Direct WIMP search with DarkSide

Pascal Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3 – Aix-Marseille Université

On Behalf of the DarkSide IN2P3 team

- 1- Scientific context
- 2- Bright sides of DarkSide
- 3- Status of DarkSide-20k
- 4- IN2P3 contributions and resources
- 5- Conclusions

Status of WIMP search

Spin-independent (SI) WIMP-nucleon interaction

Xe/LAr dual phase TPCs lead the WIMP search from 1 GeV \rightarrow 10 TeV

Status WIMP search with LAr

LAr Technology is scalable and mature

- One world-wide collaboration (GADMC): 300 people
- Funding: Italy (INFN), United States (DOE, NSF), Canada (CFI), UK (STFC)
- DarkSide-20k profit from best G1 and G2 technologies

Veto

□ DS-20k can be optimized to be ER background free (at high WIMP mass)

Combining two signals: prompt scintillation (S1) and delayed ionization (S2)

❑ DS-20k: ER background removal strategy

ER background < 0.1 evt in 10 years of running (200 ton.year)

□ DS-20k can be optimized to be NR background free (at high WIMP mass)

Combining two signals: prompt scintillation (S1) and delayed ionization (S2)

CS IN2P3 (23-Oct 2023)

Direct WIMP Search with DarkSide

DS-20k: NR background removal strategy

Mainly Photo detectors electronics and cryostat

DS-20k: overall background

- DS 50 results validates the strategy with 0.05 ton.year PRD 98 (2018) 102206
- Confirmed by DEAP3600 with 2.1 ton.year PRD 100 (2019) 022004

Expect ~0.1 bkg* event in 10 years of running (200 ton.year)

* Note: expect ~3 irreducible evts from v NR

Very good sensitivity at low and high mass WIMP

Low Mass WIMP sensitivity

DS-20k and Xenon experiments complementary

APPEC 2017 recommendation : "strategy aimed at realizing worldwide at least one ultimate Dark Matter detector based on xenon (~50 tons) and one based on argon (~300 tons), as advocated by DARWIN and Argo."

Status of DS-20k

Construction started at LNGS

Inner detector design (TPC + veto)

- Compact and simple
 - Only one passive material to lower the background : 11 tons of acrylic doped with Gd (TPC walls, SiPM support structure) coated with Clevios for HV (TPC walls, anode+cathode plates)
 - ✓ Add reflector foils (3M ESR) and TPB (128 nm → 420 nm)

Inner detector design (TPC + veto)

- Compact and simple
 - ✓ Only one passive material: 11 tons of acrylic
 - ✓ TPC SS vessel gap used for the veto: instrumented with SiPMs

CS IN2P3 (23-Oct 2023)

Inner detector validation

• with a mock-up (1/5) and final cryogenic system at LNGS in 2024

Inner detector will be integrated directly in protoDUNE cryostat

Inner detector integration should be completed by mid 2026

Photo detectors

- Custom cryogenic SiPMs developed in collaboration with FBK (PDE >40%, SNR>8 @ 87K, Low dark count rate < 0.1 Hz/mm², Time resolution < 30 ns, Gain >10⁶)
- Grouped in Photo detector unit (PDU) with ~400 SiPMs read by 4 channels

 Outer Veto : 8 arrays lowered from the proto-DUNE flanges (0.5% cov., ~1 pe/MeV) >24 PDU, ~1 m², 100 ch.

Photo detector production

- **270 000** SiPMs produced at Lfoundry in **2022**
- TPC: started SiPM packaging inc. electronics at LNGS
- Veto: similar sites ready in UK / Poland

Photo detectors should be ready by 2025

Underground Argon (UAr) extraction and purification

JINST 15 (2020) P02024 **DART** (Spain) Measure ³⁹Ar depletion factor Boat 6-12 ton/trip 2.5 month/trip **URANIA (USA)** Underground Ar extracted from a CO2 well in ARIA (Italy) exploitation Cryogenic distillation column 0.25 ton/day during 1.3 yr 2 runs of 60 tons 2- Extraction plant available, to Mine shaft be assembled in spring 24

Demonstrator tested in 2020 EPJC 81 (2021) 359 ⁴⁰Ar, ³⁸Ar, ³⁶Ar separated EPJC 83 (2023) 453

cleaned

UAr extraction should start early 2025

CS IN2P3 (23-Oct 2023)

