La calorimétrie suite... Techníques de base & avancées

> Vincent Boudry LLR, École polytechnique

École du détecteur à la mesure Bénodet, juin 2018

Plan

Introduction

- Les interactions des particules dans la matière
 - Interactions hadronique, réponse en temps, ...
 - Oh les belles gerbes !
- Principe de la mesure en calorimétrie
 - Calorimétrie électro-magnétique & hadronique
 - Mesures de la performance

Techniques de base de détection

- Optique : Scintillateurs & Čerenkov
- Electronique en milieu condensé (Solide & Liquide)
- Détecteurs Gazeux

En pratique :

- Quelques exemples
- Effets annexes, et considérations «pour ingénieurs»

Techniques avancées, la pratique et le futur...

- Quelques ruses...
- Le futur de la calorimétrie : dual readout vs. particle flow.
 - ILC & CMS-HGCAL

Vincent.Boudry@in2p3.fr

Vendredi

Quelques exemples de détecteurs (techniques)

Quelques exemples de grands calorimètres

Machines basse E: CLEO, BaBar cristal CsI, ~ pas de HCAL

LEP	OPAL	lead glass,	Fe-w.ch.	L3 BGO
	ALEPH	, DELPHI	→ Pb/Fe-wire ch	ambers sandwich

SLC SLD Pb/Fe-{Ar

HERA	H1	Pb/Fe-ℓAr	ZEUS	U-scint.
TeVatron	D0 U	-{Ar	CDF	Pb/Fe-scint.
LHC	CMS ATLAS	PbWO ₄ , Brass-scintillator Pb- ℓ Ar, Fe-scintillator		

Cristaux

Tomographie par émission de positrons = des calos industriels...

Crystal Ball

672 Cristaux de Nal(Tl) + PM

- Couverture 93% 4π stéradians
- ~16 $X_0 \rightarrow$ Photons moyenne En
- Détecteurs nomade
 - SLAC puis DESY, puis Mayence.

Cristaux pyramide tronquées

Tubes photomultiplicateurs

CMS ECAL

$PbW0_4$

- $X_0 = 0,89 \text{ cm} (Pb : 0,56 \text{ cm})$
- $R_{M} = 2,2 \text{ cm}$

Plus :

- Excellente résolution en E
- Calorimètre compact (longueur du cristal 23cm pour 26 X₀)
- Gerbe très compacte
- Rapidité (80% de la lumière ≤15ns)
- Résistance aux radiations (105Gy)

Moins :

- Faible rendement : 150 γ/MeV
- Sensibilité à la t° (-1,9% / °C) & radiations

Total dose after 10 years of running (5x10⁵ pb⁻¹)

Vincent.Boudry@in2p3.fr

CMS ECAL (EM) design

CMS ECAL

Avalanche PD

$2 \times 2 \text{ cm}^2$

- 80% des e- dans 1 cristal
- groupe de 3×3 pour le trigger,
- Presque pointant

vacuum phototriodes (VPT) (RadHard)

Vincent.Boudry@in2p3.fr

CMS ECAL construction

1/12/10 Vincent.Boudry@in2p3.tr

Intercalibration tracker ↔ ECAL

Performances ECAL (tests en faisceau)

Fermi/Glast

Satellite observation $\boldsymbol{\gamma}$ de HE

– 20 MeV < Eγ < 300 GeV
 LAT = Large Area Telescope –

ECAL

- 8 couches de Csl
 - 8,5 X0 \rightarrow fuites
 - Orientation alterné
- Lecture double : APD
 - reconstruction pos.
 - correction atténuation (~65%)

Gas nobles liquéfiés

Vincent.Boudry@in2p3.fr

H1 un détecteur de HERA (asymétrique)

Collisions à HERA (DESY, Hambourg) e[±] p 30→← 900 GeV p e Run 122145 Event 69506 Date 19/09/1995 $Q^{2} = 25030 \text{ GeV}^{2}, y = 0.56, M = 211 \text{ GeV}$ E_t/GeV

