The PRISMA spectrometer A brief introduction

> F. Galtarossa, INFN Padova franco.galtarossa@pd.infn.it

Outline

- What kind of reactions can we study with PRISMA?
- Characteristics of the PRISMA spectrometer
- The different PRISMA detectors
- Main steps of PRISMA analysis
- PRISMA ancillaries (except for AGATA)
- Some recent (small) upgrades

MNT reactions at near-barrier energies

Reaction products close to the reactants

Increasing energy loss components as more nucleons are transferred

K. E. Rehm et al., Phys. Rev. C 37 (1988) 2629

S. Szilner et al., Phys. Rev. C **71** (2005) 044610

The AGATA-PRISMA commissioning

Multinucleon transfer reaction

Trajectory reconstruction

A physical event is composed of:

- Entrance position (x,y) -> (θ,φ)
- Position at the focal plane (x',y')
- Time-of-Flight (ToF)
- Energy (ΔE-E)

MCP detector MWPPAC detector Δt MCP-MWPPAC Ionization Chamber

Solid angle $\Delta \Omega$	~ 80 msr
Angular acceptances	$\Delta \theta \approx \pm 6^\circ$; $\Delta \phi \approx \pm 11^\circ$
Energy acceptance	±20%
Momentum acceptance	±10%
Mass resolution	ΔA/A ≈ 1/300
Nuclear charge resolution	ΔZ/Z ≈ 1/60
Maximum Bp	~ 1.2 Tm
Dispersion	Δp/p≈ 4 cm/%
Distance target-FPD	~ 6.5 m
IC Energy resolution	~ 1%
MCP and MWPPAC x,y position resolutions	~ 1 mm
MCP and MWPPAC timing resolutions	~ 350 ps
Maximum rate at the FP	~ 3 kHz
θ_{PRISMA} (AGATA standard position)	20° < θ < 88°
θ _{PRISMA} (AGATA close position)	35° < θ < 88°

Trajectory reconstruction

X, Y entrance position -> Mass resolution, Q-value resolution, Doppler correction ToF and position resolution -> Mass resolution, Doppler correction ToF offset determination -> Doppler correction Z resolution -> Atomic number identification

PRISMA detectors

PRISMA MCP

- Active area: $8x10 \text{ cm}^2$ ($\Omega = 80 \text{ msr}$)
- -> full coverage of PRISMA spectrometer at d = 25 cm from target
- Timing resolution for TOF ~ 350 ps
- C foil: 20 µg/cm² thick (100 nm!)
- $E_{acc} = 30-40 \text{ kV/m}$
- Parallel magnetic field: B ~ 120 G to limit the spread of electron cloud preserving particle position information
- 3 signals: X, Y, time

For the analysis: only 2 signals for the MCP (X, Y)

G. Montagnoli et al., NIM A 547 (2005) 455-463

PRISMA MCP

PRISMA MWPPAC

Focal Plane Detector

• Active area: 100 cm x 13 cm

- 3 electrode structure: central cathode + 2 anode wire planes (X and Y) d_{A-C} = 2.4 mm
- cathode: 3300 wires of 20µm gold-plated tungsten 0.3 mm spacing -10 independent sections of 10x13 cm² negative high voltage: 500-600 V
- X plane: 10 sections of 100 wires each, 1mm spacing
- Y plane: common to all cathode, 130 wires, 1 m long, 1mm steps
- spatial resolution: ΔX ~ 1mm, ΔY ~ 2mm (FWHM)
- stop signal for TOF
- 10 x 3 signals (X_{left} , X_{right} , timing) 2 signals (Y_{up} , Y_{down})
- Filling gas: C₄H₁₀ Pressure: 7 mbar

PRISMA

MWPC (Multi-Wire Proportional Chamber

PRISMA MWPPAC

For the analysis: 42 signals for the PPAC!

Fabio

MWPPAC

PRISMA MWPPAC

TAC's for ToF determination

CFD's for timing signals from the cathode

PRISMA IC

E. Fioretto

PRISMA IC

Pre-amplifiers on top of the IC

Nuclear charge identification

F. Galtarossa, L. Corradi

AGATA pre-PAC meeting, November 8th, 2021

Mass resolution obtained after trajectory reconstruction

the obtained mass resolutions for the different ions are close to the values expected taking into account detector resolutions (positions and timing)

Cross section sensitivity

Analysis steps

Analysis steps

- 1. Check thresholds and 2D gates (MCP, MWPPAC)
- 2. Set Z gates in the $E-\Delta E$ matrix
- 3. Set the ToF offset and align the MWPPAC sections in ToF
- 4. Set Q gates in the E-R β matrix
- 5. Calibrate the A/Q (assign a mass to each A/Q)
- 6. Apply the calibration to sum the different Q and obtain the mass spectra
- 7. Check with the gamma Doppler correction how well you set the ToF
- 8. Repeat from point 3 an indefinite number of times
- 9. Further processing to improve resolutions -> Expert mode!

Array called *theMap[240]*:

- 0-59 for MCP (but only 3 used, 0: X; 1: Y)
- 60-119 for MWPPAC (all used but the yup and ydown are repeated)
- 0: Yup; 1: Ydown; 2: Xleft; 3: Xright; 4: Cathode; 5:ToF
- 120-179 for IC (40 used -> 10 pads x 4 sections)
- 180-239 for IC Sides (8 used)

These numbers can be seen in the Look-Up Table (LUT).

PRISMA + ancillaries: second arm

PRISMA + ancillaries: DANTE

via a kinematic coincidence PRISMA-DANTE one could extract the yield of mass integrated actinide nuclei, which turns out to be in good agreement with that derived from X-ray analysis

A.Vogt et al., PRC92(2015)024619

TAC drift time spectrum taken in tests with ⁵⁸Ni @ 225 MeV

start: MWPPAC cathode stop: IC anode

Preliminary test performed

The time difference between the MWPPAC cathode and the IC anode essentially reflects the electrons drift time inside the chamber ($\sim 1-5 \ \mu s$) -> new TDC's with larger range

Information on the Y coordinate should help better control the ion trajectories

This information is contained in the IC_drift variable in the PrismaTree (only for some experiments)

24

INFN

Nuclear Physics

Mid Term Plan in Ital

1951 2021

A more efficient MWPPAC for light ions

Franco Galtarossa

Nuclear Physics Mid Term Plan in Italy – LNF Session

ToF efficiency: ions for which the ToF is > 0 / number of ions in a given Z gate. Position efficiency: ions with an assigned mass number / number of ions in a given Z gate

With the actual MWPPAC you may find low efficiency for some sections, so "strange" structures in the focal plane position spectrum

26

X_{fp} position spectra

¹⁹⁷Au+¹³⁰Te @ 1070 MeV

 $^{32}S+^{124}Sn @ 160 MeV$

Not always clear whether it is the effect of the spacing of the different charge states (only 2-3 charge states on the fp for light ions) or an inefficiency of the section

Nuclear Physics

1951 2021 INFN

Lol's for PRISMA (1st AGATA pre-PAC)

And now some insights into the analysis with Elia