC Caen
● Interest of various laboratories in innovative technology
● Might be used by upgraded ALICE and Belle-II
● CPPM team is natural candidate to lead next generation board project, but suffers from retirement of key engineers
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By

LHCb: High Level Trigger 1 on GPUs

● Manageable amount of algorithms with highly parallelizable tasks
● Ideally suited for parallel architecture of GPUs

● Decode binary payload of five sub-detectors
● Reconstruct charged particle trajectories
● Identify muons and electrons
● Reconstruct primary and secondary decay vertices
● Select pp-bunch collisions based on

• Single-track properties
• Secondary vertex properties

Raw data GPU Selected events
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LHCb: High Level Trigger 1 on GPUs (“Allen”)
LHCb

Server farm

HLT2

Tier-0

HLT1

event building170 servers

buffer on disk 
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

CERN-LHCC-2020-006
Update of LHCb-FIGURE-2020-014

Cost saving
● Originally planned CPU implementation of HLT1
● GPU trigger saves O(1M) Euros compared to CPU option
● Saving on network between the server farms and processor cost
● Comparison of CPU & GPU option: arXiv:2105.04031

Chose RTX A5000 for Run 2022
Need O(200) GPUs to procoess

HLT1 @ 30 MHz

https://cds.cern.ch/record/2717938?ln=en
https://cds.cern.ch/record/2722327?ln=en
https://arxiv.org/abs/2105.04031
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LHCb: HLT1 on GPUs performance

Track reconstruction efficiency
on simulated data
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Ran GPU trigger at 30 MHz on real data 
for the first time last week

https://cds.cern.ch/record/2722327?ln=en
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LHCb: Real-Time Analysis Resources & Visibility
● RTA in LHCb has received wide recognition in the community both for Run 2 and Run 3 RTA system
● Project leader of LHCb RTA: V. Gligorov (LPNHE)
● Co-leading Allen (HLT1 on GPUs): V.V. Gligorov (LPNHE), D. vom Bruch (CPPM)
● Accomplished by combining competences of several laboratories in terms of reconstruction software, trigger system 

development, DAQ integration: CPPM, IJCLab, LAPP, LPNHE
● Funded largely by

• Two ERC grants: RECEPT (PI: V.V.  Gligorov), ALPaCA (from 2022, PI: D. vom Bruch)

• Two ANR grants: BACH (PI: Y. Amhis), ANN4Europe (PI: V. Gligorov)

● Allen provides a natively cross-architecture framwork
• Long-term maintenance and continuous support from engineers and applied physicists crucial to support wide range of use-cases
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OWEN (Optimized Waveform for Electronic Nodes)

● Proposed new experiment to search for neutrinoless double beta 
decay

● High pressure gaseous Time Projection Chamber (TPC)
● For the first time process raw signal just after charge amplifier

→ classify signal versus background with neural network
● OWEN project:

• Develop versatile charge amplifier for low capacitance detector

• Use AI in embedded system for real-time signal selection

• Change control & command system based on user’s experience

Requirements for real-time analysis
● Fixed, low-latency
● Data obtained from detector
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OWEN: Developments, Resources, Visibility
● Determine signal waveform parameters and energy, perform particle identification in real-time
● Use machine learning approaches for this inverse problem 
● Curent status:

• Low noise charge amplifier developed

• Embeeded data acquisition system built tagging events 

to test AI algorithms

● Future plans:
• Single DAQ board with more powerful FPGA performing all 

digital data processing steps

• Open source framework for embedded neural network models

● Financed by IdEx Programme Emergence (2019-2022)

Courtesy F. Druillole



D. vom Bruch 22

THINK: Testbed of various processor types 
● THINK project combines use cases and inputs from different experiments
● Project length: 2020 – 2023, to be extended
● Provide tools to select best suited hardware for given problem without conducting costly studies
● First step: Compare instantiation of Neural Networks on several hardware architectures:

FPGAs, GPUs, Tensor Processing Unit (TPU) engines, neuromorphic chips, embedded tensor blocks
● Metrics: Computing performance, cost, manufacturer information, learning curve, speed of implementation
● Synthesis of comparison will soon arrive on the THINK website
● Labs involved: 

LPC Caen, LAPP, LPNHE, CENGB, IRFU/AIM, LLR, CPPM

Courtesy F. Magniette

https://think.in2p3.fr/
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Summary

● Strong historical involvement of French groups real-time data analysis
● Held various roles of responsibility and made major contributions to both hardware and software-level triggers
● Incremental changes and simple extrapolation of methods not sufficient for computing demands of future 

experiments
● Move towards heterogeneous computing solutions: In line with European Strategy for particle physics and 