120

ž R

Vincent.Boudry@in2p3.fr

Calorimètre lAr de H1

Vincent.Boudry@in2p3.fr

NA48

LKr CALORIMETER ELECTRODE STRUCTURE

- Expérience cible fixe (CERN)
 - Physique du K
- **ℓ**Kr @ 120°K
- Electrodes en accordéon
- σ(t) ~ 220 ps
 - temps de vol. δ ≤ 0.3ns

$$\sigma_x \approx \sigma_y \approx 1 \text{ mm}$$

$$\frac{\sigma(E)}{E} = \frac{(3.2 \pm 0.2)\%}{\sqrt{E}} \oplus \frac{(0.09 \pm 0.01)}{E} \oplus (0.42 \pm 0.05)\%$$

Vincent.Boudry@in2p3.fr

ECAL d'ATLAS

Atlas ECAL : lAr

Pbm : Temps de dérive long dans *l*Ar Idée : faire de petits espaces de dérive

- $\text{ Ar «lourd»} \rightarrow f_{\text{échant.}} \text{ OK}$
- \rightarrow signal 40 ns
 - \leftrightarrow 25 ns inter-paquet nom. de LHC

Vincent.Boudry@in2p3.fr

Atlas ECAL

Accordion barrel

Vincent.Boudry@in2p3.fr

Atlas ECAL : performances

Quelques performances de ECAL

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E}\oplus 0.45\%$	1996
CsI(Tl) (BaBar)	16–18X ₀	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{ m GeV}$	1998
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E}\oplus 0.5\%\oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	2 199 8
Scintillator/depleted U (ZEUS)	20–30X ₀	$18\%/\sqrt{E}$	<mark>19</mark> 88
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	<mark>19</mark> 95
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996

Vincent.Boudry@in2p3.fr

HCAL CMS & Atlas

ATLAS HCAL

En test en faisceau de π : $52.9\%/\sqrt{E} \oplus 5.7\%$

HCAL : CMS & Atlas

	ATLAS	CMS				
Technology						
Barrel / Ext. Barrel	14 mm iron / 3 mm scint.	50 mm brass / 4 mm scint.				
End-caps	25 mm (front) - 50 mm (back) copper / 8.5 mm LAr	80 mm brass / 4 mm scint.				
Forward	Copper (front) - Tungsten (back) 0.25 - 0.50 mm LAr	4.4 mm steel / 0.6 mm quartz				
# Channels						
Barrel / Ext. Barrel	9852	2592				
End-caps	5632	2592				
Forward	3524	1728				
<mark>Granularity (</mark> ∆η x ∆	ф)					
Barrel / Ext. Barrel	0.1 x 0.1 to 0.2 x 0.1	0.087 x 0.087				
End-caps	0.1 x 0.1 to 0.2 x 0.2	0.087 x 0.087 to 0.35 x 0.028				
Forward	0.2 x 0.2	0.175 x 0.175				
# Longitudinal San	nplings					
Barrel / Ext. Barrel	Three	One				
End-caps	Four	Two				
Forward	Three	Тwo				
Absorption lengths	5					
Barrel / Ext. Barrel 9.7 - 13.0		5.8 - 10.3 10 - 14 (with Coil / HO)				
End-caps	9.7 - 12.5	9.0 - 10.0				
Forward	9.5 - 10.5	9.8				

TB single π : 52.9%/ $\sqrt{E} \oplus 5.7\%$

Single π ECAL+HCAL : 110%/ $\sqrt{E} \oplus 7.3\%$ 84.7% / $\sqrt{E} \oplus 7.4\%$ corrected for ECAL/HCAL non lin.

MET fits ATLAS using super cluster $\rightarrow 37\%/\sqrt{\Sigma}E$ CMS using Part. Flow $\rightarrow 45\%/\sqrt{\Sigma}E$

Vincent.Boudry@in2p3.fr

Des calorimètres Čerenkov

Luminomètre de H1

Hodoscope à γ

- Angle fixé
- Fibre de Quartz
- Sensibilité
 - Cœur de gerbe
 - + 1 partie du halo
- 12 voies en *x* et y
 @ 40 MHz

neutrinos : Super Kamiokande 1 détecteur purement Čerenkov

neutrinos : Super Kamiokande 1 détecteur purement Čerenkov

1 événement d'apparition d'électron $\sigma(E)/E = 2.5\%$ (for 1GeV) to 16% (for 10MeV) Energy threshold : 5 MeV

Uniformity and stability of response vs position and time to ± 0.5 % to avoid distortions in measured spectrum.

