

1

Surface Detector Electronics Upgrade

Critical Design Review

Orsay, 04 February 2015

Tiina Suomijärvi, Patrick Stassi, Jim Beatty, SDEU design group

Outline

- Introduction & physics requirements
- Development plan & organization
- Technical specification
- Design implementation
 - Upgraded Unified Board WP5
 - Analog PMT signal processing WP1
 - Time Tagging WP3
 - Slow Control WP4
 - Calibration Tools WP7
- Interfaces
- Risks, FMECA, FDIR
- AIT-AIV Plan
- Small PMT design
- Cost and Schedule

Introduction & Physics requirements

Pierre Auger Observatory

Surface Array 1600 detector stations 1.5 Km spacing 3000 Km² INFILL array: 60 detector stations 750 m spacing

Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total HEAT: 3 Telescopes

The full efficiency of the SD trigger is reached at 3 10¹⁸ eV. For the Infill array the full efficiency is reached at 3 10¹⁷ eV.

SDEU CDR - Orsay, 04 February 2015

Surface Detector

Power budget is 10 W per station. The 900MHz COMMS transmission is 150 bytes/s/station.

Current electronics (SDE)

Ekit

Signals are read out by three 9" XP1805 photomultipliers.

Signals from anode and dynode outputs are filtered with an anti-aliasing filter and sampled with **40 MHz**, **10 bit** FADC.

Total dynamic range: from few to about 6×10⁴ photoelectrons (about 600 VEM)

Two shower triggers are used: Threshold and time over threshold trigger

A common time base is established by using the GPS system (Motorola OnCore UT receiver) providing a one pulse/s which is used to synchronize a 100 MHz clock serving to timetag trigger.

Each detector station has an IBM 403 PowerPC processor for local data acquisition, software trigger and detector monitoring, and memory for data storage.

7

Current electronics (SDE)

Timing

ASIC

GPS

Receiver

25

340

Performance

No of MeanLS/LsInPMS vs. Time (one day binning)

Trigger efficiency is typically better than 98%.

No of BlackTanks vs. Time (one day binning)

Number of black tanks typically lower than 20.

PIERRE AUGER

Maintenance

- Failure rates are low, about 15 boards per year.
- About 3 maintenance trips per week (includes also batteries).
- All repair can be done in SDECo, Malargüe
- Test benches were moved to Malargüe.
- Local SDE staff: 3 technicians.

Auger Upgrade

Auger has observed clearly both a strong cosmic-ray flux suppression above 50 EeV and a sharp spectral transition near 7 EeV (the ankle).

Presently it is not possible to determine whether the suppression is due to energy losses in transit (the GZK effect) or if it reveals the maximum energy of the source accelerators.

Goal:

Extend the existing measurements of composition-sensitive observables to higher energy to search for the rigidity-dependent suppression of the flux of individual mass groups.

Steps in SDE proposal construction

- Auger Beyond 2015 group suggests upgrade of SD/SDE
- Meeting in Orsay 8-9 October 2012
- Meeting in Orsay 21-22 January 2013
- Meeting in Lisbon 30-31 May 2013
- Meeting in Orsay 24-25 October 2013
- Meeting in Grenoble 30 January 2014
- Visio-meetings 7 May and 12 June 2014
- Meeting in Grenoble 15 October 2014
- Parallel sessions in Auger Collaboration meetings
- Documents circulated to the collaboration
- Mailing list: auger_sd_electronics
- Wiki page: <u>https://www.auger.unam.mx/AugerWiki/SDE_Upgrade</u>

Requirements for new electronics

- Increased local processing and triggering capability by integrated, more powerful FPGA and microprocessor
 - Allows additional triggers and increases the processing power by > factor 10.
- Increased sampling rate from 40 MHz to 120 MHz:
 - Better resolving power for in-tank signal asymmetries

Enhanced dynamic range (x32)
 Allows to measure accurately showers up to about 250m from the shower core

→ Improve the geometric and energy reconstruction

Requirements for new electronics

Increase the resolution of the station-to-station timing synchronization (from 10ns to 4ns).

Enhance calibration capabilities with a more flexible LED driver supporting additional calibration and test modes.

Enhance capabilities of the on board slow control system with additional sensors and functionalities

On prototypes:

Provides a flexible interface to allow the muon detectors upgrades prototypes and other enhancements co-located with the surface detector stations to make use of the data processing and communications infrastructure of the stations.

On final design: Provide interface to the chosen muon detector solution.

Status of Auger Upgrade

The collaboration decided to upgrade the SD with Scintillator detector on top of the tank in November 2014.

Prototype scintillator detector ASCII.

• Muon component will be separated from the EM component by using additional information from scintillator installed on top of the water tank.

 Surface Detector electronics will be upgraded.

• Fluorescence Detector uptime will be increased from 14% to about 30%.

• Preliminary Design Report and final proposal in preparation (due to mid-April 2015).

- Engineering Array of 10 stations end 2015.
- Production and deployment 2016-17.

Development Plan & organization

WP10LPSC02J_SDEU_Dev_Plan_27nov14

SDEU CDR - Orsay, 04 February 2015

SDE Task

- Task leaders: Tiina Suomijarvi and Jim Beatty
- System Engineer: Patrick Stassi
- Sub-tasks for maintenance
 - PMT-Base unit
 - Front End board
 - Trigger/memory circuitry
 - Time tagging and GPS
 - Unified Board
 - Tank Power Control Board
 - LED flasher

Maintenance activities continue in parallel with the upgrade activities. Work Packages have been created for the upgrade activities.

Development Plan - PBS

		1.1 - Amplifiers	
	1 - PMTs & signal Cond.	-1.2 - Filters	
		1.3 - Additional PMT & base	o Amplifier
	-2 - Digitizer		2-The PMTs sign
		3.1 - FPGA Algorithms	• ADCs
	-3 - Digital Trigger	- 3.2 - Memories	o Trigger al
	4 - Processing	4.1 - Processor	4-Event Building
		4.2 - Program Memories	o CPU, me
	-5 - Slow Control	5.1 - Manager	5-The Slow Cont
		-5.2 - Interfaces	and volta
Ш		-5.3 - Sensors	solar pow
	6 - Calibration	6.1 - Light controller	6-Calibration ma
S		6.2 - Light generators	o light gene 7-The Time Taga
		7.1 – Time Tagger	 Commerce
	-7 - Time Tagging	7.2 – GPS board	8-Communication
		8.1 - RS232	o Serial, Et
	8 - Communications Links	-8.2 - USB	9-Power supplies
		-8.3 - Ethernet	10-Mechanics
		-8.4 - Digital interfaces	 Housing,
	9 - Power Supplies	9.1 - Filtering & Protections	
		9.2 - DC to DC Conversions	
		10.1 - Connectors	
	L10 - Mechanics	-10.2 - Housing	
		10.3 - Internal cables	

....