Aug. 2023 2022 2023 2024 2025 2026 2027 н Hall C Proto-DUNE cryostat + cryogenics installation ready SS vessel production Cryostat + vessel ready C NOA clean н Photo Detector Unit production and test room ready 🗡 n TPC Optical planes assembly n TPC Acrylic 🔥 **TPC** assembly @ LNGS d e Z Detector ready t URANIA **URANIA** Site D 120 t UAr extraction Plant ready contract signed S **ARIA** platforms ARIA 2 UAr purification in mine shaft ready V 0 k DS-20k start

Largest TPC ever built for Dark Matter searches Next 3 years crucial. First data expected for 2027

DarkSide IN2P3

History

- 2012 : APC joined
- 2014 : LPNHE joined
- 2016 : DarkSide IN2P<u>3 Master Project</u>
- 2018 : CS-IN2P3
 DarkSide est basé sur une technologie différente, compétitive également, et se positionne sur un réel potentiel de découverte.

CS-IN2P3	Aujourd'hui, parmi les projets de détection directe de matière noire présentés, seuls XENON et DarkSide-50 sont opérationnels et au niveau de la rude concurrence
28.10.2018	internationale, dans des domaines de masse différents. La participation à ces projets est à soutenir et à renforcer en développant les équipes actuelles.

2020 : CPPM joined

- 2023 : Fiche Projet accepted. First IN2P3 budget
- 2024 : ANR FIDAR accepted (350 k€, 2 PhD students)

DS IN2P3: LAr model (1/5)

DarkSide MC + define the LAr response model

- Model validated with data
 - ✓ Excellent Data-MC agreement with DS-50
 - ✓ Measurement of ³⁹Ar suppression factor in UAr (1400±200)

APC, LPNHE

PRD **93** (2016) 081101 JINST **12** (2017) P10015

DS IN2P3: LAr model (2/5)

ARIS: test the LAr response model

- Use neutron beam from ALTO facility at IPNO
- Most accurate measurement of the NR quenching effect (L_{eff})
 - \checkmark 2-3 more precise than the other experiments
 - ✓ first measurement below 10 keV

APC, LPNHE, UCLA, Princeton, Napoli, LNGS, UC Davis

PRD **97** (2018) 112005 JINST **16** (2021) P11026

DS IN2P3: LAr model (3/5)

Improve the LAr response model

- Special effort < 10 keV to measure ionization yield</p>
 - ✓ Using **DS-50 data**: ³⁷Ar, ³⁹Ar, calibration with AmC, AmBe
 - ✓ Ionization yield (Q) generic model with 2 free parameters:
 - $Q \sim \ln(1+aE)/bE, Q_{E \rightarrow 0} = a/b$

Ionization Yield Model for ER and NR

<u>APC</u>, CPPM, LPNHE

PRD 104 (2021) 082005

DS IN2P3: LAr model (4/5)

Improve the LAr response model

- Special effort < 10 keV to measure ionization yield</p>
 - ✓ Using **DS-50 data**: ³⁷Ar, ³⁹Ar, calibration with AmC, AmBe
 - ✓ At very low energy all primary electrons visible :
 - Q= (1-r) Ni/E, $r_{E \rightarrow 0}$ = e-ion recombination ~ 0

60 DS50 37Ar L1-shell Fit of DS50 AmC+AmBe, ARIS, SCENE 12 Fit of DS50 AmC+AmBe 2021 DS50 39Ar Fit of ARIS and SCENE 2018 50 10 lustom model (*Assuming Ziegler quenching) homas-Imel [e^{_}/keV_{nr}] keVer] <u>'</u> 30 5 20³ QNR (a_{ER}, b_{ER}) fitted on DS-50 data ARIS Model: PR A36 (1987) 614 SCENE 10 Joshi et al. 15 0.5 10 10 20 50 100 250 0.1 Electronic Recoil Energy [keVer] Energy [keVnr] 430 eV (N_o=3) 60 eV (N_o=3)

Ionization Yield Model for ER and NR

Measurement of Ionization Yield at Iow E central for Iow mass WIMP search

APC, CPPM, LPNHE

PRD 104 (2021) 082005

DS IN2P3: LAr model (5/5)

Improve the LAr response model

- Special effort < O(1) keV to measure NR signal fluctuation</p>
 - ✓ No theory prediction exists …
 - ✓ Take data with 3 days of beam at ALTO (2024)

