

Acquisition de données

Exemple de l'expérience LHCb et prospective

J.P. Cachemiche Centre de Physique des Particules de Marseille

École « De la physique au détecteur » - Acquisition de données

CPPM 1

Plan

- Présentation du trigger LHCb
- Démarche de réalisation du trigger à muon
- Techniques de base pour le parallélisme
- Evolution de l'architecture d'acquisition LHCb pour 2019

Le détecteur LHCb

Etude des asymétries matière/anti-matière dans la physique du méson B

Fonctions du système

- Lecture d'environ 1 million de canaux
- Production de 100 000 paires bb par secondes
- Recherche des événements impliquant un méson B
- Acquisition
- Identification
- Stockage (quelques kHz)

Decay	Visible	Offline
Modes	Br. fraction	Reconstr.
$B_d^0 \rightarrow \pi^+\pi^- + tag$	0.7×10^{-5}	6.9 k
$B_d^0 \rightarrow K^+ \pi^-$	1.5×10^{-5}	33 k
$B_d^0 \rightarrow \rho^+ \pi^- + tag$	1.8×10^{-5}	551
$B_d^0 \rightarrow J/\psi K_S + tag$	$3.6 imes10^{-5}$	$56 \mathrm{k}$
$B_d^0 \rightarrow \overline{D}{}^0 K^{*0}$	3.3×10^{-7}	337
$B_d^0 \rightarrow K^{*0} \gamma$	$3.2 imes 10^{-5}$	26 k
$B_s^{\vec{0}} \rightarrow D_s^- \pi^+ + tag$	1.2×10^{-4}	$35 \mathrm{k}$
$B_s^0 \rightarrow D_s^- K^+ + tag$	8.1×10^{-6}	2.1 k
$B_s^0 \rightarrow J/\psi \phi + tag$	$5.4 imes 10^{-5}$	44 k

Expected numbers of events reconstructed offline in one year (10' s of data taking) with an average luminosity of 2×10^{32} cm⁻² s⁻¹, for some channels.

Trigger

Filtrage des événements

3 étapes de réduction :

Sous-détecteurs participant au trigger de niveau 0

3 détecteurs

 Calorimètres, muons et pile-up veto

Unité de décision

Pile-up veto

Détection des croisements contenant trop d'interactions

- Evénements trop difficiles à analyser
- Détection de tous les vertex déterminés par les hits des plans A et B
- Elimination des hits correspondant aux 2 vertex de plus grande énergie
- S'il reste un ou plusieurs vertex, élimination de l'événement (VETO)

Calorimètres

Détection des particules avec une ${\sf E}_{{\scriptscriptstyle \sf T}}$ élevée

Plusieurs sous-systèmes :

- **SPD** (Scintillator Pad detector)
 - Identifie les particules chargées et sépare les électrons des photons
- PreShower (détecteur de pied de gerbes)
 - Identifie les électrons et photons

Calorimètre Electromagnétique

 Mesure l'énergie des électrons et photons

Calorimètre Hadronique

 Mesure l'énergie des hadrons

Trigger à muon

Détection des muons avec une impulsion transverse (Pt) élevée

- 1400 GEM et MWPC répartis sur 5 plans
- 120000 canaux
- 435 m²
- 2.5 millions de cables

11

Slice muon chambers

École « De la physique au détecteur » - Acquisition de données

Démarche de réalisation du trigger à muon

Recherche des candidats

Principe de l'algorithme:

- 1- Trouver un pad touché en M3
- 2- Définir un axe de recherche centré sur le PAD
- 3- Ouvrir 2 cones le long de cet axe
- 4- Sélectionner une trace si un pad est touché dans le couloir dans les plans M5 et M4 et M2
- 5- Le point de passage en M1 est extrapolé en suivant la droite partant de M3 et passant par le pad touché de M2
- 6- Recherche d'un hit dans la zone extrapolée
- 7- Ce point dans M1 donne l'angle de la trace par rapport au faisceau donc PT (impulsion transverse)

- Granularité proportionnelle à la densité de particules
- Vue simplifiée : nombreuses exceptions topologiques

