TkT

e	expand
fx	full x range
fy	full y range
ff	full x y range
ci	calculate the integral
cg	Gaussian fit
a	fit highest peak
ka	calibrate with 2 highest peak
ctrl k	calibration panel
ctrl a	
ctrl AF	remove auto format
1 or 2	superimpose previous/next histogram
ctrl 1 or ctrl2	pass to previous/next histogram
sr n	select spectra number n
sv n	display spectra number n
sza	spectra zero all
sva	spectra view all (I display all spectra saved)
ctrl open	reload spectrum (if more are selected (with the button under AF), all are reloaded)

colors \rightarrow the white spectrum is the one on which I operate, I can store it assigning to it a color (clicking on a color) or I can recal a stored spectrum with ctr + click on the color (and it will get it white)

Prep_..._100_44_100_traces \rightarrow Split screen h 6

100 traces x 44 spectra (36 segments, 4 core, 4 empty ?)

mezzdata_00....dat \rightarrow Split screen h 7 to have one over the other, or without to have them on a line. format UA

Prod_...3_38_32..._ampli → set: 3 x 38 x 114 → to see only one spectrum 32 kchannel x 38 spectra (36 segments, 2 core) x 3 modality (0: ..., 1: only one segment has a signal, 2: only central core)

Prep_...2_40_16..._ener → Split screen H 6 16 kchannel x 40 spectra (36 segments, 2 core, 2 empty) x 2 modality (0: with corrections, ex. Cross talk, Doppl. Corr., 1: without corrections)

Prod...100_42_100..._trace \rightarrow Define User Grid 0 600 6 100 sample x 40 detectors (36 segments, 4 core) x 100 traces (signals) if x max:599 \rightarrow only one trace

Psa... traces \rightarrow 2 set of Data : 0 = real data, 1 = PSA fit

trace_capture →	traces ou	it of the	digitize	er (?). se	et plots like: 1000 x 6 x 664, format: UT
	$(0 \rightarrow$	high gai	in, $1 \rightarrow$	low ga	in, $3 \rightarrow \text{noise}$)
	ex:	1000	6	664	
				155	UT

Traces on one line	\rightarrow Define User Grid : 0 600 6 (6 is the thin line inside, 600 - the big line - is because of 6 segments x 10 sample)
	$60 \rightarrow 360$
To put it invisible	\rightarrow Toggle User Grid
Shift >	\rightarrow to go to the right in the spectrum (in case of traces on a line)
[14][ABC] 10[BC] 10[BC]{5}	→ it displays all the combinations of 14 qitha ABC → it displays the combinations of B and C → it displays the combinations of B and C from the 5 th and then sequentially

DM1 = define macro 1 (I can do DM2, DM3, etc.)

to define a sum of the spectra of all the detectors:

sr10 s+20 s+01 s+11 s+21

s = spectra, sr = load the spectra

or, more complete:

fx n sr10 s+20 s+01 s+11 s+21 ci e

 \rightarrow reload, expand and calculate the integral

0	1				9
10					

Matrix of PSA:

- full depth
- side
- 2^{nd} side
- r z cut
- slices
- ...

To force to write spectra: touch /Conf/1B/CrystalProducer.live (?) $ll /Conf/1B/CrystalProducer.live \rightarrow$ to check if it still there (until is there I don't have new spectra) To erase the spectra (while the acquisition is running): echo a> /Conf/1B/CrystalProducer.live

to run Narval

To kill Narval running: force_clean_narval name

to kill Narval + the rest : ./M51

- narval_launch

- in prototype@narval_base: screen -r narval

- browser: running configuration \rightarrow select the second one \rightarrow attach \rightarrow destroy

- Krak \rightarrow initialize \rightarrow configure \rightarrow file. Xml

First start in Krak, then in the run control (after about 20 s).

To save and copy the data and copy them in another folder: .../zCurrentNarval.../Save... .sh name_of_the_run

(old script: /agata/prototype/mv_data_RN.sh name_of_the_run \rightarrow it has not to exist already!)

From the Narval scheme in Krak I can click on a process \rightarrow details \rightarrow I can change parameters

Detector calibration

In: /agatadisks/installation_tests/12.../run.../

To do only one spectrum, in TkT (look at the second set of spectra):

- **ctrl** $k \rightarrow$ calibration panel
- select **last 2 peaks** so that it consider only the 2 last peaks
- select Co peaks
- a0 \rightarrow fix
- calculate \rightarrow i get the coefficients

To do all the detectors all together (better give a look before one by one):

for a in 1B 1C 4A 4B 4C; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50; done; (→ I see the result) for a in 1B 1C 4A 4B 4C; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.txt; done; (→ I write the result in a file) for a in 1B 1C 4A 4B 4C; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR -dwa 20 50> cal_\$a.log; do echo; Recal -spe \$a/Prod_... -num 38 -sum38 -TR

calibrations without Narval

 \rightarrow spec files from mezzanine with Dino's program

- i.e.: Recal ... -sub 6 -22Na
 -sub 6 because the order here is different, in this way I take the segments
 -22Na if I have Sodium source in stead of Co
 I can add condition in minimum wideness and highness of the peak and range
 → i get calibr coefficients, threshold present in Preproc...PSA.conf, offset for time
- I check the valued obtained with manual fit (CP)
- I move the column gain*slope in Preproc...PSA.conf

