

Particle Physics

D. Becirevic (IJCLab) and A.M. Teixeira (LPC)

DISCLAIMER

- This is an attempt to give an overview of what the theoretical physicists, members of IN2P3, are working on presently and recently
- It is by no means meant to be exhaustive
- Purposefully biased by experimental hints of physics BSM 'unfortunately' called anomalies

TH particle physics at IN2P3 Laboratories

Laboratory	People		
APC Paris	D. Semikoz, J. Serreau, M. C. Volpe		
(UMR 7164)			
IJCLab Orsay	A. Abada, D. Bečirević, V. Bernard,		
(UMR 9012)	B. Blossier, S. Descotes-Genon, A. Falkowski,		
	S. Friot, E. Kou, G. Moreau, O. Sumensari		
IP2I Lyon	A. Arbey, G. Cacciapaglia,		
(UMR 5822)	A. Deandrea, F. N. Mahmoudi		
IPHC Strasbourg	M. Rausch de Traubenberg		
(UMR 7178)			
LPC Clermont	A. Goudelis, JF. Mathiot, V. Morénas,		
$(UMR \ 6533)$	J. Orloff, A. M. Teixeira		
LPSC Grenoble	S. Kraml, M. Mangin-Brinet, J. Quevillon,		
(UMR 5821)	I. Schienbein, C. Smith		
LUPM Montpellier	F. Brümmer, S. Davidson, C. Hugonie		
(UMR 5299)			

Part I

In the Standard Model

X Gauge sector entirely fixed by symmetry

$$i\overline{\psi} D_{\mu} = \partial_{\mu} - ig_s t_a A^a_{\mu} - ig \mathbf{T} \cdot \mathbf{W}_{\mu} - ig' rac{Y}{2} B_{\mu}$$

Flavor sector loose (a bunch of parameters) 13 of 18 are fermion masses and mixing parameters

$$-\sum_{i=1}^{3}\sum_{j=1}^{3}\left[\frac{y_{ij}^{u}}{\bar{u}_{Ri}}\tilde{\Phi}^{\dagger}Q_{Lj}+\frac{y_{ij}^{d}}{\bar{d}_{Ri}}\Phi^{\dagger}Q_{Lj}\right]+\text{h.c.}$$

LHC PRECISION

Operators of dim ≥ 5 made of SM fields

A. Falkowski

LHC PRECISION

- LHC precision observables: input from Higgs physics, top quark physics, W and Z mass, Drell-Yan processes, etc.
- LHC precision program is much broader than that of LEP.
 Well-defined and flexible theoretical framework currently the SMEFT with d=5 and d=6 operators added to the SM.
- Huge and long-term collaborative task b/w theorists and experimentalists.
- Many technical problems to solve, e.g. how to include NLO SMEFT corrections, or how to simultaneously fit PDFs and d=6 operators.
- New measurements and new observables are still being proposed to optimise this task

A. Falkowski

Uncertainties: S. Kraml, I. Schienbein Matching (loop corrections): J. Quevillon, C. Smith Particular pheno issues: <<pretty much everyone>>

Bosonic CP-even			Bosonic CP-odd		
O_H	$(H^{\dagger}H)^3$	-			
$O_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$				
O_{HD}	$\left H^{\dagger}D_{\mu}H\right ^{2}$				
O_{HG}	$H^{\dagger}HG^{a}_{\mu\nu}G^{a}_{\mu\nu}$		$O_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a}_{\mu\nu}$	
O_{HW}	$H^{\dagger}HW^{i}_{\mu\nu}W^{i}_{\mu\nu}$		$O_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i}_{\mu\nu}$	
O_{HB}	$H^{\dagger}H B_{\mu\nu}B_{\mu\nu}$		$O_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B_{\mu u}$	
O_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B_{\mu\nu}$		$O_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B_{\mu\nu}$	
O_W	$\epsilon^{ijk}W^i_{\mu\nu}W^j_{\nu\rho}W^k_{\rho\mu}$		$O_{\widetilde{W}}$	$\epsilon^{ijk}\widetilde{W}^i_{\mu\nu}W^j_{\nu\rho}W^k_{\rho\mu}$	
O_G	$f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$		$O_{\widetilde{G}}$	$f^{abc}\widetilde{G}^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	

