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Summary
The use of AI across all scientific fields covered by IN2P3 has been growing exponentially in
the last few years. This report gives a brief – necessarily incomplete – overview of the
different techniques applied in the various physics domains, laying out along the way the
specificities of AI in HEP w.r.t. other application domains of AI.

The content of this report is based on an IN2P3-wide survey carried out in May 2022. It
gathers answers to about 60 AI projects (a project being a successful application to calls
from ANR or Labexes, a PhD thesis or an informal study undertaken by a few people). It has
allowed us to sketch in some detail the environment of people working with AI at IN2P3.

The main conclusions of the report can be summarised as follows
- the AI computing resources are currently diverse and adequate at IN2P3, but the

computing needs for AI in physics are expected to grow in the near future,
- human resources are a vital ingredient for the sustainable growth of these

developments, with more and more PhD with a significant AI component and a recent
influx of postdocs funded by different projects.

- now that the pandemic is over, there is an expressed need for high-level training and
networking opportunities, also travel to AI conferences and exchanges with AI
specialists.

- opportunities for publication are numerous but sometimes require an extra effort to
publish papers in AI journals in addition to the physics paper with only AI
applications.
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Introduction
Artificial Intelligence has been developing quickly in recent years at IN2P3. This report gives
a brief overview of the different methods being developed in different fields, before focussing
on a few relevant issues: resources, training and workshops, and publications, before
concluding with a SWOT analysis. The document was built from work done for the IN2P3
Prospectives at Giens in fall 2021, updated using a broad survey conducted in May 2022 on
AI projects at IN2P3, which received 60 individual answers.
The document has been written as follows: first, a scientific overview briefly lays out the
different activities where AI plays a role, with examples from IN2P3 activities, and the
specificities of AI in HEP are detailed. Second, the computing, financial and human
resources issues are outlined. A SWOT analysis precedes the conclusion.

1 Scientific overview
Experimental High Energy Physics relies on two steps : (i) collect data from a particular
interaction (e.g., high energy proton-proton collision, cosmic ray) with an appropriately
designed detector (ii) infer from the data collected a measurement (a confidence level) on a
nature parameter. The data collected comes in generally as a collection of ”events”, where
an event refers to an astrophysical image or to the data collected about a particular event,
e.g., a proton collision, a neutrino interaction, a gravitational wave signal, or an atmospheric
shower.

The parameters of the visible particles or astrophysical objects are inferred algorithmically in
what can be called detector-level inference (or classically reconstruction). A first step is to
group energy deposits corresponding to the same particle (clustering, tracking; or
deblending), then to identify them – possibly using a classifier – and/or determine their
parameters (e.g. 4-momentum vector and origin typically; shape, orientation and flux for
galaxies) – possibly using a regressor. There may be additional steps (like identification and
calibration of jet).

The properties of the particles of a single event are then combined to infer what has
happened in this particular event in what can be called event-level inference. The same
happens when combining multi-messenger observations of the same astrophysical source or
multi-band flux of galaxies to obtain their properties (e.g. redshift).

Finally, the study of all the recorded data (often billions of events), with the help of very
accurate simulators, allows inferring fundamental laws of nature, more specifically a
confidence interval on a specific parameter, in what can be called experiment-level
inference.
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When detector-level or event-level inference are made online, for preprocessing, triggering
or filtering, there is the additional constraint of inference speed, for which specific hardware
may need to be designed, which can be grouped under the fast AI label, for example, to
compute calorimeter energy from time samples (see details in the report about real-time data
processing in particle physics).

HEP has a several decade-long history of developing complex models to compute and
simulate particle collisions, the interaction of particles in detectors (Geant4), lattice QCD,
accelerator orbits, N-body simulations, etc. These models have grown in complexity,
precision, and resource requirements (memory, computing time). As a properly trained
sufficiently large neural network can emulate any multi-dimensional function, Surrogate
Models have been developed. They are trained to emulate the original models within a
limited region of the parameter space, providing several orders of magnitude faster
throughput under tight accuracy constraints. A class of Surrogate Models are generator
models (using e.g. Generative Adversarial Network or Variational Auto Encoder) which can
emulate Geant4 to simulate the interaction of particles in a detector. Another is to emulate a
multidimensional function, for example, to estimate the stability of an accelerator orbit.