LINAC: injects electrons of 7 different energies at 6 different positions

Vincent.Boudry@in2p3.fr

Super-K Identification de particules

Vincent.Boudry@in2p3.fr

Détection des v's : IceCube

Détection des v's : Antares

Vincent.Boudry@in2p3.fr

Bonus... Après — avant construction
Quelques effets «annexes»

Texas tower

- Réponse disproportionnée à des neutrons
 - neutron ~ MeV dans le senseur, localisé
 - collision élastique n-p
 - \rightarrow signal ~ GeV
- Vu dans les détecteurs gazeux (⊃ Hydrogène)
- Vu dans les APD de CMS (pbm de triggers)
- Rupture de gain
 - Electronique multi-gain
 - \triangle intercalibration \rightarrow apparition de pics !

potentielle découverte d'une «nouvelle» physique !

Quelques considérations pour les ingénieurs (mais pas uniquement!)

La mécanique : «le calorimètre volant» (en simu)

- Zone mortes
- déformations / précision
- L'électronique
 - La consommation (power pulsing)
 - La dissipation thermique
 - les CEM, mise à la masse
- La fiabilité sur 10-20 ans
 - Usure...
 - Accessibilité

Les services

- passage des services
- l'intégration
- L'acquisition
 - Flux de données
 - Redondance
- L'intégration
 - Coûts
 - Risques :
 - la dépendance à 1 fournisseur
 - obsolescence du matériel : déjà «vieux» à l'installation

Techniques d'amélioration de la mesure des gerbes hadroniques

Bilan énergétique d'une gerbe hadronique :

$$E = E_{\rm EM} + E_{\rm tr} + E_{\rm n} + E_{\rm nucl.} + E_{\rm fuites}$$

 $E_{
m EM} = \pi^{_0}$ ~ 30%–60% à 10–200 GeV ($f_{
m EM}$ ou ${
m F_0}$)

 $E_{
m tr}=\pi$ chargés & protons

 $E_{\rm n} = {\rm neutrons}$

 $E_{\text{nucl.}} =$ Energie de liaison nucl. (Binding energy) \rightarrow Energie perdue ou «invisible»

$$E_{ ext{fuites}} = \mu + \nu$$
, ~1-2%

Voies d'amélioration

Comment corriger expérimentalement pour ces 2 composantes ?

red - e.m. component blue - charged hadrons

Voie « Passive » Purement matériel

Voie « Active » **Matériel + logiciel** Granularité + algorithmes

Calorimètre à compensation

«Dual readout»

$e/h \rightarrow 1$:Calorimètres à compensation

Réponse d'un calorimètre aux hadrons :

 $\blacktriangleright E_{\rm b} = E_{\rm tr} + E_{\rm p}$

$$R_{h} = \varepsilon_{e}E_{e} + \varepsilon_{h}E_{h}$$

$$= (\varepsilon_{e}F_{\pi0} + \varepsilon_{h}(1-F_{\pi0}))E$$
Rapport
$$e/h = \varepsilon_{e}/\varepsilon_{h}$$

- ► E_e = Energie EM ► ϵ_e = fraction d'énergie EM détectée
 - \triangleright ϵ_{h} = fraction d'énergie Hadronique détectée

Augmenter $\boldsymbol{\epsilon}_{_{h}}$ et/ou réduire $\boldsymbol{\epsilon}_{_{e}}$

Augmenter ε_h

Utilisation de 238U (U appauvri)

 $-n + U \rightarrow \text{Energie} (\gamma, n, ...)$

Inconvénient

- Bruit Radioactivité (→ calib)
- «Déchets radio-actif...»

Vincent.Boudry@in2p3.fr

Utilisation de capteurs riches en Hydrogène

```
- n + H \rightarrow n + p (HE)
```

Exp de L3

− U + CO₂ → U + IsoButane : e/h 1.3 → 0.6 !!!