Vertex			Dipole				
$[O_{H\ell}^{(1)}]$	IJ	$i\bar{\ell}_I\bar{\sigma}_\mu\ell_JH^\dagger\overleftrightarrow{D}_\mu H$	[6	$D_{eW}^{\dagger}]_{IJ}$	$e^c_I \sigma_{\mu\nu} H^{\dagger} \sigma^i \ell_J W^i_{\mu\nu}$		
$[O_{H\ell}^{(3)}]$	IJ	$i\bar{\ell}_I\sigma^i\bar{\sigma}_\mu\ell_JH^\dagger\sigma^i\overleftrightarrow{D_\mu}H$	[0	$O_{eB}^{\dagger}]_{IJ}$	$e_I^c \sigma_{\mu\nu} H^{\dagger} \ell_J B_{\mu\nu}$		
$[O_{He}]$	IJ	$ie_I^c \sigma_\mu \bar{e}_J^c H^\dagger \overleftrightarrow{D_\mu} H$	[0	$D_{uG}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu\nu} T^a \widetilde{H}^\dagger q_J G^a_{\mu\nu}$		
$[O_{Hq}^{(1)}]$	IJ	$i\bar{q}_I\bar{\sigma}_\mu q_J H^\dagger \overleftrightarrow{D}_\mu H$	[6	$D_{uW}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu\nu} \widetilde{H}^\dagger \sigma^i q_J W^i_{\mu\nu}$		
$[O_{Hq}^{(3)}]$	IJ	$i\bar{q}_I\sigma^i\bar{\sigma}_\mu q_J H^\dagger\sigma^i\overleftrightarrow{D_\mu}H$	[0	$D_{uB}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu\nu} \widetilde{H}^\dagger q_J B_{\mu\nu}$		
$[O_{Hu}]$	IJ	$i u_I^c \sigma_\mu \bar{u}_J^c H^\dagger \overleftrightarrow{D_\mu} H$	[($D_{dG}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu\nu} T^a H^\dagger q_J G^a_{\mu\nu}$		
$[O_{Hd}]$	IJ	$id_{I}^{c}\sigma_{\mu}\bar{d}_{J}^{c}H^{\dagger}\overleftrightarrow{D_{\mu}}H$	[6	$D_{dW}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu\nu} \bar{H}^\dagger \sigma^i q_J W^i_{\mu\nu}$		
$[O_{Hud}]$	$]_{IJ}$	$i u_I^c \sigma_\mu \bar{d}_J^c \tilde{H}^\dagger D_\mu H$	[($O_{dB}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu\nu} H^\dagger q_J B_{\mu\nu}$		
	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$			
O _{ee}		$\eta(e^c\sigma_\mu\bar{e}^c)(e^c\sigma_\mu\bar{e}^c)$	$O_{\ell e}$	$(\bar{\ell}\bar{c}$	$\bar{\sigma}_{\mu}\ell)(e^{c}\sigma_{\mu}\bar{e}^{c})$		