APC, CPPM, VT, UCDavis, GSSI, Princeton, Astrocent

Strong IN2P3 leadership (under APC responsability)

DS IN2P3: Reconstruction

DS-20k signal processing and event reconstruction

APC, CPPM

- Fast online signal processing (inc. SiPM elec. description adjusted with proto data)
 - ✓ Matched filter + custom hit finder applied on time slot with activity
 - ✓ Emulate the DAQ (inc. pile-up) → meet data output rate (< 60 MB/s)</p>

Offline pulse reconstruction and event builder

✓ S1 and S2 identification and association, 3D position, energy reconstruction... at work

Strong IN2P3 contribution (APC responsible for the Offline)

DS IN2P3: Calibration (1/5)

DS-20k guide tube calibration system

Two complementary approaches : injected and external sources

DS IN2P3: Calibration (2/5)

DS-20k guide tube calibration system

18 kBa $\frac{57}{Co}$ source (122 keV/ y) at the TPC side

Designing and building the TPC calibration system

23

8

25

10

 Simulation studies: established a first tentative calibration program of O(1) month, studied impact on veto light yield, bkg induced by calibration tubes, ...

							101-10	
	d III	57.0	133 D	22 NT	137.0	600	tate [s ⁻¹	Single scatter
Ses	Energy (keV)	122	356	511	662	1173	X	
nr	Activity (side) (kBq)	18	1.9	0.36	2.2	0.36		
ō	Activity (bottom) (kBq)	100	5.0	0.67	4.6	0.6		
S	Time per position (side) (h)	2.5e-2	1.4	2.1	3.1	7.3		
R	Time per position (bottom) (h)	3.4e-2	2.2	2.5	4.7	9.1		
ш	Duration of calibration (h)	3.84	18.72	23.52	36	74.4		
	Source		AmBe	AmC				Single scatter pile-up bkg
es	Initial energy (MeV)	[(0.2, 12]	[2, 7]				
2	Activity (side) (kBq)		0.14	0.15				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
no	Activity (bottom) (kBq)		0.18	0.18				Energy [keV]
S	Time per position (side) (h	1)	19	28				

Time per position (bottom) (h)

Duration of calibration (day)

N N N

DS IN2P3: Calibration (3/5)

DS-20k guide tube calibration system

<u>CPPM</u>, **QU**, **LNGS**

- Designing and building the TPC calibration system
 - ✓ Simulation studies
 - Conceived the guide tube system (now included in the DS-20k CAD)

DS IN2P3: Calibration (4/5)

DS-20k guide tube calibration system

- Designing and building the TPC calibration system
 - Simulation studies
 - Conceived the guide tube system
 - Realized 3 Mock-Ups (1 tube, 2 motor system) to validate the concept

Scale 1 MU at warm (CPPM, 2023)

CPPM, QU

MU at LN2 (CPPM, 3x8 hours, 2022-23)

CS IN2P3 (23-Oct 2023)

MU at LN2, LAr (CERN, 1 month, 2023)

Direct WIMP Search with DarkSide

DS IN2P3: Calibration (5/5)

❑ DS-20k guide tube calibration system

- Designing and building the TPC calibration system
 - ✓ Simulation studies
 - Conceived the guide tube system
 - ✓ Realized 3 Mock-Ups (1 tube, 2 motor system) to validate the concept

	LAr	LN2	LN2	LAr		
	DS-20k	MU_CS	MU_CL	MU_CL		
		Requireme	quirements / Performance			
Speed of the source (cm/s)	> 1	3	1		2	
Position accuracy (cm)	± 1	±1	1		±1	
Tension (N)	< 150	25-40	15-30		60-90	
Ice formation (block)	No	No	Yes but	No	NA	
			sublimated		NA	
Total distance for all sources (m)	160 (/yr)	> 100	800	100	> 100	
Total nb of back&forth / tube	4 (/yr)	44	280	35	>6	

FDR passed successfully in Sep. 2023

(CPPM responsible of the calibration system)

DS IN2P3: Radon

Reduction of radon contamination in DS-20k [210Pb, 210Po]

CPPM, JU

- Radon progeny plates-out on detector material surfaces exposed to air \rightarrow n bkg
 - ✓ Limit the exposure time by using hermetic plastic bags
- Radio purity assay program developed
 - ✓ Plateau Radon at CPPM participates to this effort with its radonisation chamber
 - ✓ Test and validate special plastic bags use for transport and storage