l-The l	PMTs signal Conditioning
0	Amplifiers, filters, signal conditioning
2-The l	PMTs signal Digitizing
0	ADCs
3-The S	Storage and Trigger construction
0	Trigger algorithm in FPGA (firmware)
4-Even	t Building and Processing
0	CPU, memories, OS and software
5-The S	Slow Control management
0	Environmental sensors reading, PMTs high voltages control
	and voltage and current monitoring,
	solar power system monitoring. Dedicated software
5-Calib	pration management
0	light generators and light generators management
7-The 1	Time Tagging
0	Commercial GPS and time tagger in FPGA (firmware)
8-Com	munication links management
0	Serial, Ethernet, USB, external detectors digital interface
9-Powe	er supplies management
0	DC converters, filters and protections

front panel, cables and connectors

Work Packages definition

The Work Packages (WP) for the SDE Upgrade are:

WP1 Analog PMTs signal processing
WP2 Trigger development
WP3 Time Tagging development
WP4 Slow Control development
WP5 UUB Hardware Design & Integration
WP6 UUB Software development
WP7 Calibration & Control tools development
WP8 Assembly, Deployment and Validation
WP9 Simulation and Science Validation
WP10 Project Management

Work Packages responsibilities

	WP1	WP2	WP3	WP4	WP5	WP6	WP7	WP8	WP9	WP10
BUW, Wuppertal - Germany				Resp.	Part.	Part.				
CNEA, Bariloch e - Argentina					Part.	Part.		Part.		
ITEDA, Buenos Aires - Argentina					Part.			Part.		
CWRU, Clevland - USA			Resp.		Part.	Part.				
FNAL, Chicago - USA					Part.			Part.	Part.	Part.
INFN, Lecce - Italy	Resp.				Part.	Part.				
INFN, Torino - Italy	Part.				Part.	Part.	Resp.			
IPNO, Orsay - France	Part.				Part.			Part.		Resp.
KIT, Karlsruhe - Germany					Part.		Part.		Resp.	
LOD, Lodz - Poland	Part.	Part.			Part.					
LPNHE, Paris - France	Part.				Part.		Part.		Part.	
LPSC, Grenoble - France				Part.	Resp.	Part.		Part.		Part.
MTU, Houghton - USA		Resp.	Part.		Part.	Part.	Part.		Part.	
OSU, Columbus - USA	Part.	Part.			Part.	Resp.		Part.		Part.
PAO, Malargue - Argentina					Part.			Resp.	Part.	
RU, Radboud University	Part.				Part.			Part.		
SU, Siegen University					Part.			Part.		

- Several laboratories from several countries participate to different WPs.
- All participate to WP5 (the integrated electronics board).
- Engineers for development have been identified.
- Most of the tools and facilities already available.

Work Packages relations

Project Documentation

Designation	Reference	Revision
Section 01: Development Plan		
SDEU Development Plan	WP10LPSC02	J
Section 02: H/W Specifications		
SDEU Specifications	WP10LPSC03	Н
Section 03: S/W Specifications		
SDEU OBSW Specification	WP6LPSC13	А
Section 04: Project Risks Analysis		
SDEU project Risks Analysis	WP10LPSC06	С
Section 05: FMECA - FDIR	· · · · · · · · · · · · · · · · · · ·	
SDEU FMECA-FDIR	WP10LPSC10	С
Section 06: Tests Plan	·	
SDEU AIT-AIV Plan	WP10LPSC11	D
Section 07: ICD		
SDEU Electrical Interfaces Control Document	WP10LPSC05	E
SDEU Detectors Interfaces Control Document	WP10LPSC07	F
Section 08: WBS Cost estimate		
SDEU WBS	WP10LPSC08	J
Section 09: Schedule	-	
SDEU Project General Schedule	WP10LPSC04	K

Meeting minutes are on the SDE Upgrade wiki page. Technical documents will be in the CERN EDMS.

Technical specifications

WP10LPSC03H_SDEU_Specification_27Nov14

SDEU CDR - Orsay, 04 February 2015

Requirements Classification

Product Breakdown Structure (PBS)

The requirements are defined in each class, accordingly to this PBS:

Document Status

Version 03H - Nov. 27, 2014

- All Requirements class filled
- 87 Requirements defined
- 38 "old" Req.
- 49 "upgrade" Req.

Physics, user and technical req.

	Field And And And And And And And And And An	nre Auger Closervatory	WP10 LPSC 01D 14/02/13 1/22		
Pierre Auger Observatory					
Si	urface Detector SPECI	Electronics U FICATION	Jpgrade		
Abstract: The SD electronic This document de	es will be upgraded to incre scribes the complete requir	ase its functionalities, ca rements needed for the u	apabilities and reliabilities pgrade.		
Abstract: The SD electronic This document de	es will be upgraded to incre scribes the complete requir	ase its functionalities, ca rements needed for the u	apabilities and reliabilities pgrade.		
Abstract: The SD electronic This document de Document written	es will be upgraded to incre scribes the complete requir by: P. Stassi	ase its functionalities, ca rements needed for the u Agreed by:	npabilities and reliabilities pgrade. T. Suomijärvi		
Abstract: The SD electronic This document de Document written	es will be upgraded to incre scribes the complete requir by: P. Stassi February 14, 2013	ase its functionalities, ca rements needed for the u Agreed by: Date:	npabilities and reliabilities pgrade. T. Suomijärvi February 14, 2013		
Abstract: The SD electronic This document de Document written I Date: Local Reference:	es will be upgraded to incre scribes the complete requir by: P. Stassi February 14, 2013 n/a	ase its functionalities, cr ements needed for the u Agreed by: Date: Project Reference:	ppabilities and reliabilities pgrade. T. Suomijärvi February 14, 2013 WP10LPSC01D		
Abstract: The SD electronic This document de Document written I Date: Local Reference:	es will be upgraded to incre scribes the complete requir by: P. Stassi February 14, 2013 n/a	ase its functionalities, cr rements needed for the u Agreed by: Date: Project Reference:	apabilities and reliabilities pgrade. T. Suomijärvi <u>February 14, 2013</u> WP10LPSC01D		

Functional Requirements (FR#)

	Requirements					
	D	Text				
	FR11	The UUB shall processes analog anode signals from the three PMTs. A low and high gain signal for each PMT shall be conditioned and digitized.				
. [FR12	The total RMS integrated noise at the ADC input shall not exceed 0.5 LSB.				
	ED12	The UUB shall digitize the PMTs anode signals at a sampling frequency of 120 Msp/s with a resolution of 12				
	FRIS	bits minimum with the adapted conditioning and gain circuitry.				
	FR14	Adapted anti-aliasing filters shall be implemented for each PMT signal inputs (60Mhz at -3dB) (<5% single time bin aliasing noise)				
	FR15	The UUB shall process analog signals from 2 additional PMTs from ASCII detector in 3 analog channels, one low gain for one of the 2 PMTs (or summation) and 2 high gains.				
	FR16	The high gain/low gain ratio shall be of 32.				
	FR17	The UUB shall processes analog anode signals from the fourth small additional PMT (RD6, the purpose is to increase the overall energy dynamic range).				
	FR21	The trigger/memory circuitry shall evaluate the high-gain output of each PMT every 8.3 ns for interesting trigger patterns (see FR26), store the data in buffer and inform the micro-processor circuitry.				
	FR22	The trigger/memory circuitry shall generate a first level trigger based upon hardware analysis of the high gain PMT channel waveforms. The UUB micro-processor software shall imposes additional constraints to generate a level 2 trigger signal.				
	FR23	The goal of the first level trigger shall be to trigger efficiently on UHE cosmic ray air showers of energy >1019eV, while simultaneously rejecting lower energy showers and minimizing composition dependent trigger biases, within a rate constraint of 100 Hz.				
	FR24	The level 1 trigger shall be designed to be flexible and eventually modifiable in the future				
	FR25	The level 1 trigger shall start waveforms recording during 19.2 µs				
	FR26	The triggers to be implemented are: etc				
	FR27	The level 1 trigger shall provide signal to Time-Tagging circuitry allowing time step of trigger and determination of absolute time of each ADC bin.				
	FR31	The UUB shall able to time tag each events, using the information given by a commercial GPS unit and a logic circuitry (in FPGA) based on the existing design, described in the RD1 document, point 2.2.3.4				
	FR32	The time tagging unit shall have a resolution of 4 ns or better, stable in temperature better than 5%.				
	FR41	The UUB shall have a micro-processor able to perform the following tasks: - Level 2 Trigger - Data acquisition and event building with double buffering and recording - Calibration process including analog inputs base line monitoring - Data compression to fit the communication flux limit - Communication with the slow control management unit.				
	FR51	The UUB shall have a slow control unit, allowing measurement and monitoring of at least 64 x 0 to 5 Volts analog input signals coded over 12 bits (can be multiplexed) and 8 logic inputs. Number of channel shall accommodate the designs for additional ASCII detector.				