<u>polezero</u>

psa_test@scgw1

 $/config_crystal/....rc \rightarrow for the electronics$

- all risetime \rightarrow for the segments \rightarrow parameters trapezoid after preamplifier cc risetime \rightarrow for the cores
- cc risetime \rightarrow for the cores polezero

 \rightarrow check that they are the same as in Preproc...PSA.conf

polezero is ~ shaping time

To set the polezero of the <u>cores</u> (for the segments I leave them like they are!) I have to fit the exponential of the long traces:

- display long traces
- first 2 markers for the background and second 2 for the exponential fit
- \rightarrow tau is the value of polezero in filerc (threshold in file .rc is the one that we set from the carrier)

! To load this values I have to press Load file in the browser.

calibrations with calibDEMON.sh

from Narval putting in Mask the configurations to have only the energies or running in the emulator the file mezzdata... \rightarrow file: energy....bdat

if they are splitted, do for example: cat energy...0001 > energy....bdat

because the program search energy....bdat.

From a directory above the one of the crystals: calibDEMON.sh (this programs is set for 15 detectors)

require type hgain shaping decay

type $\rightarrow 2$ for energy calibration, 3 for cross talk correction (but it require the 2 done first) hgain \rightarrow energy gain set in the electronics shaping, decay \rightarrow polezero, etc... values that are present in the file .rc

hgain shaping and decay we can take the default ones (i.e. calibDEMON.sh 2).

 \rightarrow file **DEMONresol**: resolution of the detectors at the 1.3keV of the Co (\rightarrow to check if the detectors are working badly or the calibrations are wrong) \rightarrow they have to be around 2 keV, below 2.5 keV (th core of course has worst resolution)

I can see DEMONresol in TkT (format A): the detectors are displayed in the sequential order (1A, 1B, 4A, ...) and for each I have the 6 sectors with the six peaks for the 6 segment (0,1,2,3,4,5).

 $KA \rightarrow$ calibrates automatically the Co lines \rightarrow I check manually if the values of the resolution make sense.

Fort.9SG \rightarrow will become the PreprocessingFilterPSA.conf

XCG....matr \rightarrow crosstalk matrix

inside the crystal folder: xTalkeMake -f $\dots \rightarrow$ as in the description of Dino, without -g \dots parameters

 \rightarrow I copy in fort.9GS the values of polezero (i.e. 4400) of the cores obtained before from the traces. For the segments I leave them like they are in PreprocessingFilterPSA.conf, not in Demon!

 \rightarrow

- i do a backup of the old PreprocessingFilterPSA.conf
- I copy Fort.9SG in PreprocessingFilterPSA.conf
- I delete the old /Data/

redo the link (ln) to the data files

- in genconf.py I enable the crosstalk matrix: in preproducer filter: the inverse, in the PSA filter: the direct (check Dino's explanation)
- reprocess the data and I check the calibrations are good

Replay Data Offline

- in genConf.py:

- Mask $\rightarrow 0$
- #Validate rate
- ...

- ./genConf.py -o cp .../conf/... ? (-o to copy from the online)

- I copy the ADF.conf from the online
- TopologyTotal \rightarrow define for each crystal and for the Global level the chain of actors

Set Look Up Table:

in Replay \rightarrow original (?) . in /Conf/Global/Crystal...LookUpTable: n id det angles and conversion coefficients

I have to know which detectors are mounted to know which put inside the system, but once i know the correct values of angles and conversion coefficients I can change the id det in the topology file so I can have only numbers below 15. (the program is still set for at most 15 crystal, when we will have more the program will be updated with 45).

 \rightarrow I put the values in the topology file (!no, in genconf.py, in the database!) with <u>their</u> PSA bases.

 \rightarrow ./genConf.py

→ run: femul_new TopologyTotal.conf

Base line alinement

- copy old values (to have a backup)
- load in the Browser the stored values (Restore) and select the proper board for each sector
- look in TKT the traces (); the correct value of the baseline is 4000
- calculate the difference of the baseline and 4000 and multiply it by 4 (gain factor) -> for each segment
- add or subtract it to the value on the browser and press on the "ball" (it will be set on a value that the system can accept)

example: ______4200

old value:-15000

- \rightarrow new value: -15800
- restart the acquisition and check the result of the new values (even if they have not been saved on the script, the acquisition reads the value on the browser)
- redo the procedure until they are all almost aligned (perfectly is not possible because of default offset of the values that can be set)
- Save...to Database

I can do this correction also with Recal giving a parameter with 4000