IN2P3: DS-50 physics (1/5)

❑ Low mass (<10 GeV) WIMP search</p>

- First analysis (S2-only) in 2018
 - Very good signal / background separation at low N_e
 - ✓ Good background description for $N_e \ge 7$
 - Break the paradigm that only solid-state techno. is sensitive to this range

DarkSide-50 world leading in 1-5 GeV WIMP in 2018 (IN2P3 leading the effort)

APC, Princeton, USP

PRL **121** (2018) 081307 PRL **121** (2018) 111303

IN2P3: DS-50 physics (2/5)

□ Low mass (<10 GeV) WIMP search

- Re-analysed DS-50 data
 - Various improvements (enlarging Ne range, improve selection + syst.)
 - ✓ Use improved ionisation yield models (SI.22-23)
 - ✓ Very good description of the bkg down to Ne≥4

CS IN2P3 (23-Oct 2023)

APC, CPPM, GSSI

PRD 107 (2023) 063001

IN2P3: DS-50 physics (3/5)

Low mass (<10 GeV) WIMP search</p>

Re-analysed DS-50 data

Improve separation between NR signal and ER background

✓ World best limit 1.2-3.6 GeV (x10 gain wrt 2018)

DarkSide-50 world leading in 1-4 GeV WIMP in 2023 (IN2P3 leading the effort)

<u>APC</u>, CPPM, GSSI PRD 107 (2023) 063001

IN2P3: DS-50 physics (4/5)

❑ Low mass (<10 GeV) WIMP search</p>

WIMP scattering could come with extra ionization (few Ne)

Interpretation accounting for a possible ER Migdal effect

Add extra sensitivity to lower mass WIMP

<u>APC</u>, CPPM, UCDavis, Romal, GSSI, Astrocent

PRL 130 (2023) 101001

Assuming ER Migdal effect, DS-50 world leading down to 40 MeV WIMP

IN2P3: DS-50 physics (5/5)

□ (very) low mass Dark Matter search

- Can create an ionization signal (few Ne) ...
- ... to which this analysis can be sensitive

<u>APC</u>, CPPM, UCDavis, Romal, GSSI, Astrocent

PRL 130 (2023) 101002

DS-50 also sensitive to galactic ALP, DP, sterile v in the (sub-)keV regime

Light Dark Matter in back-up

IN2P3: DS-20k physics (1/3)

□ Sensitivity to low mass WIMP (<10 GeV)

- Largely inspired by DS50 analysis
 - ✓ Strong reduction of TPC external background \rightarrow ³⁹Ar "only" bkg
 - ✓ Fully benefit from the LAr volume increase (x1000)
 - ✓ Improve also sensitivity to ALP, DP, Sterile v, LDM
- Impact from the galactic halo assumptions
 - ✓ Dedicated studies with LAM (INSU), CPT (INP) and LUPM (IN2P3)

CS IN2P3 (23-Oct 2023)

Direct WIMP Search with DarkSide

<u>CPPM</u>, APC

Paper in preparation

IN2P3: DS-20k physics (2/3)

Sensitivity to Supernovae v in the milky way

APC, Cagliari

JCAP 03 (2021) 043

- Benefit also from low mass WIMP analysis
 - ✓ $E_{NR} \approx$ 1-10 keV: coherent elastic v-nucleus scattering
 - ✓ Insensitive to v flavor and higher cross-section wrt water Cerenkov, scintillator O(10) MeV

IN2P3: DS-20k physics (3/3)

DS IN2P3: Physics Summary

Dark Matter (since 2018 CS)

IN2P3 strong implication in physics

DarkSide IN2P3 responsabilities

Responsibilities in DarkSide

0	Name	Date	Task
	P. Barrillon	2023-	Technical coordinator of DarkSide-France
	D. Franco	2016-	L1 manager of "Science, simulation and computing"
		2016-	Member of the Institute, Executive and Management <u>boards</u>
		2016-20	Coordinator of DarkSide-France, National contact physicist
	F. Hubaut	2020-	Member of the Institute Board
	E. Le Guirriec	2020-	Czar of the group at CC-IN2P3
	P. Pralavorio	2021-23	Member of the Editorial Board
		2023-25	Member of the Financial and Advisory Board
		2023-	Coordinator of DarkSide-France, National contact physicist
ľ	I. Wingerter-Seez*	2021-22	Member of the Review Office, Executive
Retired in 2023 +			and Management boards
		2021-22	Coordinator of DarkSide-France, National contact physicist