Diminuer ε

- $-\sigma$ (Photo-electrique) $\sim Z^4$
 - γ < 1 MeV capturés dans radiateur

(a) Carbon (Z = 6)• - experimental σ_{tot}

1 Mb

l kb

GRayleigh

Bilan compensation

Ajustement :

- (A,Z) radiateur \otimes Contenu en H du senseur \otimes temps d'intégration \otimes Vol Rad/ Vol Senseur.

Temps d'intégration ↔ Machine

Meilleurs compromis pour la mesure hadronique ≠ meilleurs pour le ECAL

- ECAL homogène : $e/h \gg 1$
- − Bon ECAL à échant. \Rightarrow mauvais volume pour compens.

Bon ECAL ou bon HCAL ?

I had a DREAM...

Un physicien anonyme

DREAM (Dual REAout Module)

Lecture duale de l'énergie

- Identification «hardware» de la composante EM = mesure de $f_{\rm EM}$
 - Utilisation de la lumière Čerenkov produite par la partie EM de la gerbe

 N_{traces} (e±) / MeV » N_{traces} (hadrons)/MeV

 lecture classique du dE/dx (fibres scintillantes)

Lecture du même milieu par 2 fibres différentes

 \Rightarrow 2 e/h pour 1 même événement

Type de SpaCal {Spaghetti Calorimeter}

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length $\approx 90~{\rm km}$
 - Hexagonal towers (19), each read out by 2 PMTs

Photo multiplicateurs

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

$$egin{aligned} egin{aligned} egi$$

e.g. If
$$e/h = 1.3$$
 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 \,(1 - f_{\rm em})}{f_{\rm em} + 0.77 \,(1 - f_{\rm em})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$

with
$$\chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{Q}} \sim 0.3$$

La calorimétrie – Bénodet 2

les méta-matériaux (option homogène)

- Dual Readout avec un calorimètre quasi homogène
 - Fibres scintillantes denses avec des matériaux réagissant différemment

Lecture complexe \rightarrow double ou triple information 3D

Amélioration Algorithmiques (avec la granularité)

Agrégation («Clustering»)

But : grouper les cellules proches

- Mesure de dépôts localisés ↔ origine des particules
 - 1 cluster = 1 dépôt d'une particule ?
- Autour de cellules «chaudes»...
- Besoin d'une granularité suffisante

Applications :

- Suppression du bruit = cellules isolées { ⊕ volume de donnée □ }
 - Conservation du bruit proche : symétrique. par ex. : coupure à |Q_i| > 3 σⁱ_{noise}
- Corrections :
 - Profil de gerbes
 - Fuites, Matériaux morts

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

Compensation par pondération (« weighting »)

Optimisations du signal : forme & taille

- − Dans le ECAL : e & γ vs π 's (≡ particle ID) [par exemple fraction dans le E_{ECAL}/(E_{ECAL}+E_{HAD}).
- Dans le HCAL : Repérer les dépôts EM
- densité en énergie

$$\rho_i = \frac{E_i}{Vol_i}$$

- Haut ρ_i = EM ; bas ρ_i = HAD
 - Ajustement des poids par le MC

Compensation par pondération (« weighting »)

Energy flow & particle flow (une approche holistique)

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

Au-delà de la calorimétrie : le «particle flow»

«Simplement» reconstruire toutes les particules & prendre la meilleure mesure possible ou combiner

- Pour des particules individuelles :
 - a ~ 10-3—10-4 GeV-1
 - $\alpha_{ecal} \sim 20\%$; $\gamma_{ecal} \sim 1\%$
 - $\alpha_{hcal} \sim 100\%$; $\gamma_{hcal} \sim 5\%$

Physique à haute énergie \equiv jets, MET (énergie transverse manquante), τ

« Energy flow »

ALEPH

Utilisation de particle ID + SW compensation

PFA au Tevatron : CDF

H1 « Hadronic flow » (trace de Pt<1 GeV)

Le «particle Flow» de CMS

Lien entre objets reconstruits

- traces, clusters, traces de muons
- suivant la direction du vertex ou des traces
- 1 bloc ~ 1 particule
 - Comparaison des compatibilités «4D»
 - Spatiales
 - Energétique

C. Bernet

CMS particle flow

Reconstruction d'énergie manquante

- recherche «exotique»

$$\overrightarrow{MET} = -\sum_{i=0}^{N} ec{E_T^i}$$

Gain d'un facteur ~2
 Signal → Gaussien

Vincent.Boudry@in2p3.fr

La calorime

Matériel pour le Particle Flow (pour ILC/CLIC, CEPC, FCC, HL-LHC...)