In most cases, AI at HEP falls under the category of supervised learning, where an algorithm
is trained (the training stage) and on labelled data (typically simulated events for which the
label, e.g. “signal” vs “background”, is known) and validated and finally applied (the
inference stage) to real data.

Another AI field separate from supervised learning is Optimisation with techniques like
Bayesian optimisation or reinforcement learning, possibly using differentiable programming,
which can be applied to accelerator tuning or to the design of future experiments.

A separate topic is Quantum Machine Learning, where the use of quantum devices to learn
a model is investigated, see details in the report about quantum computing.

2 Specificities of AI in High Energy Physics
Probably the most common use of AI in particle physics is the use of Boosted Decision
Trees on tabular data (like classifying events from a dozen of high-level features). Most
recent developments attempt to introduce AI earlier in the processing chain, where data is
usually only semi-structured data. This is the first specificity of AI in HEP, which is that in
most cases (with the notable exception of astrophysics), data are not tabular data, nor
images, nor time series, which are the three types of data for which there exists abundant
literature and wealth of tools and methods. Graph Neural Networks have been gaining
popularity as a versatile architecture suitable for many HEP-specific problems.

A second specificity is that in HEP, we have developed for decades very good simulators
(meaning describing accurately measured data) to deliver labelled simulated data on which
to train algorithms (for some domains like cosmology, this might not be so true). The
remaining imperfection of simulators must be dealt with, in particular when evaluating the
systematic uncertainties.
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The third specificity of that High Energy Physics is that we have been doing data science
for half a century since the invention (in 1968) of the multiwire proportional chamber, which
allowed us to fully automatise the data processing. The community has been building tools
and infrastructures to deal with millions, billions, trillions of instances, and gigabytes,
terabytes, petabytes of data (and more). Boosted Decision Trees have gained popularity in
HEP since ~2010 and (modern) Neural Networks since ~20141. These AI algorithms
developed are inserted in these time-tested pipelines and benchmarked against “classical”
but sophisticated algorithms. In other scientific fields (e.g. genomic), the data avalanche is
much more recent.

Finally, the fourth specificity is that our primary output is scientific papers, in which the main
message is a measurement with a confidence interval. The confidence interval covers
statistical uncertainties and all sources of known hypothetical systematic uncertainties. The
confidence interval also carries an unquantifiable element of trust in the techniques used.
This has to remain true when AI takes a growing role in the production of the measurement.

With these specificities, AI in HEP is not a matter of just applying off-the-shelf AI techniques
but requires specific developments.

3 AI at IN2P3

This section analyses the answers to the IN2P3-wide survey carried out in May 2022. It
gathers answers to about 60 AI projects. Although not guaranteed to be exhaustive, this
survey allows broad brush cartography of AI at IN2P3, which will need to be detailed in the
future. Given the space constraints of this report, a choice was made to limit the analysis of
the survey to statistical analysis, followed by tables of ANR JCJC and PRC projects and PhD
theses.

The different types of projects in which AI is developed at IN2P3 are reported in Figure 1.
PhDs are clearly the main structuring channel (with a total of 29 ongoing or recent PhD,
including four Computer Science PhD and two physics PhD with a CS co-supervisor). ANR
JCJC and collaborative, which usually fund at least one post-doc, are also significant.

The main physics domain of these projects is reported in Figure  2. We can see that the
main IN2P3 domains are present.

The type of input data is reported in Figure 3. As already mentioned it is very diverse and
spans the diversity of data used in the AI world. One sees that “image” and “time series”
contributions are large, despite the statement in the overview that they are not so frequent at
IN2P3. This is most likely a survivor bias: applying AI to images or time series is so natural
that physicists dealing with these data will more naturally switch to AI compared to others.

1A.Radovic et al., Nature 2018 Aug;560(7716):41

https://www.nature.com/articles/s41586-018-0361-2.epdf?author_access_token=VEOIa5y8zWfWWJp4D_BjONRgN0jAjWel9jnR3ZoTv0Og5Mk-g4lLvg4gLtNz3x_LFHh_fP7KAoOOXqUsKjsx57yhoo54qQ1hyCajOWEw794WUGLt_LeYc6ZHhxpLySNS2efgsRU8WQBJGuRh7ZLQ4g==
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Fig 1: Type of funding used or obtained by IN2P3 members. Several answers were possible.

Fig 2: Main physics topics of IN2P3 members practicing AI
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Fig 3: Type of input data. Several answers were possible.