Functional Requirements (FR#)

		Requirements
	D	Text
	FR52	The UUB shall have a slow control unit able to generate at least 8 x 0 to 2.5 Volts analog buffered output
	TKJZ	signals coded from 12 bits and 8 logic buffered outputs.
		The UUB shall have a slow control unit able to monitor internal parameters to perform a failure detection,
	FR53	isolation and recovery (FDIR) process on onboard power supplies and batteries voltage protection over 35 V and under 22 V)
	ED 64	The UUB slow control unit shall be able to manage all existing SDE environmental sensors (RD1) and
	FK34	additionally, a water temperature sensor and an atmospheric pressure sensor.
	FR61	The UUB shall have a light generator unit (LED controller) able to generate two adapted signals with at least an amplitude of 20 Volts towards the two foreseen light devices (LED driver). The signal shall be controlled in time with a resolution of 4 ns and shall be synchronized to the time tagging signal (1PPS)
	FR62	The light devices (LED driver) shall have at least the same specifications of the existing device
	FR63	The light generator unit (LED controller) and light devices (LED driver) shall measure the linearity of the SD photomultipliers (PMTs) over the full dynamic range of their acquisition channels, using the "two LEDs technique"
	FR64	The light generator unit (LED controller) and light devices (LED driver) shall measure the amplification ratio between overlapping acquisition channels, low and high gain of the SD PMT and the ASCII detector.
	FR65	The light generator unit (LED controller) and light devices (LED driver) shall be able to create artificial EAS events of different topology on the ground SD array in order to: - check the ACQ response for different event pattern, - check the event reconstruction
	FR71	The UUB shall include communication capabilities adapted to the existing unit (see Interfaces Requirements section) based on serial links
	FR72	The UUB shall include Ethernet communication capability.
	FR73	The UUB shall include USB and USB OTG communication capability.
	FR74	The UUB shall include digital communication capability for other detector systems, including synchronization signal.
	FR81	The UUB shall be able to produce all needed internal power supplies, regulated and stabilized, filtered and protected, from a single input of 24 Volts nominal but varying from 18 to 30 Volts.
[FR82	The UUB internal power supplies shall be voltage monitored by the slow control unit (FR53).

Configurational Requirements (CR#)

	Requirements						
	ID	Text					
ĺ	CD01	Each part of the UUB shall be contained in a single printed circuit board, excepted for the commercial GPS					
	CRUI	board, light generators (LED controller shall be on UUB PCB) and the mechanical housing.					
	CR02	The SDEU shall be composed at the minimum of the following components:					
	CD11	The PMTs signal conditioning unit shall be composed of analog discrete components to perform the low					
	CKII	noise amplification and filtering functionalities from the actively split PMT anode signals.					
	CR21	The Digitizer unit shall be composed of a number of commercial ADC equivalents to the number of analog					
	CICI	inputs or split inputs (dual ADC chips with LVDS outputs are recommended).					
	CR31	The Digital Trigger unit shall be implemented in the unique FPGA component, following the architecture					
	0101	described in figure 2.2.4.a below:					
	CR32	External input and output Trigger signal shall be implemented (see Interfaces Requirements).					
	CR33	Memory minimum size requirements shall follow the values described in the table 2.2.4.b below:					
	CR41	The Processing unit shall be composed of a hardcore processor in the unique FPGA component, with adapted					
	CICH	circuitry and memories					
	CR42	The Processing unit shall have an adapted random access memory size of 512 Mo at the minimum					
	CR43	The Processing unit shall have an adapted flash memory					
	CR44	The Processing unit shall works under a micro-Linux operating system					
	CD 45	The Processing unit shall have the adapted interfaces to be able to communicate with the other UUB units and					
	CI(+)	the external world.					
	CP51	The Slow Control unit shall be composed of separate (from the main processor) micro controller, ADCs,					
	CKM	DACs and associated circuitry on the UUB board					
	CR52	The Slow Control unit shall have analog inputs with 10 Kilo-Ohms impedance					
	CR53	The Slow Control unit shall include the water temperature and atmospheric pressure sensors and all existing					
	CROD	sensors (RD1).					
	CR54	The Slow Control unit shall have a direct USB communication link (see Interface Requirements)					
		The Calibration unit shall include a light generator unit (LED controller) implemented on the UUB PCB, able					
	CR61	to provide 20 Volts amplitude pulses. Controlled directly by the processing unit (FPGA).					
	CR62	The Calibration unit shall include an external dual light device adapted for SD PMT calibration purpose and					
	0102	ASCII detector (LED driver).					

Configurational Requirements (CR#)

Requirements						
ID	Text					
CR71	The Time Tagging unit shall be composed of a commercial, timing dedicated, GPS board and a time tagging algorithm implemented in the unique FPGA.					
CR81	The UUB shall be able to manage at least 1 serial connection RS-232 type to communicate with the BSRU (radio).					
CR82	The UUB shall be able to manage one Ethernet connection.					
CR83	The UUB shall be able to manage 2 USB (2.0) and one USB-OTG connection.					
CR84	The UUB shall be able to manage 2 digital connections for other detector systems, including synchronization signal, slow control and 24V power supply (CR93)					
CR91	The power supplies unit shall be composed of adapted to design DC to DC converters with the following requirements: - Efficiency better than 80% (90% recommended) - Large input range, from 18 to 30 Volts (24V nominal) - Low ripple noise, less than 20mV					
CR92	The 12V power supplies for PMTs bases and BSRU (radio) shall be separated (to avoid eventual failure propagation).					
CR93	24 Volts, filtered, non-regulated and controlled shall be provided on the extensions connectors					
CR101	The mechanical housing shall be composed of an aluminum extruded RF proof box, identical to the existing design (the existing box can be reused) and a metallic front panel, adapted to the new connectors type and their disposition.					