Unité de traitement : un FPGA

Field Programmable Gate Array

 Matrice de cellules logiques interconnectables de façon programmable

Unité de traitement : un FPGA

Field Programmable Gate Array

 Matrice de cellules logiques interconnectables de façon programmable

Caractéristiques des FPGA

Entrées sorties programmables

- LVDS, CML, HSCL, CMOS, SSTL, LVPECL
- Avec des fonctions de filtrage : préaccentuation, égalisation

Contient également des structures cablées

- Mémoires
- PLLs
- Cellules DSP
- Sérialiseurs/désérialiseurs multigigabits
- Hardware IP blocks
 - interfaces mémoires : DDR3, DDR, QDR, ...
 - Interfaces protocoles de communication : PCIe, GbE, Interlaken, ...
- Hardware CPU : ARM
- Convertisseurs Analogiques Digitaux

Peut contenir des fonctions autrefois dédiées aux instruments de mesure

- Analyse logique,
- Serial Data Analyser

Ce que le FPGA doit voir

Echanges de données

Traitement de données

Homogénéisation de l'espace de travail

Échanges de données

Mise en temps

Toutes les données arrivent décalées

- Chemins de longueur différente
- Dérives thermiques
- Données de voisinage

Synchronisation

Mise en temps

Implémentation effective

Traitement

Parallelisme massif

- Un résultat à donner toutes les 25 ns
- Pas le temps de chercher séquentiellement
 - L'algorithme de recherche est effectué sur l'ensemble des cellules simultanément

M3 seed

Traitement

Structure pipeline

- Le temps de recherche est supérieur à l'écart entre deux collisions (25 ns)
- Multiplication des unités de traitement trop coûteuse
 - On adopte une structure pipeline

	F1	F2	F3	F4	F5	F6	F7	F8
т0	Dn	Dn-1	Dn-2	Dn-3	Dn-4	Dn-5	Dn-6	Dn-7
T0 + 25	Dn+1	Dn	Dn-1	Dn-2	Dn-3	Dn-4	Dn-4	Dn-6
T0 + 50	Dn+2	Dn+1	Dn	Dn-1	Dn-2	Dn-3	Dn-4	Dn-5
T0 + 75	Dn+3	Dn+2	Dn+1	Dn	Dn-1	Dn-2	Dn-3	Dn-4
T0 + 100	Dn+4	Dn+3	Dn+2	Dn+1	Dn	Dn-1	Dn-2	Dn-3
T0 + 125	Dn+5	Dn+4	Dn+3	Dn+2	Dn+1	Dn	Dn-1	Dn-2
T0 + 150	Dn+6	Dn+5	Dn+4	Dn+3	Dn+2	Dn+1	Dn	Dn-1
T0 + 175	Dn+7	Dn+6	Dn+5	Dn+4	Dn+3	Dn+2	Dn+1	Dn

Operation	Estimated time [ns]	Estimated numberof clock periods
Time of flight to M5	63	
FE board processing	70	
Transmission to IB and ODE (15 m)	105	13
IB processing	40	
ODE processing	30	
Transmission to processing (100 m)	600	24
Muon processing	1200	48
Transmission to L0 decision Unit	50	2
L0 Decision Unit processing	525	21
L0 Decision Unit distribution	800	32
Contingency	500	20
Total	3983	160

 Profondeur du pipeline muon trigger LHCb : 48 coups d'horloge

Calcul du PT

Formule simple

$$P_T = P_0 \sin(\theta)$$

•
$$P_0$$
 is obtained from β , the deflection angle and \vec{K}

$$P_0 = \frac{K}{2\sin(\frac{\beta}{2})} = \frac{K}{2\sin(\frac{\gamma - \alpha}{2})}$$

where
$$\tan(\gamma) = \frac{x_0}{\sqrt{D_0^2 + y_0^2}}$$
 and $\sin(\alpha) = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + D_2^2}}$

•
$$\sin(\theta)$$
 is given by:

$$\sin(\theta) = \frac{R_0}{\sqrt{\left(R_0^2 + D_0^2\right)}} = \frac{\sqrt{x_0^2 + y_0^2}}{\sqrt{x_0^2 + y_0^2 + D_0^2}}$$

École « De la physique au détecteur » - Acquisition de données

 $(x_{2}^{},y_{2}^{},z_{2}^{})$

γ

(y₁,z₁)

α

 $(\mathbf{x}_1, \mathbf{y}_2, \mathbf{z}_2)$

M2

Z

Calcul du PT

Utilisation de LUT

 Permet de calculer n'importe quelle fonction de type f(x) même complexe en un coup d'horloge

• Faisable tant que range (x) reste faible

Quelques chiffres

Trigger muon LHCb

 Avec 240 FPGAs interconnectés, ceci permet de réaliser 740 milliards d'algorithmes de recherche par seconde.