Fig 4: Main AI themes

A variety of AI techniques are used at IN2P3 (see Figure 5). Boosted Decision Trees (BDT)
contribution is modest, but this is primarily due to a bias in the poll: BDT is so commonly
used that many physicists using them are simply not reporting about them.
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Finally, to give a flavour of the diversity of AI topics at IN2P3, this section ends with two
tables listing ANR projects and PhDs where AI plays a significant role. Before this, it should
be noted there is an ERC Starting Grant USNAC started in 2021 at IP2I on cosmology which
will build a full forward modelling going from cosmology parameters to SN Ia distances and
redshift through local Universe density and velocity fields. There are no other ERC grants we
know of.

Table 1 below is reporting the list of ANR JCJC and PRC projects with a significant AI role,
ordered by starting year.

Type Acronym Start
IN2P3
labs

Non
IN2P3
labs Description

ANR JCJC HIGRANTS 2018 LLR
Optimization of ML models for the HGCAL

reconstruction at the Level 1 trigger

ANR JCJC AIDAQ 2019 CPPM
Artificial Intelligence on FPGAs: for Data

AcQuisition in hep experiments

ANR PRC DEEPDIP 2019 CPPM

LAM,
IAP,

LIRMM DEEP learning for Deep Imaging Projects

ANR PRC ASTRODEEP 2019 APC
LORIA,

DAP
Analysis of massive astronomical data with

Machine Learning

ANR PRC
DMwithLLPatLH

C 2021
LPNHE,
LPSC

Search for Dark Matter with Long-Lived
Particles at the LHC

ANR JCJC FIDDLE 2022 IPHC
Full Event Interpretation using Graph

Neural Networks at Belle II

ANR PRC ATRAPP 2022
LAPP,IJ
CLAB

Advanced particle tracking algorithms for
particle

ANR JCJC OGCID 2022 LLR
Optimal Graph convolution for efficient

particle identification

ANR PRC RICOCHET 2022 APC

GIPSA,
CRIST
AL,CR

AN
Bivariate signal processing : a geometrical

approach to decypher polarisation
Table 1: AI ANR JCJC and PRC at IN2P3
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Fig 5: AI techniques. Several answers were possible.

Table 2 below shows the list of recently finished or ongoing PhD at IN2P3, where AI plays a significant
role. The table is ordered by starting year and field.

Field Experim

ent

Lab Start Subject

collider

physics ATLAS IJCLAB 2017

Simulation of the ATLAS electromagnetic calorimeter using

generative adversarial networks and likelihood-free inference

accelerator

physics MYRRHA LPSC 2018

Study of machine learning methods for optimization and

reliability improvements of high power linacs

accelerator

physics

MYRRHA

& IPHI LPSC 2018

Study of machine learning methods for optimization and

reliability improvements of high power linacs

astroparticle/

cosmology CTA LAPP 2018

GammaLearn: DEEP LEARNING FOR IMAGING CHERENKOV

TELESCOPES DATA ANALYSIS

astroparticle/

cosmology

ALTO/Co

MET APC 2019

Deep Learning for signal/background separation in

ALTO/CoMET (DeepCoMET)

astroparticle/

cosmology

large

photom

etric

surveys CPPM 2019 Deep learning applied to cosmology
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collider

physics ATLAS CPPM 2019 ATLAS ttH(H->bb) Run 2 legacy analysis

collider

physics ATLAS L2IT 2019 Track reconstruction at HL-LHC with Graph Neural Networks

accelerator

physics THOMX IJCLAB 2020 use of machine learning to tune and control particle accelerator

astroparticle/

cosmology Euclid APC 2020 Probabilistic segmentation of overlapping galaxies

astroparticle/

cosmology Euclid APC 2020

Generative models : Variational Autoencoders (VAE) with CNN

and normalizing flows

collider

physics ATLAS IJCLAB 2020

Analysis of off-shell Higgs into 4 leptons at ATLAS using

simulation-based inference

collider

physics ATLAS LPSC 2020 Hadronic jet energy and mass calibration with DNN

astroparticle/

cosmology

IceCube

& Fermi APC 2021 Cosmic Neutrino Investigation via source Classification (CoNIC)