Interface Requirements (IR#)

	Requirements
ID	Text
IR11	All the electrical interfaces between the UUB and the PMTs shall be identical to the electrical interfaces of the existing UB as described in the PD1 document, chapter 2.2 (excented for the dynade connectors)
IR12	All the electrical interfaces between the UUB and the Radio module shall be identical to the electrical interfaces of the existing UB, as described in the RD1 document, chapter 2.2.
IR13	All the electrical interfaces between the UUB and GPS antenna and the tank control (from TPCB) shall be identical to the electrical interfaces of the existing UB, as described in the RD1 document, chapter 2.2.
IR14	All additional the electrical interfaces between the UUB and external world are described in the following 2.3.1.a table:
IR15	The UUB shall provide external LVDS connection (EXT 1 and EXT 2) for other detector systems, including synchronization signal. The front panel connectors pin out for those extension connections, are described in the table 2.3.1.b below.
IR21	The UUB mechanical interfaces shall be identical to the mechanical interfaces of the existing UB (RD5).
IR22	The UUB mechanical front panel shall have the same external dimensions of the existing UB front panel.
IR23	All UUB new electrical connection toward the inner tank shall use the existing feed through (RD7, hatch cover design document).

Physical and Environmental Requirements (PR# ER#)

	Requirements				
ID	Text				
PR1	The cabled PCB of the UUB shall be within the following dimensions:				
PR2	The complete mass of the UUB shall not exceed 10 Kg.				
PR3	The UUB PCB shall have at least six layers minimum, with one layer for ground plane and one layer for power supplies. Class VI, minimum isolation distances 0.12mm				
	The UUB shall be able to resist in operation to a temperature range from -20 to +70 degrees Celsius and in				
ER1	storage from -40 to +80 degrees Celsius. Other parts of the SDEU (located in the tank) shall be able to resist				
	to a lower temperature range, -50 degrees Celsius				
ER2	The UUB shall be able to resist in operation to an average hygrometry between 30 and 80%				
FP3	The UUB system shall include all necessary electrical protection for internal (over current) and external				
	surges.				
ER4	The UUB shall be able to resist in operation to storm lightning occurring at a distance of 1 km.				
	The UUB shall not exhibit any malfunction, degradation of performance or deviation from specified				
ER5	indications when test spikes are applied to the dc power input leads or electromagnetically coupled into the				
	equipment wiring.				
FR6	The UUB shall resist, out of operation, to long distance cargo flight and dirty road transportation, with an				
LKU	adapted packaging.				

Quality and Operation Requirements (QR# OR#)

	Requirements			
ID	Text			
QR1	The UUB system shall be included in the overall Pierre Auger Observatory Quality Assurance Plan, (RD3).			
QR2	The UUB system shall follow policies and procedure described in the Pierre Auger Observatory Surface Detector Electronics Quality Management Plan, (RD4)			
OR1	The UUB system shall be entirely autonomously powered through the existing power system. In the scope of a further extension, the total consumption shall not exceed 10W, including existing BSRU (radio, 1.1W average, 3.6W peak) and PMT Bases (1.5W)			
OR2	The UUB system shall be entirely controlled and monitored through the main radio communication system (BSRU).			
OR3	The UUB system shall be able to detect major failure and send alarm and/or initiate a recovery process with an internal monitoring system			
OR4	The software used in the UUB system shall be written in a standard language and widely documented to allow modification by people not involved in the primary design phase			
OR5	The software used in the UUB system shall be easily downloadable through the main radio communication system and from maintenance device (computer) connected on site			
OR6	The UUB shall be able to be in operation 24 hours over 24 hours, during 15 years.			

Support Requirements (SR#)

	Requirements	
	ID	Text
	SR1	The UUB system shall be designed to limit onsite maintenance at the maximum
	SR2	Hardware and software tools and test benches shall be developed and provided to facilitate the onsite support of the UUB system
	SR3	Adequate quantity (15%) of spare of the major elements of the SDEU (UUB, light generators, GPS boards, small PMT & bases, sensors) shall be procured and stored to facilitate onsite maintenance, in addition of the attrition (2 to 3%) for the part procurement
	SR4	The UUB system design shall allow people not involved in the design performing general maintenance operations, after a short training
	SR5	All support operation on the UUB system shall be completely documented, traced and recorded

Verification Requirements (VR#)

VR1: The UUB system requirements listed in the present document shall be verified following the verification matrix

The verification can be performed with four methods, at system or sub system level:

- Inspection
 - The requirement implementations are verified by a visual inspection of the system and its sub systems.
- Review of Design
 - The requirement implementations are verified by a review of the design documents (schematics, reports, pictures, etc.) of the system and its sub systems.
- Analysis (simulations)
 - The requirement implementations are verify through analysis reports, showing result on mathematical or software models of the sub system concerned.
- Test
 - The requirement implementations are verified through test reports showing results on test procedures applied on the system and its sub systems.

VR2: The test plan for the integrated SDEU shall be performed according to the RD3 document.

RD3 Pierre Auger Observatory Quality Assurance Plan, October 2000, V1

SDEU CDR - Orsay, 04 February 2015

Design Implementation

- Upgraded Unified Board WP5
- Analog PMT signal processing WP1
- Time Tagging WP3
- Slow Control WP4
- Calibration Tools WP7

Interfaces

WP10LPSC05E_SDEU_EICD_28Nov14 WP10LPSC07F_SDEU_DICD_29Jan14

UUB mechanical interface

UUB electrical interface

UUB electrical interface

Power consumption

	Work Package	Power (W)
	WP1 - Front-end	4.5
	WP2 - Trigger	0.06
UUB	WP3 - Time Tagging	0.3
	WP4 - Slow Control	0.07
	WP5 - FPGA, Processor	4.8
	PMTs & Radio	5.7
	TOTAL with DC/DC at 97% of efficiency	16.5

The total **peak** power estimate is 14.5W. This is compatible with the current power consumption.

~ ~ ~	~ ~ *	 	states and states

42

Connector Ref.	Connector Type	Connector Function	Connected to	Comment
J11		In, Anode PMT1	PMT Anode 1	On front panel
J12		In, Anode PMT1	PMT Anode 2	On front panel
J13	SMA, socket	In, Anode PMT1	PMT Anode 3	On front panel
J14		In, Anode Small PMT	Small PMT An.	On front panel
J15	CAN I	In, Analog 1	Ext. detector 1	On front panel TBD
J16		In, Analog 2	Ext. detector 2	On front panel TBD
J17		In, Analog 3	Ext. detector 3	On front panel TBD
J21		In/Out, PMT1 monitoring	PMT base 1	On front panel
J22		In/Out, PMT2 monitoring	PMT base 2	On front panel
J23	DB15HD socket	In/Out, PMT3 monitoring	PMT base 3	On front panel
J24		In/Out, Small PMT monitoring	Small PMT base	On front panel
J25		In/Out, PMT I monitoring	PMT base I	On front panel
J26		In/Out, PMT II monitoring	PMT base II	On front panel
J31		In, Slow control sensors reading	TPCB	On front panel
J41	10 pin (2x5) socket	In/Out, GPS power and com.	GPS board	Internal
J51	Binder 99-3431-202-04	In, 24V power supply	TPCB	On front panel
J61		Out, LED Flasher 1 cde.	LED Flasher 1	On front panel
J62	SMA, socket	Out, LED Flasher 2 cde.	LED Flasher 2	On front panel
J71		In, External trigger input	TBD	On front panel
J72	-14.	Out, Internal trigger output	TBD	On front panel
J81	USB Type B, Socket	In/Out, System com.	Maintenance	On front panel
J82	Q	In/Out, Slow Control com.	Maintenance	On front panel
J83	USB Type A, Socket	In/Out, maintenance	Maintenance	On front panel 100 mA maxi
J84	RJ45, Socket	In/Out, Ethernet	Maintenance	On front panel
J85	SUBD9, socket	In/Out, Radio interface	BSRU (radio)	On front panel
J91	HARWIN M808542642	In/Out, and out power supply	TBD	Internal connected to DB2
J92	, socket	In/Out, and out power supply	TBD	HD on front panel
J93	HE14 2x7 nin	In/Out, Jtag system	Maintenance	Internal
J94		In/Out. Jtag system	Maintenance	Internal

