The PRISMA spectrometer
 A brief introduction

F. Galtarossa, INFN Padova franco.galtarossa@pd.infn.it

- What kind of reactions can we study with PRISMA?
- Characteristics of the PRISMA spectrometer
- The different PRISMA detectors
- Main steps of PRISMA analysis
- PRISMA ancillaries (except for AGATA)
- Some recent (small) upgrades

MNT reactions at near-barrier energies

The AGATA-PRISMA commissioning

Multinucleon transfer reaction
${ }^{32} \mathrm{~S}+{ }^{124} \mathrm{Sn}$ @ 160 MeV

Mass identification

Event-by-event Doppler correction
E. Pilotto, Master Thesis, Università di Padova (2022) F. Angelini, Master Thesis, Università di Padova (2022)

Spectroscopy or
lifetime
measurements

Use the Q value to control n evaporation

Trajectory reconstruction

A physical event is composed of:

- Entrance position (x, y) -> (θ, ϕ)

MCP detector

- Position at the focal plane $\left(x^{\prime}, y^{\prime}\right)$ MWPPAC detector
- Time-of-Flight (ToF) Δt MCP-MWPPAC Ionization Chamber

Solid angle $\Delta \Omega$	$\sim 80 \mathrm{msr}$
Angular acceptances	$\Delta \theta \approx \pm 6^{\circ} ; \Delta \varphi \approx \pm 11^{\circ}$
Energy acceptance	$\pm 20 \%$
Momentum acceptance	$\pm 10 \%$
Mass resolution	$\Delta \mathrm{A} / \mathrm{A} \approx 1 / 300$
Nuclear charge resolution	$\Delta \mathrm{Z} / \mathrm{Z} \approx 1 / 60$
Maximum Bp	$\sim 1.2 \mathrm{Tm}$
Dispersion	$\Delta \mathrm{p} / \mathrm{p} \approx 4 \mathrm{~cm} / \%$
Distance target-FPD	$\sim 6.5 \mathrm{~m}$
IC Energy resolution	$\sim 1 \%$
MCP and MWPPAC x,y position	$\sim 1 \mathrm{~mm}$
resolutions	$\sim 350 \mathrm{ps}$
MCP and MWPPAC timing	$\sim 3 \mathrm{kHz}$
resolutions	
Maximum rate at the FP	$20^{\circ}<\theta<88^{\circ}$
$\theta_{\text {PRISMA }}$ (AGATA standard position)	
$\theta_{\text {PRISMA }}$ (AGATA close position)	

Trajectory reconstruction

X, Y entrance position -> Mass resolution, Q-value resolution, Doppler correction ToF and position resolution -> Mass resolution, Doppler correction ToF offset determination -> Doppler correction
Z resolution -> Atomic number identification

PRISMA detectors

PRISMA MCP

- Active area: $8 \times 10 \mathrm{~cm}^{2}$ ($\Omega=80 \mathrm{msr}$)
-> full coverage of PRISMA spectrometer at $\mathrm{d}=25 \mathrm{~cm}$ from target
- Timing resolution for TOF ~ 350 ps
- C foil: $20 \mu \mathrm{~g} / \mathrm{cm}^{2}$ thick (100 nm !)
- $\mathrm{E}_{\mathrm{acc}}=30-40 \mathrm{kV} / \mathrm{m}$
- Parallel magnetic field: B ~ 120 G to limit the spread of electron cloud preserving particle position information
- 3 signals: X, Y, time

For the analysis: only 2 signals for the MCP (X, Y)

PRISMA MCP

Raw MCP matrix

PRISMA MWPPAC

Focal Plane Detector

S. Beghini et al. NIM A551 (2005) 364

- Active area: $100 \mathrm{~cm} \times 13 \mathrm{~cm}$
- 3 electrode structure: central cathode +2 anode wire planes (X and Y) $\mathrm{d}_{\mathrm{A}-\mathrm{C}}=2.4 \mathrm{~mm}$
- cathode: 3300 wires of $20 \mu \mathrm{~m}$ gold-plated tungsten -0.3 mm spacing -

10 independent sections of $10 \times 13 \mathrm{~cm}^{2}$ negative high voltage: $500-600 \mathrm{~V}$