astroparticle/

cosmology Rubin APC 2021 Galaxy scene deblending

astroparticle/

cosmology APC 2021 Accelerating SBI with score-matching

astroparticle/

cosmology CPPM 2021

Constraints on gravity by tomographic galaxy clustering with

Euclid data

collider

physics ATLAS CPPM 2021 DIPS with ITk

collider

physics CMS IP2I 2021 BSM(Tprime to tH hadronic) search

neutrino JUNO

Subatec

h 2021

Neutrino events reconstruction and identification in a liquid

scintillator detector

neutrino

Spherical

detector

s at

Lp2ib LP2IB 2021 R2D2: neutrino double bêta decay R&D

accelerator

physics SPIRAL2

GANIL

LPSC 2022

AI for cryogenics and RF of superconducting accelerators

(ACRAS)

astroparticle/

cosmology

HESS,

CTA APC 2022

Deep Learning for event classification in Imaging Atmospheric

Cherenkov Arrays (FiBER)

collider

physics ATLAS IJCLAB 2022

Measurement of SMEFT parameters using Simulation Based

Inference in the off-resonance Higgs to 4 leptons channel in

ATLAS

neutrino

KM3Ne

T APC 2022 OrcaNet Reconstruction

neutrino LP2IB 2022 AI development for the R2D2 experiment
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nuclear

physics

(non-collider) AGATA IP2I 2022 Machine Leaning technics for gamma ray tracking

nuclear

physics

(non-collider) FALSTAFF GANIL 2022

Fission-fragment charge-identification using neural-network

analysis of ionisation-chamber tracks

theory IP2I 2022

Unsupervised sampling NN for high dimensional unconstrained

parameter spaces

Table 2: Recent and on-going AI PhD at IN2P3

4 Means and Resources

4.1 Computing resources
Developers of AI techniques require computing resources to train their models. The simplest
ones can be trained in a few minutes on a laptop. More complex models can take days on
GPUs, sometimes even more. It should be noted that the total computing time used by a
project may be one thousand times larger than the training time of the final model, taking into
account the many iterations to optimise the architecture and other hyper-parameters.

IN2P3 AI developers report (see Figure 6) using mostly laptop and campus-level clusters, a
growing number of them also using the GPU farm at CC IN2P3, especially through the
interactive Jupyter notebook platform, a handful (the more involved) the Jean-Zay super
calculator at Idris or the cloud resources for specific needs (AWS, AzureML or
GoogleCloud). The general trend in the AI world is to use larger and larger models, and the
trend at IN2P3 is to apply AI earlier in the processing chain (at detector-level rather than
event-level), hence on more features. Overall this should lead to an increasing need for
computing resources in the coming years.

There is a growing worry worldwide about the resource-frugality of training large models.
However, computing resources used for training at IN2P3 are many orders of magnitude
smaller than resources allocated to simulate and process large experiments. In addition,
many AI projects are about speeding up tasks, hence reducing overall resource needs.
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Fig 6: Type of computing resources

ML software tools used by IN2P3 members are reported in Figure 7 (with the under-reported
contribution of TMVA, which is the ML suite in ROOT). Overall this is mostly scikit-learn
associated with one NN library, with twice more users of Tensorflow than Pytorch.

Fig 7: ML frameworks
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4.2 Human resources
A key ingredient for the development of AI techniques is trained manpower. These are
engineers and physicists that have been involved in multiple AI projects in recent years. The
majority of the trained manpower at IN2P3 currently relies on non-permanent people (PhDs,
postdocs, CDD engineers).

There are more and more PhDs in which AI plays a major role: about 30 are very recent or
ongoing at IN2P3, of which five are co-supervised by a computer scientist. After such PhDs,
they can be hired as post-docs (funded by ANR or other grants), although the recruitment is
made difficult both by the large salary gap with industry with such skills in their portfolio and
the other big gap between the competitiveness of recruitment in academia vs headhunters
reaching out with very competitive job offers.
This makes the recruitment for permanent positions of AI and physics specialists (physics
PhD with in-depth experience in AI, as the opposite, is extremely rare) who can promote AI
locally and through IN2P3 very precious.

Finally, given the complexity and specificities of AI development for HEP, close collaboration
with computer scientists – from both academia and industry – should be established, as it
has been done at many IN2P3 labs. Such collaborations appear to be fostered by the
co-supervision of PhD students. However, the physicists involved should be aware of the
specific CS field (see later).

4.3 Financial resources
All cutting-edge AI software (Python AI ecosystem, scikit-learn, deep learning frameworks
Tensorflow (Google) or PyTorch (Facebook)...) is open-source and, as such available at no
cost. Then, provided that the computing and human resources are granted, as mentioned
above, the only financial resources needed are for training and networking (see later).