UUB Connectors

Interface to additional detectors

Two connectors are provided with 8 differential lines individually defined as input or output which can be allocated in the FPGA, with switched 24V power supplies.

UUB Conn. ID	Name	Signal Name	UUB connector HE26, 2x13 Socket Pin#	Front Panel connector DB26 HD Socket	Signal description
		D1+	1	10	Configurable
		D1-	2	11	Configurable
		VCC	3	3	+24V, unregulated, switchable
		GND	4	4	Ground
		D0+	5	1	Configurable
		D0-	6	2	Configurable
		D2+	7	18	Configurable
		D2-	8	19	Configurable
		VCC	9	12	+24V, unregulated, switchable
		GND	10	13	Ground
		D4+	11	14	Configurable
	EVT 1	D4-	12	15	Configurable
J91	EAT 1 EVT 2	D3+	13	5	Configurable
J92	LAI 2	D3-	14	6	Configurable
		VCC	15	20	+24V, unregulated, switchable
		GND	16	21	Ground
		D5+	17	22	Configurable
		D5-	18	23	Configurable
		D6+	19	8	Configurable
		D6-	20	9	Configurable
		VCC	21	7	+24V, unregulated, switchable
		GND	22	16	Ground
		D7+	23	17	Configurable
		D7-	24	26	Configurable
		VCC	25	24	+24V, unregulated, switchable
		GND	26	25	Ground

Front panel view

SDEU CDR - Orsay, 04 February 2015

PIERRE

AUGER

BSERVATOR

UUB - Slow Control I/Os, Trigger, GPS

PIERRE

AUGER

UUB - Communications

Risks & FMECA-FDIR

WP10LPSC06C_SDEU_Project_Risk_Analysis_28Nov14

WP10LPSC10C _SDEU_FMECA _FDIR_28Nov14

Project risks analysis

N#	Risk Description	Mitigation	Reduction verification criteria
1	Risk of instability of the need for the project: (Change of priorities, instability of demand, insufficient strategic analysis).	Organize regular meetings and communication within the Pierre Auger Observatory community.	Reduction of the engineering change requests.
2	Risk of problems associated with the project partners (abandonment, non-priority project, regulations and different standards, economic and social situation, political instability, fiscal instability).	Organize work packages with multiple partners, with overlapped competences.	Multiple solutions are proposed for each design issue.
3	Funding risk: change of research policy medium/long term, alternative funding, unfavorable budgetary arbitration, absence or discount in question of multi-year funding.	Organize work packages with multiple partners, with different funding possibilities.	Funding easily available.
4	Risk of poor expression or lack of understanding of the scientific need.	Organize regular meetings and communication between scientists and designers and propose a accurate TDR.	TDR accurate and quickly available.
5	Risk of evolution of the scientific need after the start of the project.	Avoid too early specific design, leave margin in functionalities and allow design adjustment possibilities, especially for detector upgrade. Use engineering change request process.	Several key-point meetings and reviews organized every year.
6	Risk of missing, incomplete, insufficiently accurate specifications.	Spend time to produce a unique and stable specification document in collaboration with all people of the project.	Specification document accurate and quickly available.
7	Risk of innovative technical solutions, not validated in the laboratory or industrial.	Avoid as much as possible too much innovative design	Time reduction for R&D phases.
8	Risk of technical solutions used to boundaries (insufficient margins), or non-mature (no feedback) or exotic.	Reuse inheritage of recent designs like, Northern Auger, AERA, etc.	Time reduction for design phases.
9	Risk of uncontrolled material production, reception, testing, maintenance.	Have a strong, agreed and applied production and validation plan. Apply QAM plan.	Clear tracking documentation.
10	Risk associated with the transport of components, subsystems or system.	Use sure and safe proven transportation procedures, domestic and international.	Reduction of the casualties
11	Risk of non-implementation of the quality assurance by the manufacturer (traceability, monitoring, non-conformity management, change management).	Include quality assurance criteria in the selection process of the manufacturers.	Manufacturer quality assurance plan available.
12	Risks related to the internal interfaces of the project: lack of definition, requirements volatility, poor or no coordination	Organize regular internal meetings and communication between WP and system engineering.	Delay reduction in the global schedule.
13	Risk of wrong announced date of one or more phases of the project, consequences: a) Interference between several phases of the project (e.g. R & D and production). b) Interference with other projects.	Establish a realistic schedule, frequently updated, agreed by all people involved in the project realizations.	Delay reduction in the global schedule.
14	Risk on the sustainability of human resources: retirement, mobility project of people having knowledge not easily replaceable.	Organize work packages with multiple partners, working in team with overlapped competences.	Increase of the number of persons involved in the WPs.

Project risks analysis

Likelihood					_Color = R	lisk Index
Occ=4		СР	CP	СР		High
Occ=3		7 risks	1 risk	CP		Medium
Occ=2	1 risk	5 risks		СР		Low
Occ=1		1 risks				Very Low
	S1	S2	S 3	S4	Global Severity	