Nouveau paradigme (Particle Flow Analysis)

- 60% de chargés : mesure dans le tracker
- 30% de «petits» γ : dans le ECAL avec 20%/ \sqrt{E}
- 10% de hadron neutres (n, K⁰_L) dans le HCAL

⇒ Bien meilleure résolution !! Besoin d'une excellente granularité

Logiciel sophistiqué

Une question de granularité

Performances du PFA (pour les jets)

Le Particle Flow Analysis améliore toujours

~Facteur 2 vs calo seul

La résolution du HCAL, la granularité et les fuites jouent un rôle.

La calorimétrie – Bénodet 2018

Model Limits

La calorimétrie à haute granularité

Une calorimétrie optimisée pour le particle flow : ILD, SiD & Calice

Collisionneur e^+e^- (FLC, JLC, TESLA) ILC : 0.5 — 1 TeV CLIC : 1 — 3 TeV

Collaboration CALICE

- \cdot mostly ILD, SiD
- \cdot ILC, CLIC

Test de prototype

- \cdot Physiques
- \cdot technologiques
- Analogique & digital

La calorimétrie – Bénodet 2018

Micro

megas

Augmentation de la granularité

% Tracking	% Calo	Nb Canaux	Anneaux	Détecteur
40%	60%	180 000	LEP	OPAL
60%	20%	130 000	LEP	DELPHI
15%	80%	530 000	LEP	ALEPH
		100 000	LEP	L3
50%	40%	150 000	TEVATRON	CDF
40%	50%	120 000	TEVATRON	D0
70%	30%	250 000	HERA	H1
85%	15%	1 000 000	LHC	L3P
98%	2%	16 000 000	LHC	CMS
98%	2%	4 000 000	LHC	ATLAS
97%	3%	30 000 000	SSC	SDC
97%	3%	4 250 000	SSC	GEM
82-88%	12-18%	109	ILC	ILD

e e → ZM verm 01 v

La calorimétrie – Bénodet 2018

Paramètres ILC (~2027-28)

Vincent.Boudry@in2p3.fr

La calorimétrie – Bénodet 2018

Un calorimètre W-Si pour un collisioneur linéaire à électrons

De nombreux jets de particules serrées → forte densité du calorimètre → radiateur dense W, détecteur compact Si

Les détecteurs au Si sont compacts: car ~100 paires par µm épaisseur ~ 500µm → 50000 paires

Le calorimètre est mince: $24X_0$ pour ~20 cm en 40 couches Les gerbes sont étroites $R_M \sim 1$ cm

beaucoup de canaux de lecture, 100M extrême granularité : 5×5 mm² → Electronique enfouie

Très bonne efficacité de reconstruction des photons dans un environnement chargé

Vincent.Boudry@in2p3.fr

La calorimétrie

SKIROC : ECAL readout

SKIROC2 : Silicon Kalorimeter Integrated Read-Out Chip

- 64 canaux, AMS SiGe 0.35 $\mu m,$ 70 mm^2
- Très grande gamme dynamique:
 - HG for 0.5-150 MIP, LG for 150-2500 MIP
- Auto-déclenchement, Stockage Analogique (16 evts), Numérisation (12b), Etiquetage en temps (BC)
- Token-ring ReadOut (Chainage)
- Basse consomation (Power-Pulsing)
- Testability at wafer level

Front End boards cruciat elementwith PCB ≈ 20 pF

Vincent.Boudry@in2p3.fr
Quelques événement (test en faisceau) dans le Si-W CALICE

Un μ ou un π

Un e- ou un y

2 e-

Un hadron (π)

Vincent.Boudry@in2p3.fr

Un hadron (avec composante EM) La calorimétrie – Bénodet 2018 hadron chargé & h. chargé ou µ