Testabilité

Primordial de comprendre les anomalies quand elles surviennent

- L'algorithme ne représente pas plus de 50 % de l'occupation du FPGA
- Le reste est occupé par des fonctions de test et de monitorage
 - Injection de données simulées
 - Capture d'événements au vol
 - Relecture à différents endroits de la chaîne de traitement.

Carte trigger

Carte générique

- Mais 48 configurations de FPGA différentes

Custom backplane

Carte de contrôle

Le trigger à muons

Evolution du détecteur : l'upgrade

LHCb Upgrade

Motivation

- Luminosité maximale sous 5 ans : 5 fb⁻¹
- Au rythme actuel la précision statistiques des mesures varie très lentement
- En augmentant la luminosité de 2×10³² à 10³³ cm⁻²s⁻¹
 - Parvenir à une luminosité cumulée supérieure à 50 fb⁻¹

 Saturation du trigger sur les canaux hadroniques

Principe de l'upgrade LHCb

- Triggerless readout
- Tous les fragments d'événements sont routés à 40 MHz vers la ferme

Loi de Moore

Si la ferme peut traiter les événements à 1 MHz en 2008
 Elle doit pouvoir traiter à 40 Mhz entre 2018 et 2020

Upgrade : trigerless readout

- Compression dans les front-ends pour diminuer le nombre de liens optiques
- Débit de readout multiplié par 40

Choix d'architecture initiale du readout LHCb

Système éprouvé distinguant le back end des fermes à courte durée de vie

Standard mécano-électrique

VME vieillisant

Besoin d'un nouveau standard

			Standard	Bandwidth
				in Mbytes/s
			ATCA 40Gb	1 820 000
			ATCA 10Gb	455 000
			VPX (VITA46)	112 500
			VXS (VITA 41)	20 000
			SHB Express	17 500
-			Compact PCle/PSB	5 000
Bar	ndwid	dth	PCI 64 x 33 Mbits/s	533
			VME 320	320
			VME64x	160
			PCI 32 x 32 Mbits/s	133
			VME64	80
			VME32	40
			VME16	20

Plus de backplane custom

Utilisation du standard ATCA

- Nombreux avantages :
 - Bien adapté aux composants récents
 - Plus de place pour les radiateurs
 - Alimentation jusqu'à 3kW/crate
 - Refroidissement adapté
 - Backplane standard
 - Topologie basée sur des liens sériels
 - Mezzanines normalisées
 - Coûts similaires au VME
 - Redondance
 - Système normalisé de surveillance de l'état du système (IPMI)

École « De la physique au détecteur » - Acquisition de données

Carte AMC40

Carte ATCA40

Problème mémoire

Architecture Push

- Requiert mémore dans les switches
- Coût des switches très élevés (facteur 3)

Architecture Pull

- Impossibilité de rajouter de la mémoire sur les cartes

Nouveau schéma de readout

Déplacement des FPGAs back-ends dans les fermes de calcul

- Utilisation de la mémoire des CPUs pour bufferiser les données
- Implique également de réaliser l'event building dans les serveurs

Amélioration architecture interne des CPUs

Libération de la bande passante des CPUs à partir de la génération lvy Bridge d'Intel

- 40 canaux PCIe GEN3 à 8 Gbits/s
- Accès à la mémoire ne passe plus par le processeur

➔ Donne la capacité au CPU de prendre en charge l'Event Building complet

Data path

Bandwidth

Avantages et inconvénients

Résout le problème de la bufferisation

Coûts

- Beaucoup de mémoire dans le CPU → carte d'acquisition plus simple et switches moins chers
- Plus de crates intermédiaires
- Moins de liens optiques
- Possibilité de faire tourner partiellement le HLT dans les CPUs d'event building
 Plus de 80 % de la puissance inoccupée