SDEU CDR - Orsay, 04 February 2015

Technical risks - FMECA

ID	ITEM	Function	Failure Mode	Soverity	Failure Effect	Failure Mode Ratio	Failure Rate	Operating Time	Failure Mode	ltem Criticality	Remarks
#	(component)	rancion	ID#	Seventy	(β)	(α)	(<i>λ</i> p)	(t, hours)	(Cm)	(Cr)	Remarko
1	ADA4927	Amplifier	1.2	IV. Minor	0.1	0.5	0.039		256.23	512.46	
2	Discrete SMD	Filter	1.3	IV. Minor	0.1	0.5	0.720	4	9460.80	9460.80	
~	Discrete SMLD	1 Inter	1.1	IV Minor	0.1	0.7	0.720	4	101 18	5466.66	
3	SMA socket conn.	I/O connection	5.2	IV. Minor	0.1	0.3	0.011		43.36	144.54	
4	AD9628	FADC	2.1	IV. Minor	0.5	01	0.065	1	4270.50	4270.50	
			3.3	II Critical	0.5	0.1		1	3482.10		
			3.9	II Critical	0.5	0.1			3482.10		
			3.11	II Critical	0.5	0.1			3482.10		
			5.3	II Critical	0.5	0.1			3482.10		
5	ZINO 7020	FPGA	6.2	II Critical	0.5	0.1	0.530		3482.10	34821.00	
			6.5	II Critical	0.5	0.1	0.000		3482.10	0.02.000	
			6.8	II Critical	0.5	0.1			3482.10		
			6.11	II Critical	0.5	0.1			3482.10		
			6.14	II Critical	0.5	0.1			3402.10		
6	MT401108M20D	Mamarias	3.4	II Critical	0.5	1	0.140	4	0108.00	0108.00	
7	N25000AA13CSE40	Memories	3.4	II Critical	0.5	1	0.071	4	4664 70	4664 70	
-	N2JQ00AAIJG3I40	Memories	2.42	III Marginal	0.5	0.5	0.071	•	4004.70	4004.70	
8	M12M I-Lotus	GPS board	5.12	III. Marginal	0.5	0.5	0.030		905.50	1971.00	
			2.44	III. Marginal	0.5	0.5		131400	305.50		
9	T2000 Motorola	GPS Antenna	5.14	III. Marginal	0.1	0.5	0.011	(15 years)	72.27	144.54	
			3.43	III. Marginal	0.1	0.5		4	72.27		
10	N Socket Conn	Antenna conn.	5.5	III. Marginal	0.1	0.5	0.011		72.27	144.54	
			41	III. Marginar	0.1	0.5		4	0657.00		
11	MPS430F2618	Micro controller	4.10	Il Critical	0.3	0.5	0.490		9657.90	19315.80	
			4.5	III Marginal	0.5	0.5		•	2168 10		
12	ADG608	Multiplexor	4.8	II Critical	0.5	0.5	0.066		2168.10	4336.20	
13	LTC2637	DAC	4.8	II Critical	0.3	1	0.066	•	2601.72	2601 72	
14	BMP085	Pressure sensor	4.4	III Marginal	0.1	1	0.020	•	262.80	262.80	
15	LM224D	Amplifier	5.1-5.7	IV Minor	0.5	1	0.039	1	2562.30	2562.30	
16	AD5316	DAC	5.1-5.7	IV Minor	0.5	1	0.066	1	4336.20	4336.20	
17	MMBT3904LT1	Transistor	5.1-5.7	IV Minor	0.3	1	0.160	1	6307.20	6307.20	
18	Maruell 88E1518	ETH Interface	6.1	IV Minor	0.7	1	0.080		7358.40	7358.40	
19	USB 3320	USB OTG Interface	6.4	IV Minor	0.7	1	0.080	•	7358.40	7358.40	
			6.7	IV Minor	0.7	0.5	0.000	4	3679.20	1000.40	
20	FTDIFT32232R	USB Interface	6.10	IV. Minor	0.7	0.5	0.080		3679.20	7358.40	
21	MAX3218	Serial interface	6.13	IV. Minor	0.7	1	0.080	1	7358.40	7358.40	
22	DS90LV047ATM	Buffers drivers	6.16	IV. Minor	0.7	1	0.080]	7358.40	7358.40	
23	LM3150	DC/DC converter	7.1	III. Marginal	0.5	0.25	0.065	131400	533.81	2135.25	

51

Technical risks - FMECA

Part Reference	Part ID #	Part Criticality (Cr)		Number of	Failure Mode		
ZINQ 7020	5	34821.00			10		
? FUSE	32	22075.20	1				
MPS430F2618	11	19315.80			2		
BSS138P	29	10512.00		1	1		
Discrete SMD	2	9460.80	1				
MT42L128M32D	6	9198.00			1		\uparrow
Marvell 88E1518	18	7358.40	1				
USB 3320	19	7358.40	1				_ ; ≘`
FTDIFT32232R	20	7358.40	2				8
MAX3218	21	7358.40	1				- <u>.</u>
DS90LV047ATM	22	7358.40	1				
MMBT3904LT1	17	6307.20	2				
BC846B	30	6307.20	1				
FDN358P	31	6307.20	1				=
N25Q00AA13GSF40	7	4664.70	_		1		
ADG608	12	4336.20		1	1		
AD5316	16	4336.20	2				4
AD9628	4	4270.50	i				- e
LM3150	23	4270.50	-	2	2		- T
TPS54020	26	4270.50			1		- R
TPS40170	28	4270.50			1		– –
TPS62125	25	4266.23		1	2		0.0
I MR24220	27	4266.23	1	i	i		E . F
LTC2637	13	2601 72	-	-	i		2
LM224D	15	2562.30	2		-		- 3
LTC1174	24	2299.50	_	1			1 5
M12M I-Lotus	8	1971.00		2			ΤĔ
ADA4927	1	512.46	2				-
BMP085	14	262.80	-	1			-
T2000 Motorola	9	144.54	1	2	1	1	1
N Socket Conn	10	144.54		2		1	
SMA socket conn.	3	144.54	2	_			
			IV	III	II	I	
			In	creasing leve	el of Severity	\rightarrow	

- Separate power supplies between FPGA and micro controller
- Do not provide voltage to all DC/DC with only one DC/DC converter avoiding to create a single point failure (SPF) on the power supply unit
- Implement internal voltage and current monitoring, in addition to an internal failure detection, isolation and recovery (FDIR) mechanism performed by the Slow Control micro controller (WP7).
- Implement DC/DC protections and technics to improve their reliability.
- Use secure mechanisms in the S/W to read and write memories to be able to detect memory failure.
- Use gold plated connectors and keep a high level on cleanliness.
- Use high reliability cabling and soldering process to avoid bad connections and contacts.
- Use inverted logic for on board switches (normal state in open circuit)

Technical risks - FDIR

All the failure described here will trigger action only from the Slow Control, Unit.

ID#	Failure Mode	Detection Method	Symptom Trigger	Isolation	Recovery	Slow Control Actions
1	FPGA S/W failure a loading	An acknowledge message is send by the FPGA to signal a good S/W loading	No acknowledge message received	Yes	Yes	 Load a mirrored version of the S/W sited in in another part of the memory Write a message in the non-volatile Slow Control memory
2	FPGA core voltage failure	The core voltage is monitored every second	The core voltage is below 0.9 Volts	Yes	No	 Shut down all the FPGA power supplies in a delay below one second Write a message in the non-volatile Slow Control memory
3	Symmetric voltage failure	The symmetric power supply is monitored every second	One of the polarity voltage values of the symmetric power supply is different with more than 10 % of the other, regardless of the polarity.	Yes	No	 Shut down the symmetric power supply in a delay below one second Write a message in the non-volatile Slow Control memory
4	External 24V failure	The voltage and the current on the +24V provided on the 2 extension connectors are monitored every second	 The voltage value after the switch is below 17 Volts The current value on each line is over 100 mA per line 	Yes	No	 Shut down the considered +24V line on the extension connector Write a message in the non-volatile Slow Control memory Send an alarm on the telemetry for the monitoring S/W (TBC)

AIT - AIV Plan

WP10LPSC11D_SDEU_AIT_AIV_Plan_28Nov14

UUB Models philosophy

Prototype Boards (PrtB)

This model is needed to test and validate the design of the SDEU. 5 plus 20 units of PrtB will be realized and tested at various plants. 10 units will be shipped to PAO site to be tested on the engineering array.