A 15k€ Machine Learning IN2P3 Project “CompStat” exists, which can fund actions like
IN2P3 engineers and physicists going to “pure” AI conferences or invite of Computer
Scientists for short stays at IN2P3 laboratories. These activities were on hold during the
pandemics however there have been about 50 (evenly shared between both actions, see
Figure below) expressions of interest for the near future. Clearly, such actions should also be
funded through other means (laboratory/team budget, local call).
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Fig 8: Preferred support request. Several answers were possible.

4.4 Training and workshops
For the training of IN2P3 PhD students (and permanent), bi-yearly week-long summer
schools have been organised, notably School of Statistics2 (particle physics-oriented) and
AstroInfo3 (cosmology/astroparticle oriented). In both cases, AI was not the only topic but an
important one. In both cases, the recent sessions have been recorded, and all material
(slides and tutorials) remain available for future reference. Nevertheless, developing a
database of self-tutorials specifically oriented toward the direct application in everyday
IN2P3-like physics problems (e.g. not generic AI tutorials, which are numerous) would be
very beneficial.

A week-long school4, specifically designed for IN2P3 engineers (ANF Machine Learning pour
informaticiens de l'IN2P3 et de l'IRFU), was organised in September 2020 and was a huge
success for kickstarting interaction and collaboration between IN2P3 computer scientists on
ML projects.

National (IN2P3 and CEA) AI and HEP workshops are held yearly. The last one (2 days)
remotely in March 20215 and the next one (3 days) in person in Sep 2022. Their main
purpose is the exchange of experience tackling HEP problems with AI. With the growing
scope and number of participants, dedicated (typically one-day) topical workshops will be
organised in the future, for example, AI and accelerator physics.

5 https://indico.in2p3.fr/event/22938/
4 https://gitlab.in2p3.fr/ri3/ecole-info/2020/anf-machine-learning
3 Dernière instance en décembre 2021 à Barcelonnette https://astroinfo2021.sciencesconf.org

2 Dernière instance en mai 2022 à Carry-le-Rouet
https://www.in2p3.cnrs.fr/fr/evenement/school-statistics-sos-2022

https://indico.in2p3.fr/event/22938/
https://gitlab.in2p3.fr/ri3/ecole-info/2020/anf-machine-learning
https://astroinfo2021.sciencesconf.org
https://www.in2p3.cnrs.fr/fr/evenement/school-statistics-sos-2022
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IN2P3 researchers have organised international workshops in France, for example, recently
Learning To Discover in April 2022 at Institut Pascal Paris-Saclay by IJClab6 and Bayesian
Deep Learning workshop for Cosmology and Time Domain Astrophysics in March 2020 and
June 2022 at APC7.

International data science competitions on well-known platforms like Kaggle attract data
scientists’ attention on HEP problems, like TrackML8 in 2018-2019 on particle tracking at the
LHC or PlastiCC9 in 2018 on Supernova light curve classification. More generally, releasing
well-documented data with a clear figure of merit is beneficial for the development and
benchmarking of innovative algorithms and to ease the collaboration with Computer
Scientists.

The IN2P3 poll on the training and networking actions has revealed that the ones deemed
most useful were (in this order): 1) online tutorials with HEP-specific data set, 2) a website
cataloguing all available resources, 3) several days of in-person workshop, 4) one-day
topical discussions in hybrid mode (which was still deemed “very useful” or “almost
mandatory” by 40% answers. Online seminars were not favoured, probably given the already
available offer. As far as 1) is concerned, there are already many on-line tutorials available
worldwide, but they are spread on many web sites. Item 2) should definitely be provided at
IN2P3 level, even if, in many cases, it is just a matter of pointing to resources available
elsewhere. Item 3) is already regular, and item 4) is just starting and should be amplified. A
spontaneous suggestion from a number of participants is to have a pool of experts to whom
one could submit specific problems.

4.5 Publications
The role of AI in HEP is (mostly) to improve the sensitivity of measurement published in
typical physics journals. Nowadays, one sees and expects many more scientific publications
with a paragraph or a section describing the AI technique.