- X plane: 10 sections of 100 wires each, 1 mm spacing
- Y plane: common to all cathode, 130 wires, 1 m long, 1 mm steps
- spatial resolution: $\Delta X \sim 1 \mathrm{~mm}, \Delta Y \sim 2 \mathrm{~mm}$ (FWHM)
- stop signal for TOF
- 10×3 signals $\left(X_{\text {left }}, X_{\text {right }}\right.$, timing $) 2$ signals $\left(Y_{\text {up }}, Y_{\text {down }}\right)$
- Filling gas: $\mathrm{C}_{4} \mathrm{H}_{10}$ Pressure: 7 mbar

MWPC (Multi-Wire Proportional Chamber

PRISMA MWPPAC

For the analysis: 42 signals for the PPAC!

Fabio

PRISMA MWPPAC

TAC's for ToF determination

CFD's for timing signals from the cathode

PRISMA IC

PRISMA IC

Pre-amplifiers on top of the IC

Nuclear charge identification

Mass resofution obtained after trajectory reconstruction

the obtained mass resolutions for the different ions are close to the values expected taking into account detector resolutions (positions and timing)

Cross section sensitivity

Analysis steps

A physical event is composed by the parameters:

- position at the entrance
\mathbf{x}, y
- position at the focal plane
- time of flight X, Y
- energy TOF
$\Delta \mathrm{E}, \mathrm{E}$

Courtesy of
T. Mijatović

Analysis steps

1. Check thresholds and 2D gates (MCP, MWPPAC)
2. Set Z gates in the $\mathrm{E}-\mathrm{DE}$ matrix
3. Set the ToF offset and align the MWPPAC sections in ToF
4. Set Q gates in the $E-R \beta$ matrix
5. Calibrate the A / Q (assign a mass to each A / Q)
6. Apply the calibration to sum the different Q and obtain the mass spectra
7. Check with the gamma Doppler correction how well you set the ToF
8. Repeat from point 3 an indefinite number of times
9. Further processing to improve resolutions -> Expert mode!

Structure of PRISMA data

Array called theMap[240]:

- 0-59 for MCP (but only 3 used, 0: X; 1: Y)
- 60-119 for MWPPAC (all used but the yup and ydown are repeated)

0: Yup; 1: Ydown; 2: Xleft; 3: Xright; 4: Cathode; 5:ToF

- 120-179 for IC (40 used -> 10 pads $\times 4$ sections)
- 180-239 for IC Sides (8 used)

These numbers can be seen in the Look-Up Table (LUT).

PRISMA + ancillaries: second arm

from transfer induced fission or
quasi fission
F. Galtarossa et al., Phys. Rev. C97(2018)054606

PRISMA + ancillaries: DANTE

via a kinematic coincidence PRISMA-DANTE one could extract the yield of mass integrated actinide nuclei, which turns out to be in good agreement with that derived from X-ray analysis
A.Vogt et al., PRC92(2015)024619

TAC drift time spectrum taken
in tests with ${ }^{5} \mathrm{Ni} @ 225 \mathrm{MeV}$
start: MWPPAC cathode
stop: IC anode

Preliminary test performed

The time difference between the MWPPAC cathode and the IC anode essentially reflects the electrons drift time inside the chamber ($\sim 1-5 \mu \mathrm{~s}$) -> new TDC's with larger range

Information on the Y coordinate should help better control the ion trajectories

ToF efficiency: ions for which the ToF is >0 / number of ions in a given Z gate.
Position efficiency: ions with an assigned mass number / number of ions in a given Z gate

With the actual MWPPAC you may find low efficiency for some sections, so "strange" structures in the focal plane position spectrum

X_{fp} position spectra

${ }^{197} \mathrm{Au}+{ }^{130} \mathrm{Te} @ 1070 \mathrm{MeV}$

${ }^{32} \mathrm{~S}+{ }^{124} \mathrm{Sn} @ 160 \mathrm{MeV}$

Not always clear whether it is the effect of the spacing of the different charge states (only 2-3 charge states on the fp for light ions) or an inefficiency of the section

Lol’s for PRISMA (1t AGATA pre-PAC)

27 Lol's plan to use PRISMA
21 neutron-rich, 5 neutron-deficient 18 direct kinematics, 9 inverse kinematics

And now some insights
into the analysis with Elia