SiW ECAL : Pamela

Satellite mesure de Matière noire

AHCAL & SDHCAL : Fe-Scint & Fe-RPC

38 couches 2 cm acier + tuiles scint de 3mm × 3×3cm²

48 couche de 2cm acier + RPC 1,2mm × 1×1 cm² lecture digitale ou semi-digitale \rightarrow 400 000 canaux

VIncent. ออนฉางเซากะ po. II

Tests en faisceau

Validation technologique

- électronique enfouie
- refroidissement, power-pulsing ...

test des performances de physique pure

Amélioration des Monte-Carlo → PFA

test des algorithmes

Calorimétrie digitale homogène

Vincent.Boudry@in2p3.fr

Calorimètrie (Semi)Digitale

Vincent.Boudry@in2p3.fr

Perpective de la très haute granularité

Imagerie calorimétrique

- \rightarrow le retour aux chambres à bulle ?
 - \rightarrow reconstruction de traces,
 - \rightarrow extrapolation des pertes
 - \rightarrow identification des types d'interaction
 - \rightarrow correction e/h

Vincent.Boudry@in2p3.fr

La calorimétrie - Benouer 20

Avec ou sans neutrons ?

 \Leftrightarrow Capteurs sans ou avec H?

Faut-il privilégier la résolution brute ou faciliter la reconstruction ?

Vincent.Boudry@in2p3.fr

ttbar à 500 GeV \rightarrow Performance Calcul ?

Vincent.Boudry@in2p3.fr

Calorimétrie ultra-granulaire

Calorimètres U.G. 1000× granularité actuelle (CMS, ATLAS)

- Flux bien moindre, mais électronique intégrée

R&D nécessaire :

- Dimensionnement, Mécanique, Wafers, Electronique intégrée, VFE
- Construction & test de Prototypes : SiW ECAL, SDHCAL
- Placement dans le détecteur & Intégration
 Optimisation : Physique vs coût, services (PP, cooling)
 - Costing \rightarrow Ex Si-W ECAL

Particle Flow

CALICE

ILD

- Outils pour la PFA : Simulation Mokka (sim. détaillée,param.)
 Data Format (LCIO), Macro-Information MC, Digitiseurs, Event display, Reconstruction Tools
- Outils de reconstruction PFA :
 - Difficulté : perf en JER = HW \otimes SW

Simulation Physique

Toward SiW-ECAL for ILD

1ère application : Le HGCAL de CMS

But de l'opération

Le défi de la haute luminosité au LHC

– « Préserver la sensibilité au boson de Higgs ⊃ les désintégration rares et explorer les TeV (ex. SUSY) » dans un environnement à fort empilement (140 collision par croissement)

Phase 2
$$\sqrt{s_{pp}} = 13-14 \text{ TeV}$$
 $\int L dt = 3000 \text{ fb}^{-1}$
Run IV **2025**-203x HL-LHC

 $LS3 \equiv phase 2 upgrades$

• Operate at 5 x 10^{34} cm⁻² s⁻¹ with 25 ns beam crossings (<PU> ~140)

Les HGCAL (bouchons avant)

Calorimétrie à échantillonage 3D dense et hautement granulaire inspiré de CALICE et adapté aux flux du HL-LHC.

Utiliser la topologie des dépôts et le capacités de tracking de la reconstruction PFA pour le trigger et l'analyse

HGCAL

100

50

Vincent. Duur yem 200.

La calorimétrie – Bénodet 2018

 10^{15}

1e+13 🗓

1e+12

1e+11

1e+10

5

O

randeur

88/96

Epi 50µm (3.5 ke-)

Calibration with MIPs \rightarrow need good S/N for MIPs after 3ab⁻¹

10¹⁶

The HGCAL Cells Geometry

The HGCAL Readout Modules (prelim)

Vincent.Boudry@in2p3.fr

Calorimétrie « 5D »

Vincent.Boudry@in2p3.fr

Séparation Software des différentes contributions

Réelle reconstruction « 5D »

