

National institute of nuclear and particles physics

Scientific leader: Justine Serrano (CPPM) *

Spokesperson: Karim Trabelsi (TYL, IN2P3/KEK)

Laboratories involved: CC-IN2P3 (Lyon), CPPM (Marseille),

IJCLab (Orsay), IPHC (Strasbourg)

Nature: research infrastructure

Status: international project in operation, on the site of the KEK

research organisation (Tsukuba, Japan)

Website: https://www.belle2.org/

Scientific objectives

The major challenge of the BELLE-II experiment is to find signs of new physics, not described by the standard model of particle physics. For example, it looks for the existence of hypothetical dark matter particles or lepto-quarks that would explain the recent anomalies observed in the decay of B mesons. The BELLE-II precision detector is dedicated to the very fine characterisation of B mesons, charmed hadrons or tau leptons, to highlight deviations in the observables of rare decays or to discover forbidden decays in the Standard Model, which would be a sign of new physics.

Resources deployed

- The SuperKEKB collider, a super B-meson factory, is the world's brightest particle accelerator.
- A central drift chamber (CDC) with smaller cells, a vertex detector consisting of four layers of silicon strips and two layers of pixels (DEPFET).
- Identification of charged and neutral particles (a combination of 5 sub-detectors).
- Processing of more than 100 Petabytes of data shared between Canada, France, Germany, Italy, Japan and the USA.

100PB

of data to be processed

800 scientists

26

participating countries

118 institutions

10

years of operation

IN2P3 CONTRIBUTIONS

- Upgrade of the data acquisition system using the PCle40 card, which allows reading via high speed optical links and the data to be described on the server at a rate of 100 Gb/s.
- The IN2P3 CC is a major contributor to data processing (15% of the world effort). From 2021 onwards, it will host and manage this unique fraction of the world's data and make it available to the scientific community.
- Participation in the vertex detector (SVD) and the charged particle identification detector (ARICH).
- Design and construction of the luminometer, a device for rapid luminosity control using single-crystal artificial diamond sensors.

2019

Launch of the physics programme for BELLE-II

2021

Q

BELLE-II collects its first reverse attobarm of data

2021 - 2022

Q

Replacement of the data acquisition system and the vertex detector (pixels)

2027

Q.

Addition of radio frequency cavities planned

2029

Expected end of the BELLE-II programme

* Since 2024 April 2024