Dedicated algorithmic papers describing at length AI techniques applied to HEP problems as
Proof-of-Concept appear in physics journals, as well as dedicated journals like Computing
and Software for Big Science10, Big Data and AI in High Energy Physics11, Computing
parallel sessions (and proceedings) of big physics conferences like ICHEP or EPS-HEP,
dedicated conferences like ACAT or Connecting The Dots. Such publications, using a
simulation or data from a big experiment, require approval by the said experiment. For faster
publication, toy simulations are often used, which requires an additional effort not always

11 https://www.frontiersin.org/journals/big-data/sections/big-data-and-ai-in-high-energy-physics

10 https://www.springer.com/journal/41781
9 https://www.kaggle.com/c/PLAsTiCC-2018
8 https://sites.google.com/site/trackmlparticle/
7 https://indico.in2p3.fr/event/26887/
6 https://indico.ijclab.in2p3.fr/event/5999/

https://www.frontiersin.org/journals/big-data/sections/big-data-and-ai-in-high-energy-physics
https://www.springer.com/journal/41781
https://www.kaggle.com/c/PLAsTiCC-2018
https://sites.google.com/site/trackmlparticle/
https://indico.in2p3.fr/event/26887/
https://indico.ijclab.in2p3.fr/event/5999/
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available. A more open-data policy by big experiments would create an easier framework for
collaboration with AI involved.

More difficult are publications in “pure” AI venues, which are typically proceedings of major
conferences like NeurIPS or ICML. Such publications require close collaboration with
Computer Scientists as the article format is rather different from the one of physics or
physics and AI journals. We should note that these major conferences are starting to be so
huge that they are creating dedicated tracks specifically aimed at interdisciplinary research,
such as the ML for astrophysics workshop at ICML 202212 or Machine Learning and the
Physical Sciences at NeurIPS 2020 and 202113.

In general, it appears that IN2P3 engineers and researchers AI contributions could be more
visible across experiments/domains in international workshops and conferences. This is
difficult to evaluate systematically, but for example, some clues can be obtained for LHC
physics by participating in the CERN IML workshops with three and one speakers from
IN2P3 in 2021 and 2022, respectively of 50 speakers in each case.

A possible explanation is the lack of incentive for IN2P3 personnel to advertise their
developments outside their experiments compared to other countries where this is more the
norm for PhD students and post-docs.

5 SWOT
● Strength

○ data science is at the core of IN2P3
○ large labelled datasets
○ accurate simulators
○ relatively easy access to computing resources for training

● Weakness
○ AI competence is not easy to acquire
○ specific semi-structured data not suitable for off-the-shelf tools
○ difficulty to recruit AI-capable post-docs or engineers (salary)

● Opportunities
○ HEP specificities mean opportunity for specific AI developments, potentially

interesting for other science
○ HEP « prestige » helps to attract Computer Science collaborators (e.g.

Google developers)
● Threat

○ publication pace slow in HEP compared to AI world
○ lack of incentive at IN2P3 for dedicated publication/workshop contribution

13 https://ml4physicalsciences.github.io/
12 https://ml4astro.github.io/icml2022/

https://ml4physicalsciences.github.io/2021/
https://ml4astro.github.io/icml2022/
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Conclusion
IN2P3 contributions are diverse, both in terms of application domain and techniques. They
are already visible within each experiment or physics domain, and this visibility could be
increased  through AI workshops and dedicated publications.

However, the trend is positive. In recent years, we have seen that AI has become an
important aspect of scientific life for many people. AI (beyond Boosted Decision Tree) has
become a hot topic in HEP in 2014 (by then, very few physicists had ever heard of “Machine
Learning”). The first generation (a handful) of PhD students with a significant AI contribution
in their PhD topic defended their PhD in 2019-2020. The new generation is more numerous
(about thirty ongoing PhDs) and benefits from growing local expertise, budding
collaborations with Computer Scientists, and relatively easy access to computing resources.
In parallel, IN2P3 scientists have successfully bid to ANR and other calls to fund a wide
variety of projects, funding postdocs in particular.

Training resources exist, but specificities of AI in HEP are such that “you need to talk to
someone”. S/he could be someone more expert on AI techniques (e.g. Graph Neural
Network, Differentiable Programming, etc.), but less or not at all on the physics domain. S/he
could be a peer trying to use a similar technique on similar data. Structuring and
encouraging such exchanges is important.
The recruitment on permanent positions of physicists with deep expertise in AI is to be
encouraged, given the important role they would have in spreading AI expertise at IN2P3.