- 4D *x*,*y*,*z*, *E* + Temps

Mesure en temps et Time-over-Threshold (TOT)

but : 100ps / plan,
 ~30 ps / gerbe

Résumé

Dans les gerbes EM sont composées de photons et électron/positrons

- Seuls les e± déposent leur énergie en ionisant (la plupart à basse énergie)
- Elles sont de forme bien définie (un cœur + 1 halo) mesuré en X₀ et R_{molière} (1 X₀ ~ 1 cm)
- Elles sont **compactes** (99% dans 30 X_0 et à 95% dans 2 R_M)

Les gerbes hadroniques sont constitués de hadrons (p,n, π,...), fragments de fission

- Elles sont de forme irrégulière, et de contenu très fluctuant
- Elles sont contenues à 95% dans ~8λ_{int} en longeur et 1,5 λ_{int} latéralement
 1 λ_{int} ~ 30 cm ~ 30 X₀.
- Une fraction $f_{EM} \sim 30\%$ –60 % (f(E)) de leur énergie est déposée sous forme de gerbes EM

Les calorimètres estiment l'énergie par comptage de traces

- Linéaires
- Résolution : $\delta E/E = \alpha / \sqrt{E \oplus \beta/E \oplus \gamma}$
 - $\gamma \leftrightarrow$ inhomogénéités : domine à haute énergie
 - 3–20%/√E ⊕ 1% pour les ECAL ; 50–100%/√E⊕3-5% pour les HCAL

Résumé (suite)

Il existe 2 type de calorimètres :

- «homogènes» : meilleures résolutions, segmentation grossière, mécaniquement limités, prix élevé
- à échantillonnage :

moins bonne résolution, flexibilité mécanique & de segmentation

Il existe de multiple technique de détections :

- Collection de lumière : Scintillation et/ou Čerenkov + détecteur de photons
- Collection de charges : Semi-conducteurs, liquides nobles, amplification gazeuse

Amélioration matérielles des performances :

- Compensation : compromis & doigté
- Double lecture \Rightarrow correction de $\rm f_{\rm EM}$

Amélioration logicielle (avec Segmentation)

- Clustering ⇒ réduction du bruit ; Identification de particules, détermination de la direction
- Améliorations SW
 - Pondération & Weighting
 - Particle Flow : résolution \rightarrow segmentation

Vincent.Boudry@in2p3.fr

Remerciements & Emprunts

Précédents cours de cette école

- Isabelle Wingerter-Seez (Oléron 2009)
- Marzio Nessi (XI ICFA SCHOOL ON INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS)

Cours à EDIT-2011 (école instrumentation du CERN)

- R. Wigmans, D. Fournier, F. Sefkow. M, Diemoz, ...
- Présentations à CALOR'2010, CHEF'2013

Collègues ILC et CALICE

Henri Videau, Jean-Claude Brient, Riccardo Fabbri, Frank Simon, Manqi Ruan, G. Garillot
 Collègues CMS

- Yves Slrois, Ch. Ochando, D. Barney

Cours de L. Marleau

Extra

Vincent.Boudry@in2p3.fr

Contrainte pour les détecteurs (ILD / SiD pour l'ILC)

Prédicat « de base »: sep of H \rightarrow WW/ZZ \rightarrow 4j

 $\sigma_Z/M_Z \sim = \sigma_W/M_W \sim = 2.7\% \oplus 2.75 \sigma_{sep}$

 $\Rightarrow \sigma_{\rm E}/{\rm E}$ (jets) < 3.8%

 $-60\%/\sqrt{E} \rightarrow 30\%/\sqrt{E} \Leftrightarrow +\sim40\% L$

Large TPC

- Precision and low X0 budget
- Pattern recognition

Précision par les détecteurs : vertex (Pixels) & Calo SET (strips)

- Étiquetage des hadrons de b et c

Large acceptance

Fwd Calorimetry:

- lumi, veto, beam monitoring

Vincent.Boudry@in2p3.fr

Le paradigme du PFA • Jets = 65% chargés + 25% γ + 10% h^o Traces ECAL HCAL

• TPC $\delta p/p \sim 5 \cdot 10^{-5}$; VTX $\sigma_{x,y,z} \sim 10 \ \mu m$

H. Videau and J. C. Brient, "Calorimetry optimised for jets," in Proc. 10th International Conference on Calorimetry in High Energy Physics (CALOR 2002), Pasadena, California. March, 2002.