Durée de vie du système

 Vie moyenne d'un PC = ~4 ans (jusqu'à 8 selon statistiques du CERN) Maintenance plus compliquée

Nouvelle carte de readout

PCIe40

- Arria10 Technologie 20nM 1980 pins
- 1.15 millions de logic cells
- 72 liens 10 Gbits/s
- Bande passante :
 - Optique 500 Gbits en entrée, 500 bits en sortie
 - PCIe 100 Gbits en entrée et en sortie
- 50 fois plus de logic cells que FPGAs du trigger à muons
- 60 A sur le core sous 0.9V

Architecture globale

- Peut assumer plusieurs fonctions dans le système par reprogrammation du FPGA
- Plusieurs noms selon sa fonction :
 - SODIN : Timing distibution and Fast Control
 - SOL40 : Slow control
 - TELL40 : Acquisition

LHCb architecture

- Readout located on surface
 - Distance between FE and RO : ~350m
- ~ 10000 optical links
- ~ 500 readout boards
- ~ 100 TFC/ECS cards
- ~ 100 kBytes per event at 40 MHz
- ~ 32 Tb/s aggregate bandwidth
- ~ 4000 dual CPU nodes

ALICE architecture

- Readout located on surface
 - Distance between FE and RO : ~120m
- ~ 9000 optical links
- ~ 540 readout boards
- ~ 68 MBytes per event at 50 KHz
- ~ 27 Tb/s aggregate bandwidth
- ~ 1500 GPU based event processing nodes

Courtesy Alex Kluge

Trigger ou triggerless ?

Choix effectués pour les systèmes de readout du CERN

	ALICE	LHCD	CMS	ATLAS
Hardware trigger	No	No	Yes	Yes
Software trigger input rate	50 kHz Pb-Pb 200 kHz p-Pb	30 MHz	500/750 kHz for PU 140/200	0.4 MHz
Baseline processing architecture	CPU/GPU/FPGA/ Cloud&Grid	CPU farm (+coprocessors)	CPU farm (+coprocessors)	CPU farm (+coprocessors)
Software trigger output rate	50 kHz Pb-Pb 200 kHz p-Pb	20-100 kHz	5-7.5 kHz	5-10 kHz

Tenue du temps réel

- Loi de Moore

École « De la physique au détecteur » - Acquisition de données

Temps réel

- Le calcul pur ne suffit plus
 - Utilisation d'un ensemble de technologies
 - Calcul GPU sur carte graphique
 - Calcul GPU sur FPGA
 - Coprocesseurs
 - Neuronal
 - Deep learning
 - Vectorisation (SIMD)
 - Parallèlisation des algorithmes
 - Many-cores

Conclusion

Tendances

- Architectures :
 - apparition des concepts triggerless
 - requiert un travail considérable d'optimisation pour maintenir les coûts

	Event-size [kB]	Rate [kHz]	Bandwidth [Gb/s]	Year [CE]
ALICE	20000	50	8000	2019
ATLAS	4000	200	6400	2022
CMS	2000	200	3200	2022
LHCb	100	40000	32000	2019
	Fut	the LHC Nil	ko Neufeld. Cl	

- Données à 40 MHz : très challenging pour les switches
- Pas forcément généralisable à tout type de machine
- Standards :
 - Quelle que soit l'architecture, adoption progressive du standard xTCA par les expériences
 - → ATCA pour ATLAS, µTCA pour CMS
 - mais aussi du PCle
 - LHCb, Alice
 - Coexistence probable des deux types de solutions

Pub!

Ecole « Technologies émergentes pour les Systèmes DAQ »

- Du 11 au 15 Novembre 2018
- Lieu Fréjus
- Programme :
 - · Transmissions radios dans les détecteurs
 - Technologies optoélectroniques
 - Couplage efficace FPGA/CPU
 - Langages de haut niveau pour FPGAs
 - Technologies many-cores
 - Calcul GPU sur carte graphique
 - Calcul GPU sur FPGA
 - · Réseaux neuronaux et deep learning
 - Réalisations effectives à l'aide de ces technologie
 - Comparaisons
- Présence d'Intel et Kalray