O_{uu}	$O_{uu} = \eta (u^c \sigma_\mu \bar{u}^c) (u^c \sigma_\mu \bar{u}^c)$		$O_{\ell u}$	$(\bar{\ell}\bar{\sigma})$	$(\bar{u}_{\mu}\ell)(u^{c}\sigma_{\mu}\bar{u}^{c})$		
O_{dd}	$O_{dd} = \eta (d^c \sigma_\mu \bar{d}^c) (d^c \sigma_\mu$		$O_{\ell d}$	$(\bar{\ell}\bar{c}$	$(\bar{\sigma}_{\mu}\ell)(d^{c}\sigma_{\mu}\bar{d}^{c})$		
O_{eu}	$D_{eu} = (e^c \sigma_\mu \bar{e}^c) (u^c \sigma_\mu \bar{u}^c)$		O_{eq}	(e^{c})	$(e^c\sigma_\mu\bar e^c)(\bar q\bar\sigma_\mu q)$		
O_{ed}	O_{ed} $(e^c \sigma_\mu \bar{e}^c) (d^c \sigma_\mu \bar{d}^c)$		O_{qu}	$(\bar{q}\bar{c}$	$(\bar{q}\bar{\sigma}_{\mu}q)(u^{c}\sigma_{\mu}\bar{u}^{c})$		
O_{ud}		$(u^c \sigma_\mu \bar{u}^c) (d^c \sigma_\mu \bar{d}^c)$	O_{qu}'	$(\bar{q}\bar{\sigma}_{\mu}T)$	$(u^c \sigma_\mu T^a \bar{u}^c)$		
O'_{ud}	$O_{ud}' \left (u^c \sigma_\mu T^a \bar{u}^c) (d^c \sigma_\mu T^a \bar{d}^c) \right.$		O_{qd}	$(\bar{q}\bar{c}$	$(\bar{q}\bar{\sigma}_{\mu}q)(d^{c}\sigma_{\mu}\bar{d}^{c})$		
			O_{qd}^{\prime}	$T^a q)(d^c \sigma_\mu T^a \bar{d}^c)$			
$(\bar{L}L)(\bar{L}L)$		$(\bar{L}R)(\bar{L}R)$					
$O_{\ell\ell}$	1	$\eta(\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{\ell}\bar{\sigma}_{\mu}\ell)$	O_{quqq}	ı ($(u^c q^j) \epsilon_{jk} (d^c q^k)$		
O_{qq}	1	$\eta(\bar{q}\bar{\sigma}_{\mu}q)(\bar{q}\bar{\sigma}_{\mu}q)$	O'_{quqq}	(u^{c})	$T^a q^j) \epsilon_{jk} (d^c T^a q^k)$		
O'_{qq}	$\eta(\dot{q})$	$(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)$	$O_{\ell equ}$. ($(e^c \ell^j) \epsilon_{jk} (u^c q^k)$		
$O_{\ell q}$		$(\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{q}\bar{\sigma}_{\mu}q)$	$O'_{\ell equ}$	$(e^c \bar{\sigma})$	$\epsilon_{\mu\nu}\ell^j)\epsilon_{jk}(u^c\bar{\sigma}^{\mu\nu}q^k)$		
$O'_{\ell q}$	$(\bar{\ell}$	$(\bar{\sigma}_{\mu}\sigma^{i}\ell)(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)$	$O_{\ell edq}$		$(ar{\ell}ar{e}^c)(d^cq)$		