Implications in many Working Packages (WP)

- Coordination the WP activity of GDR DUPHY
 - ✓ WP2 (Low radioactivity techniques)
 - ✓ WP3 (Detection of rare-events)
 - ✓ WP4 (Simulation & Analysis)

Coordination of ECFA Noble Liquid WP (3.2) in DRD2 Liquid detector

DarkSide IN2P3 HR

Phycisists

Nom des personnes	Statut	2021	2022	2023	2024	2025	2026
APC		230%	350%	300%	335%	335%	310%
M. D. Franco	DR2	100%	100%	100%	100%	100%	100%
Mme A. Tonazzo	Prof.	10%	10%	10%	10%	10%	10%
M. T. Hessel	PhD	25%	100%	100%	75%		
M. T. Hugues (cot. ASTROCENT)	PhD	25%	50%	40%			
Mme E. Nikoloudaki	PhD			25%	100%	100%	75%
Mme J. Rode (cot. LPNHE)	PhD	50%	40%				
Thèse ANR	PhD			-	25%	100%	100%
Stagiaires	M2	20%	50%	25%	25%	25%	25%
СРРМ		295%	345%	295%	345%	345%	345%
M. J. Busto	Prof.	20%	20%	20%	20%	20%	20%
M. Y. Coadou	CR			50%	100%	100%	100%
M. F. Hubaut	DR1	50%	50%	50%	50%	50%	50%
M. P. Pralavorio	DR2	50%	50%	50%	50%	50%	50%
Mme I. Wingerter-Seez	DRCE	100%	100%				
Mme M. van Uffelen	PhD	25%	100%	100%	75%		
Thèse ANR	PhD				25%	100%	100%
Stagiaires	M2	50%	25%	25%	25%	25%	25%
Laboratoire LPNHE		70%	55%	0%	0%	0%	0%
M. C. Giganti	CR	20%	15%	0%	0%		
Mme J. Rode (cot. APC)	PhD	50%	40%				
TOTAL (FTE)		5.95	7.50	5.95	6.80	6.80	6.55
СРРМ		80%	80%	90%	90%	90%	90%
M. Pierre Barrillon	IR	20%	20%	20%	20%	20%	20%
M. Emmanuel Le Guirriec	IR	40%	40%	50%	50%	50%	50%
M. Jérôme Royon	AI	20%	20%	20%	20%	20%	20%
LPNHE	4	20%	0%	0%	0%	0%	0%
M. Olivier Dadoun	IR	20%	0%	0%	0%		
TOTAL (FTE)		1.00	0.80	0.90	0.90	0.90	0.9

in 2023

- 2 labs (APC, CPPM) ✓ LPNHE stopped in 2023
- 9 permanent staff
 - ✓ 2 professors
 - \checkmark 4 researchers
 - \checkmark 3 engineers
- 3 PhD students / year
- 2 internships of master 1 or 2 / year at APC, CPPM or CERN

7-8 FTE / year since 2020 (3 Phys. + 3 PhD + 1 Eng.)

→ Request a postdoc for 2024

5% of DS-20k

DarkSide IN2P3 Funding

IN2P3									
Туре	Financements	2021	2022	2023	2024	2025	2026		
Equipements		- €	- €	9,000 €	9,000 €	- €	- €		
Calibration mock-up @ CERN	IN2P3	- €	- €	5,000 €	3,000 €		- €		
Tubes DS20k	IN2P3		- €	4,000 €	6,000€				
Fonctionnement		-€	-€	-€	8,000 €	8,000 €	8,000 €		
MoU - Fond Commun Constr.	IN2P3				8,000 €	8,000 €	8,000 €		
Missions		1,750 €	1,750€	14,750 €	26,000 €	31,000 €	28,000 €		
Collaboration (CPPM)	IN2P3	- €	- €	4,000 €	10,000 €	10,000€	10,000 €		
Opération (CPPM)	IN2P3			4,000 €	10,000 €	15,000 €	10,000 €		
Collaboration (APC)	IN2P3	Contractory of the	a company	5,000 €	6,000€	6,000€	8,000 €		
COPIN-IN2P3	IN2P3	1,750€	1,750 €	1,750€					
TOTAL		1,750€	1,750€	23,750€	43,000€	39,000€	36,000 €		