Pre-production Boards (PpB)

The PpB model is needed for manufacturer qualification. 100 units are foreseen for this purpose. If more than one manufacturing site will be identifier the numbers of PpB will be adapted.

Production Boards (PB)

From 1900 to 2000 units or the PB model will be manufactured on one or more production sites.

UUB Verification Tools

Tank Simulator (TS)

To verify all the requirements of the SDEU and also to be able to operate it at the various test plant, a "Tank Simulator" will be built, not only able to generate or receive and monitor signals to and from the UUB under test, but also able to have the basic behavior of the real tank and devices around.

Additionally, this kind of simulator can be easily reproduced and spread through the different partners, allowing sharing test and validation activities.

The "Tank Simulator" should be able to be used for the specification validation of the UUB but also for the functional verification, fabrication and production validation and reception, maintenance and failure detection and recovery.

Engineering Array (EA)

A small area, including a set of an array of 7 Water Cerenkov Tanks (WCT), dedicated for test and validation will be setup in a TBD place of the SD area.

These Engineering Array (EA) WCT will be equipped with the power supply system, and the whole communication setup. Large and small PMTs and LED flasher will be also installed.

The EA purpose is complete the validation of the UUB design verify the performances of the SD equipped with the UUB, in situ.

- It consist of two parts, a control computer (CC) with the user interface and a tank simulator (TS).
- The TS is an FPGA-driven device, which will provide analog data for the UUB which processes it and transmits the processed digital data to the CC.
- The received data in the CC is then compared with the expected 56 answer of the UUB to the given analog input.

- The input signals are generated with help of an FPGA (Xilinx Zynq).
- Fast and/or complicated analog signals (for UUB ADC inputs) are produced by a FPGA-controlled signal generator.
- Current setup: Zyng FPGA on ZC702 evaluation board.
 Later: Custom FPGA board.

Control Computer – Block diagram

PIERF

AUGF

58

- The UUB receives signals at its inputs and provides output data via the "RS232" radio interface.
- From the LabVIEW interface, all configurations for the TS can be loaded and transmitted.
- The GUI will provide status output on the performed measurements. This includes an online comparison between the expected digitization result and the digital data returned.

Tank simulator – Analog signal

- 8 channel board for use with Xilinx ZC702 evaluation board already produced and evaluated.
- Currently implementing serial communication for dynamic generation of pulse patterns.

Shaped pulses with arbitrary length and amplitude.

Prototype Board Verification flow

Pre-production Board Verification flow

PB

Production Board Verification flow

Assembly and tests

- Process in Malargüe (SDECo)
- Receiving inspection
- Functionality test
- Assembly to Ekit
- End-to end-test

The SDE Upgrade process follow the QMP of the current SDE and the QA of the Pierre Auger Observatory.

Small PMT Design

Cost & Schedule

WP10-LPSC-08J-SDEU_WBS_24Jun14

WP10LPSC04K_SDEU_Project_28Nov14

Cost - WBS SDEU & SPMT

Pierre A	rre Auger Observatory - Cost Estimate - Surface Detector Electronics Upgrade 24 Jun												
WBS		Activity	Total with	Cost Cont.	Material, Labor costs pai	Service & d by the Project	Infrastructure Labor Cost (not paid by the project)						
			€	\$	\$	€	\$						
1	WP	SDEU	2 614 720	3 399 136	1 988 468	2 585 008	626 252	814 128					
1.1	WP1	PMTs signal Conditioning	81 410.00	105 833.00	21 000.00	27 300.00	60 410.00	78 533.00					
1.2	WP2	Trigger	20 570.00	26 741.00	20 570.00	26 741.00	0.00	0.00					
1.3	WP3	Time Tagging	163 807.50	212 949.75	163 807.50	212 949.75	0.00	0.00					
1.4	WP4	Slow Control	85 700.50	111 410.65	27 968.00	36 358.40	57 732.50	75 052.25					
1.5	WP5	Upgraded Unified Board	1 806 214.50	2 348 078.85	1 577 232.50	2 050 402.25	228 982.00	297 676.60					
1.5.1	WP5	Upgraded Unified Board (Prototype)	174 482.50	226 827.25	46 400.00	60 320.00	128 082.50	166 507.25					
1.5.2	WP5	Upgraded Unified Board (Pre-Production)	207 542.00	269 804.60	118 700.00	154 310.00	88 842.00	115 494.60					
1.5.3	WP5	Upgraded Unified Board (Production)	1 370 740.00	1 781 962.00	1 358 682 20	1 766 287.25	12 057.50	15 674.75					
1.5.4	WP5	Upgraded Unified Board test benches	53 450.00	69 485.00	52 450.00	69 485.0	0.00	0.00					
1.6	WP6	Software	103 967.50	135 157.75	20 475.00	26 617.50	83 492.50	108 540.25					
1.7	WP7	Calibration and control tools	30 292.50	39 380.25	6 160.00	8 008.00	24 132.50	31 372.25					
1.8	WP8	Assembly and deployment	145 697.50	189 406.75	79 755.00	103 681.50	65 942.50	85 725.25					
1.9	WP9	Simulation and science validation	0.00	0.00	0.00	0.00	0.00	0.00					
1.10	WP10	Project management	177 060.00	230 175.00	71 500.00	92 950.00	105 560.00	137 228.00					
Pierre A													
2	WP	SPMT			896 500	1 165 450							

Total

25 prototypes boards (UUB) 60 320,00 US\$ (~2500\$/unit)

Production: 2000 boards (UUB) 1 766 287,00 US\$ (~900\$/unit)

2 884 968

3 750 458

Cost - Funding profile

09/01/2015		20	14			2015				2016				2017		
Work Packages	T1	T2	Т3	Т4	T1	T2	тз	T4	T1	T2	T3	T4	T1	T2	тз	T4
WP1 : PMTs signal conditioning	Design															
WP2 : Trigger	Design	l														
WP3 : Time Tagging	Design	l														
WP4 : Slow Control	Design															
WP5 : UUB hardware Design & Integration	Design	Prot Eng	otypes Array	&		Valid.	•	Pre Produc	tion	Valid.	roductio	on				
WP6 : UUB software																
WP7 : Calibration & Control tools	Design															
WP8 : Deployment			winter			Eng. Array	winter				winter					
WP9 : Simulation and Science Validation				ł				1								
Milestones Reviews->	Sub Syst	em Desig	n Review													
		System (ritical De	sign Rev	iew	aine Davi										
				Pre-Pr	roduction	Readines	s Review	,								
	Pre-Production Deployment Readiness Review															
							Prod	uction Re	adiness F	Review						
							Producti	ion Deplo	yment Re	adiness F	Review					
												Er	d of Depl	oyment R	eview	

09/01/2015		20)14			2	015			20	016			20	17	
Work Packages	T1	T2	ТЗ	Т4	T1	T2	T3	Т4	T1	T2	ТЗ	T4	T1	T2	ТЗ	T4
WP1 : PMTs signal conditioning	Design															
WP2 : Trigger	Design	l														
WP3 : Time Tagging	Design	I														
WP4 : Slow Control	Design															
WP5 : UUB hardware Design & Integration	Design	Prot Eng	otypes . Array	&	•	Valid.	•	Pre Produc	ction	Valid.	roductio	on				
WP6 : UUB software																
WP7 : Calibration & Control tools	Design		-													
WP8 : Deployment			winter			Eng. Array	winter				winter					
WP9 : Simulation and Science Validation				1												
Milestones Reviews->	Sub Syst	em Desig	ın Review													
		System (Critical De	sign Rev	iew											
				So Pre-Pr	ftware De	esign Rev Readine	iew ss Review	,								
				Pre-Prod	uction De	ployment	Readine	ss Review	-							
							Prod	uction Re	adiness I	Review						
							Product	ion Deplo	yment Re	adiness I	Review					
												End of Deployment Review				