Flavor Physics

- **×** Why three generations?
- X Why such hierarchy of masses and mixing?
- Why so small CPV phase?

Fix CKM entries through tree level processes & overconstrain by loop-induced ones [progress through precision!]

Still open: inclusive v exclusive Vub and Vcb?
 Is Vud well controlled? Vus keeps coming back (EM)...

CKM-ology - Small flavor anomaly

X Still open: inclusive v exclusive V_{ub} and V_{cb}?

More Flavor Anomalies

Experiment essential...

Phenomenology... bridge b/w theory and experiment

Look for quantities - observables:

- × (Highly) Sensitive to contributions of physics BSM
- × Mildly (or not) sensitive to hadronic uncertainties
- × Accessible in current and/or (near) future experiments

LFUV: Experimentally?

Exp: $R_D = 0.340 \pm 0.030$, $R_{D^*} = 0.295 \pm 0.014$ SM: $R_D^{SM} = 0.293 \pm 0.008$, $R_{D^*}^{SM} = 0.257 \pm 0.003$

Lepton Flavor Universality Violation

$$\begin{split} \hline R_{D^{(*)}} &= \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})} \underset{\ell \in (e,\mu)}{\&} \quad R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM} \\ \hline R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM} \\ \hline R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM} \\ \hline R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM} \\ \hline R_{L^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM} \\ \hline R_{L^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}} \\ \hline R_{L^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \\ \hline R_{L^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu\mu)}{\mathcal{B}(B \to K^{(*)}ee)} \bigg|_{q^{2} \in [q_{\min}^{2}, q_{\max}^{2}]} \underset{k}{\&} \quad R_{K^{(*)}} \\ \hline R_{L^{(*)}} &= 0.340 \pm 0.030, \quad R_{D^{*}} = 0.295 \pm 0.014 \\ \hline R_{L^{(*)}} &= 0.847(42)^{\text{LHCb}} \quad \text{vs} \quad R_{K^{(*)}}^{1,6]} \\ = 1.00(1)^{\text{SM}} \\ \hline R_{L^{(*)}} &= 0.293 \pm 0.008, \quad R_{D^{*}} = 0.248 \pm 0.001 \\ \hline R_{L^{(*)}} &= 0.71(10)^{\text{LHCb}} \quad \text{vs} \quad R_{K^{*}}^{1,6]} \\ = 1.00(1)^{\text{SM}} \\ \hline R_{D^{(*)}} &= N_{D^{(*)}} \\ \hline R_{D^{(*)}} &= N_{D^{(*)}} \\ \hline R_{L^{(*)}} &= 0.71(10)^{\text{LHCb}} \quad \text{vs} \quad R_{K^{*}}^{1,6]} \\ \hline R_{L^{(*)}} &= 1.00(1)^{\text{SM}} \\ \hline R_{L^{(*)}} &= 0.248 \pm 0.001 \\ \hline R_{L^{(*)}} &= 0.71(10)^{\text{LHCb}} \quad \text{vs} \quad R_{K^{*}}^{1,6]} \\ \hline R_{L^{(*)}} &= 1.00(1)^{\text{SM}} \\ \hline R_{L^{(*)}} &= 0.248 \pm 0.001 \\ \hline R_{L^{(*)}} &= 0.71(10)^{\text{LHCb}} \quad \text{vs} \quad R_{L^{(*)}} \\ \hline R_{L^{(*)}} &= 1.00(1)^{\text{SM}} \\ \hline R_{L^{(*)}} &= 0.248 \pm 0.001 \\ \hline R_{L^{(*)}} &= 0.248 \pm 0.001 \\ \hline R_{L^{(*)}} &= 0.71(10)^{\text{LHCb}} \\ \hline R_{L^{(*)}} &= 0.248 \pm 0.001 \\ \hline R_{L^{(*)}}$$

 $R_{K^{(*)}}^{
m exp} < R_{K^{(*)}}^{
m SM} \quad \Rightarrow \quad \Lambda_{
m NP} \lesssim 30 \,\, {
m TeV}$ naive NP scale

1-

S. Descotes-Genon, N. Mahmoudi, A. Arbey, O. Sumensari, D.B.

Detailed angular distribution can help... More Observables

 $b \rightarrow s \mu \mu$

 $b \to c \tau \bar{\nu}$

Stay tuned (early results from Belle...)

S. Descotes-Genon, N. Mahmoudi, A. Arbey, E. Kou (y), O. Sumensari, D.B.

Building a NP model...

Only a model with O(TeV) leptoquark can simultaneously accommodate

- ✓ both types of *B* anomalies
- ✓ wealth of LE flavor physics observables
- EWPT
- ✔ direct LHC searches

S. Descotes-Genon, N. Mahmoudi, A. Arbey, A. Teixeira, J. Orloff, A. Deandrea, G. Cacciapaglia O. Sumensari, A. Falkowski, D.B.

From dilepton spectra at high p_T Atlas and CMS 2018-2020

$$\mathcal{L}_{U_1} = x_L^{ij} \,\overline{Q}_i \gamma_\mu L_j \, U_1^\mu + x_R^{ij} \,\overline{d}_{R_i} \gamma_\mu \ell_{Rj} U_1^\mu + \text{h.c.}$$

O. Sumensari, D.B.

Predictions... LFV

- Way to go 1: Combine two scalar LQs $[S_1$ with S_3 , or R_2 with S_3]
- Way to go 2: Vector LQ (U_1) Non-renormalizable and thus requires UV-completion which can be an opportunity to tackle the hierarchy problem!

Compositeness - Alternative

- Composite Higgs hierarchy is no more a problem
- Vacuum misalignment along one direction for EWSB, $\sin \theta = v/f$
- Scenario, reminiscing walking TC, constructed to describe "μ anomalies" while staying consistent with LHC data
- Collider phenomenology to be probed at LHC and FCC-ee
- Phenomenology with ALPs $m_a \sim \mathcal{O}(10 \,\text{GeV})$