Roadmap of the HEP Software Foundation
• Full HLT on GPUs (LHCb)

• Processing AI algorithms on FPGAs (ATLAS, CMS, OWEN)

● Two of the priorities of the “Calcul, algorithmes et données” working group of IN2P3 Prospectives:
• Efficient usage of accelerators like GPUs and FPGAs

• Lead in the domain of AI of IN2P3 related science domains

To continue the success story of computing and data science at IN2P3, we rely on the ability to
attract and train experts in the field to build long-term teams of both physicists and engineers.

http://cds.cern.ch/record/2691414
https://hepsoftwarefoundation.org/organization/cwp.html
https://box.in2p3.fr/index.php/s/DmJMpRkpdXWcaQY
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Thanks to…

● G. Aad (CPPM)
● J.-P. Cachemiche (CPPM)
● F. Druillole (LP2I Bordeaux)
● R. Le Gac (CPPM)
● V. V. Gligorov (LPNHE)
● J.-F. Marchand (LAPP)
● J.-B. Sauvan (LLR)
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Backup
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Recurrent tasks in real-time data analysis

Raw data decoding
● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system

Track reconstruction
● Consists of two steps:

• Pattern recognition: Which hits were produced by the same particle? → “Track”

 → Huge combinatorics when testing different combinations of hits
• Track fitting: Describe track with mathematical model

Vertex finding
● Where did proton-proton collisions take place? 
● Where did particles decay within the detector volume?

Calorimeter / muon detector reconstruction
● Reconstruct clusters in the calorimeter / muon detectors
● Match tracks to clusters
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History: HLT1 architecture choice
Proposal in TDR (2014)
 CERN-LHCC-2014-016

Updated strategy (as of 5/2020)
● Developed two solutions simultaneously
● Both the multi-threaded CPU & the GPU 

HLT1 fulfilled the requirements from the 2014 
TDR

● Detailed cost benefit analysis 
(arXiv:2105.04031)

● GPU solution leads to cost savings on 
processors and the network

● Throughput headroom for additional features
● Decision: A GPU-based software trigger will 

allow LHCb to expand its physics reach in Run 
3 and beyond.

CERN-LHCC-2020-006

pp collisions

Server farm

HLT1

HLT2

storage

event building170 servers

30 MHz

30 MHz

buffer on disk 
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

Server farm

HLT2

storage

HLT1

event building170 servers

buffer on disk 
calibration and alignment

GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

~1 MHz

30 MHz

See also arXiv:2106.07701 on 
LHCb’s energy efficiency with a 
CPU and GPU HLT1

https://cds.cern.ch/record/1701361?ln=en
https://arxiv.org/abs/2105.04031
https://cds.cern.ch/record/2717938?ln=en
https://arxiv.org/abs/2106.07701
https://cds.cern.ch/record/2717938?ln=en
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

Mu3e Track- & vertex 
reconstruction

20 MHz /
32 Gbit/s

O(10) 2023

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz 2022 (tbc)

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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CPU – GPU - FPGA

https://arxiv.org/pdf/2003.11491.pdf

Latency Connection Engineering cost FP performance Serial / 
parallel

Memory Backward 
compatibility

CPU O(10) sμ Ethernet, 
USB, PCIe

Low entry level: 
Programmable with C++, 
pthon, etc.

O(1-10) TFLOPs Optimized for 
serial, 
increasingly 
vector 
processing

O(100) GB 
RAM

Compatible, 
except for 
vector 
instruction 
sets

GPU O(100) sμ PCIe, Nvlink Low to medium entry level: 
Programmable with CUDA, 
OpenCL, etc.

O(10) TFLOPs Optimized for 
parallel 
performance

O(10) GB Compatible, 
exept for 
specific 
features

FPGA Fixed
O(100) ns

Any 
connection 
via PCB

High entry level: 
traditionally hardware 
description languages,
Some high-level syntax 
available

Optimized for 
fixed point 
performance

Optimized for 
parallel 
performance

O(10) MB 
on the 
FPGA 
itself

Not easily 
backward 
compatible

https://arxiv.org/pdf/2003.11491.pdf
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GPUs

Low core count / powerful ALU
Complex control unit
Large chaches
→ Latency optimized

High core count
No complex control unit
Small chaches
→ Throughput optimized

● Developed for graphics pipeline
● General purpose computations 

possible
● Increasingly used for AI applications
● Hardware specialized in this 

direction since few years
● Programmed with high-level 

language
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