Others

	I						
Equipements		11,100 €	10,000€	25,000€	5,000€	2,000 €	2,000 €
Neutron detector & RD	Labex APC			15,000€			
Calibration mockup	RP CPPM	1,000€					
Calibration mockup	IPhU@AMU	10,100€	5,000€	5,000€			
Calibration mockup	MITI		5,000€	5,000€			
Calibration DS20k + info	ANR FIDAR				5,000 €	2,000 €	2,000 €
Missions		1,700 €	15,000 €	16,000 €	7,000 €	8,000 €	25,000 €
Collaboration (APC)	Labex APC		5,000 €	5,000 €			
Collaboration (CPPM)	iPhU@AMU+MITI	700 €	9,000€	11,000 €	2,000 €		
Collaboration (LPNHE)	RP LPNHE	1,000 €	1,000 €				
Collaboration + opération	ANR FIDAR				5,000 €	8,000 €	25,000 €
Personnels		14,300 €	43,000 €	44,500 €	58,000 €	84,000 €	84,000 €
Thèse Marie van Uffelen	iPhU@AMU	10,000 €	40,000 €	40,000 €	30,000 €		
2 Thèses	ANR FIDAR				28,000 €	84,000 €	84,000 €
Visiteurs étrangers	IPhU@AMU	2,300 €	2,100 €	4,500 €			
Stages	IPhU@AMU	2,000 €					
Stages	RP CPPM		900 €				
TOTAL		27,100€	68,000 €	85,500€	70,000 €	94,000 €	111,000 €

Funded by IN2P3 since 2023

→ Still under discussion

0.2% of DS-20k total budget (110 M€ consolidated) provided by IN2P3

- IPHU (2021-24)*: 1 PhD + 30 k€
- Labex APC (2022-): 25 k€
- CNRS-MITI (2022-23)**: 20 k€
- ANR (2024-27) : 2 PhDs + 58 k€

* with LAM (INSU), LUPM (IN2P3) and CPT (INP) ** with LAM (INSU) and LUPM (IN2P3)

Conclusions

DS-20k: next generation of LAr dual phase TPC

Start installation @ LNGS in Sep. 2022. First physics run foreseen in 2027

□ IN2P3 coherent program to prepare first physics with DS-20k

- Leadership in DS-50 physics analysis and DS-20k sensitivity
- Simulation tools for calibration strategy and signal/evt reconstruction
- Calibration data to validate in-situ reconstruction and first physics strategy

CS IN2P3 (23-Oct 2023)

WIMP Signal

GADMC

A union of 4 collaborations, with over 400 scientists, spanning over 100 institutions across 13 countries

DS-20k Calibration

DS-20k Calibration

	LAr	LN2	LN2 L	_Ar	
	DS-20k	MU_CS	MU_CL	MU_CL	
		Requireme	ents / Perform	ance	
Speed of the source (cm/s)	> 1	3	1		2
Position accuracy (cm)	± 1	±1	1		±1
Tension (N)	< 150	25-40	15 - 30		60-90
Ice formation (block)	No	No	Yes but	No	NA
			sublimated		NA
Total distance for all sources (m)	160 (/yr)	> 100	800	100	> 100
Total nb of back&forth / tube	4 (/yr)	44	280	35	>6

Light Dark Matter

Low mass (<10 GeV) WIMP search</p>

- Re-analysed DS-50 data, published in 2023
 - ✓ Improve analysis → describe bkg Ne \geq 4
 - Interpretations with light dark matter

<u>APC</u>, CPPM, UCDavis, Romal, GSSI, Astrocent

PRL 130 (2023) 101002

DarkSide-50 world leading in 20-50 (100-1000) MeV for heavy (light) X

New Mediator X $(\chi + e \rightarrow X \rightarrow \chi + e)$

Solar Neutrino

Sensitivity studies

<u>APC</u>

JCAP 08 (2016) 017

Solar neutrinos via elastic scattering

✓ Need >1 kton.year exposure to be competitive with Bx

✓ E > 600 keV (³⁹Ar): 7Be (2%), pep (9%), CNO (15%)