09/01/2015		20	14			20	015			20	016					
Work Packages	T1	T2	тз	Т4	T1	T2	T3	T4	Т1	T2	T3	T4	T1	T2	T3	T4
WP1 : PMTs signal conditioning	Design	l														
WP2 : Trigger	Design	I														
WP3 : Time Tagging	Design	1														
WP4 : Slow Control	Design															
WP5 : UUB hardware Design & Integration	Design Eng. Array					Valid.		Pre Produc	Pre Production		roductio	on				
WP6 : UUB software																
WP7 : Calibration & Control tools	Design					4										
WP8 : Deployment			winter			Eng. Array	winter				winter					
WP9 : Simulation and Science Validation		1						1								
Milestones Reviews->	Sub Syst	em Desig	n Reviev	/												
	System Critical Design Review															
				Pre-Pi	roduction	Readines	s Review									
	Pre-Production Deployment Readiness Review															
							Prod	uction Rea	adiness F	Review						
							Product	ion Deploy	yment Re	adiness F	Review					
												Er	nd of Depl	oyment R	eview	

09/01/2015		20	14			20)15			20)16		2017			
Work Packages	T1	T2	Т3	Т4	T1	T2	T3	Т4	T1	T2	ТЗ	T4	T1	T2	Т3	Т4
WP1 : PMTs signal conditioning	Design															
WP2 : Trigger	Design															
WP3 : Time Tagging	Design															
WP4 : Slow Control	Design	I														
WP5 : UUB hardware Design & Integration	Design	Prot Eng	otypes Array	&		Valid.		Pre Produc	ction	Valid.	roductio	on				
WP6 : UUB software							_			T						
WP7 : Calibration & Control tools	Design								4							
WP8 : Deployment			winter			Eng. Array	winter				winter					
WP9 : Simulation and Science Validation			1	ł				1								
Milestones Reviews->	Sub Syst	em Desig	n Review													
	System Critical Design Review															
	Software Design Review															
	Pre-Production Readiness Review															
						programment	Prod	uction Re	adiness F	Review						
							Product	ion Deplo	yment Re	adiness F	Review					
												Er	nd of Depl	oyment R	eview	

09/01/2015		20	014			20	015			20	016		2017			
Work Packages	T1	T2	Т3	Т4	T1	T2	T3	Т4	T1	T2	T3	T4	T1	T2	T3	T4
WP1 : PMTs signal conditioning	Design		1													
WP2 : Trigger	Design															
WP3 : Time Tagging	Design															
WP4 : Slow Control	Design	I								_						
WP5 : UUB hardware Design & Integration	Design	otypes . Array	&	•	Valid.	•	Pre Produc	tion	Valid. Production		on					
WP6 : UUB software																
WP7 : Calibration & Control tools	Design		1													
WP8 : Deployment			winter			Eng. Array	winter				winter					
WP9 : Simulation and Science Validation					I I											
Milestones Reviews->	Sub Syst	em Desig	gn Revie													
		System (Critical D	esign Rev So	ftware De	esian Rev	iew									
				Pre-P	roduction	Readines	s Review	,								
	Pre-Production Deployment Readiness Review															
							Prod	uction Rea	adiness F	Review						
							Product	ion Deploy	yment Re	adiness I	Review					
												Er	nd of Depl	oyment R	eview	
Schedule

09/01/2015	2014				2015					20	16		2017			
Work Packages	T1	T2	тз	Т4	T1	T2	тз	T4	T1	T2	T3	T4	T1	T2	тз	T4
WP1 : PMTs signal conditioning	Design	l														
WP2 : Trigger	Design	I														
WP3 : Time Tagging	Design	I														
WP4 : Slow Control	Design	I														
WP5 : UUB hardware Design & Integration	Design	Prot Eng.	otypes Array	&	•	Valid.	•	Pre Produc	tion	Valid.	roductio	on				
WP6 : UUB software							-									
WP7 : Calibration & Control tools	Design															
WP8 : Deployment			winter			Eng. Array	wint				winter					
WP9 : Simulation and Science Validation															1	
Milestones Reviews->	Sub Syst	em Desig	n Review													
	System Critical Design Review															
	Pre-Production Readiness Review															
	Pre-Production Deployment Readiness Review															
							Prod	uction Rea	adiness F	Review						
							Producti	ion Deploy	yment Re	adiness F	Review					
												Er	d of Depl	oyment R	eview	

Schedule

OBSERVATORY		20	014		2015					20	016		2017						
Work Packages	т1	T2	тз	T4	т1	T2	тз	T4	T1	T2	тз	Т4	т1	T2	тз	T4			
WP1 : PMTs signal conditioning	Design																		
WP2 : Trigger	Design	1																	
WP3 : Time Tagging	Design	1																	
WP4 : Slow Control	Design	1																	
WP5 : UUB hardware Design & Integration	Design	Prot Eng	otypes . Array	&		Valid.		Pre Production		Valid.	roductio	on							
WP6 : UUB software										-									
WP7 : Calibration & Control tools	Design																		
WP8 : Deployment			winter			Eng. Array	winter				winter								
WP9 : Simulation and Science Validation																			
Milestones Reviews->	Sub Syst	tem Desi	gn Reviev	v															
	System Design Review Pre-Production Readiness Review																		
	Pre-Production Deployment Readiness Review																		
					Softw	are Desig	n Review												
							Produ	uction Re	adiness F	Review									
	Production Deployment Readiness Review																		
								End of Deployment Review											

Backup Slides

Upgraded Unified Board UUB

Software and data transmission

The existing Auger-UB software will be ported to Linux. The software will involve greater use of FPGA firmware to simplify data acquisition.

The 900MHz COMMS transmission is 150 bytes/s/station.

The bandwidth is divided into 50% T2 (3 bytes), 40% T3 (events, 7 kbytes) and 10% fixed overhead.

It is best to keep readout rate $\,<\,0.1$ per station per min, the readout time is currently about 2min.

The estimated increase of the event size for Auger upgrade is about 5. <u>Possible solution</u>:

Decrease T2 rate from 20 to 10Hz (will not affect shower triggers ToT etc.). Would require slightly higher threshold trigger, but could be compensated for horizontal showers by a smarter trigger. Event compression currently uses « Zip » algorithm.

Better algorithms (Fobbonazi compression etc.) produce compressed

sizes

between 1/2 and 2/3 of « Zip ».

Intelligent suppression of low gain channels can reduce size about a factor of 2 for the 3 PMTs.

Total relative effective decrease is therefore a factor 4-5 and compensates the ⁷⁷increase of event size. *SDEU CDR - Orsay, 04 February 2015*

Software: Use Case diagram

Software: Operating Modes diagram

