
Software	performance,	portability	and
development	(report)
HEP	Software	Fundation,	2017	:	...	the	physics	programs	of	the	planned	and/or	upgraded	HEP
experiments	over	the	next	10	years	will	require	the	HEP	community	to	address	a	number	of
challenges	in	the	area	of	software	and	computing.	It	is	expected	that	the	computing	models	will
need	to	evolve	and	a	significant	software	upgrade	is	required	...

Gathered	on	June	2022,	on	behalf	of	the	whole	Reprises	team,	with	specific
contributions	from	:	Pierre	Aubert,	Arnaud	Beck,	David	Chamont,	Hadrien	Grasland,
Vincent	Lafage,	Claude	Mercier,	Bogdan	Vulpescu.

Summary
As	usual,	we	expect	more	and	more	performance	from	scientific	software.	In	particular,	we
hope	to	absorb	part	of	the	massive	influx	of	data,	by	writing	"better"	code,	to	"better"	take
advantage	of	the	hardware.	But	this	hardware	has	come	up	against	the	wall	of	unsurpassable
frequency,	and	it	is	changing	profoundly.	The	cores	are	multiplying,	specializing,	and	being
equipped	with	accelerators,	making	obsolete	the	distributed-sequential	computing	model	of	the
high	energy	physics	community.	The	programming	of	this	hardware	is	becoming	more	complex,
and	the	marriage	between	performance	and	portability	is	becoming	a	permanent	challenge,
especially	within	our	multi-site	grids.

At	the	same	time	as	the	HEP	Software	Fundation	was	making	this	observation,	and	following	an
IN2P3	Computer	School	on	heterogeneous	programming,	the	institute	validated	the	DecaLog
master-project,	and	in	particular	its	sub-project	Reprises,	focused	on	portable	performance
(speed	and	accuracy).	The	aim	is	to	evaluate	the	myriad	of	technologies	that	claim	to	answer
this	problem,	and	to	provide	physicists	with	recipes	to	select	and	use	them	autonomously.

After	several	years	of	exchanging	feedback,	the	ten	or	so	engineers	involved	have	begun	to
deliver	some	collective	products,	starting	with	a	strong	contribution	to	the	institute's
prospective.	A	server	dedicated	to	teaching	computing	has	made	its	first	appearance	during	a
face-to-face	workshop,	and	we	are	working	on	a	guide	that	we	hope	to	inaugurate	for	the
Journées	Informatique	in	the	fall	of	2022.

Among	the	main	performance	areas	to	be	exploited,	we	have	particularly	explored	CPU
vectoring,	GPU	and	FPGA	acceleration,	and	precision	reduction.	After	collaborations	with
colleagues	from	CEA	or	EDF,	with	a	"high	performance	computing"	culture,	we	have	also	now
established	strong	relationships	with	computer	science	laboratories,	around	co-supervised
theses.

Whether	it's	a	question	of	writing	portable	vectorized	code,	exploiting	various	GPUs,	or
practicing	hybrid	precision,	many	solutions	come	from	expert-like	technologies	(C++/Fortran),
even	though	the	younger	generations	are	more	and	more	addicted	to	Python.	Should	we	be
concerned	about	this?

If	the	commitment	of	the	participants	makes	it	possible	to	keep	up	to	date	with	the	latest
developments,	if	solid	links	have	been	established	with	the	HPC	community	and	then	with	the
computer	science	research	community,	and	if	the	first	collective	successes	are	achieved,	one



can	be	concerned	about	the	fragility	of	an	ecosystem	that	depends	on	the	opportunistic	use	of
equipment	financed	by	others,	and	on	the	good	will	(generally	present)	of	the	management	of
the	multiple	laboratories	where	the	too	rare	specialists	are	located.

Motivation	and	stakes
In	high-energy	physics,	we	have	lived	through	a	long	reign	of	ordinary	hardware-based
computing	grids,	where	we	practiced	"embarrassing	parallelism",	distributing	our	batches	of
events	to	thousands/millions	of	cores,	each	running	isolated	sequential	programs.	But	the
hardware	has	changed	a	lot	and	continues	to	change,	towards	more	and	more	cores	(and	less
memory	per	core),	longer	and	longer	vectors,	and	an	increasingly	heterogeneous	and
specialized	mix	of	cores	and	accelerators	(CPU/GPU/FPGA).	The	bottlenecks	are	shifting,	and
our	model	of	distributed-sequential	computing	has	to	be	revisited,	in	favor	of	a	parallel
approach	in	all	its	forms:	multi-threading,	vectorization,	distributed	memory,
GPGPU...	Our	software	has	to	adapt	at	a	forced	pace,	and	our	physicists	are	asked	to	write
thread-safe,	functional,	vectorized	code...	without	always	having	clear	instructions	on	how	to
do	it.

Of	course,	this	evolution	of	computing	hardware	affects	all	scientific	communities,	but	we
cannot	simply	observe	and	imitate	what	is	happening	elsewhere,	for	example	in	the	world	of
intensive	computing.	Our	disciplines	have	their	own	specificities	and	constraints,	which
legitimize	targeted	R&D:

Rather	than	"high	performance	computing"	(HPC),	focused	on	the	punctual	realization
of	very	large	simulations	or	treatments,	we	practice	"high	throughput	computing"
(HTC),	with	the	objective	of	exploiting	our	computational	farms	with	the	maximum
efficiency	over	a	long	time.
As	the	grid	is	made	up	of	multiple	sites,	financed	by	independent	sponsors,	we	end	up
with	a	computing	infrastructure	with	very	heterogeneous	hardware	(as	opposed	to
supercomputers).	We	must	therefore	favor	the	most	portable	software	approaches.
Given	the	longer	and	longer	life	span	of	our	experiments,	as	opposed	to	the	ever
faster	changes	in	the	computing	world,	we	must	favor	the	most	durable	approaches,
i.e.	the	ones	that	are	the	least	close	to	the	hardware,	i.e.	favoring	programming
languages	with	a	high	level	of	abstraction,	and/or	"Domain	Specific	Languages"	(DSLs).
After	a	few	decades	of	pushing	object-oriented	programming	to	its	limits,	we	handle
"natural"	data	structures	that	are	generally	hard	to	manipulate	for	modern	hardware,
and	particularly	unsuitable	for	parallelization.	To	put	it	simply,	we	have	a	lot	of
arrays	of	structures,	where	we	should	have	structures	of	arrays.
A	lot	of	our	code	is	too	big	(~MLOCs)	to	be	migrated	entirely:	we	need	to	be	able	to
migrate	only	the	critical	sub-parts,	within	a	set	that	remains	"traditional".	Or	at	least,
we	need	to	be	able	to	migrate	in	stages.

Master-project	and	sub-projects
Genesis
Following	the	2016	IN2P3	Computer	School,	dedicated	to	"Parallelism	on	Heterogeneous
Hardware",
and	sharing	the	observation	made	by	the	HEP	Software	Fundation	in	2017,	that	physics
software	needed	a	"refoundation",	a	group	of	engineers	(and	some	researchers)	proposed	to



IN2P3	to	create	a	set	of	projects	around	the	themes	of	portable	heterogeneous	programming,
hybrid	precision	and	containers.	The	first	two	themes	will	finally	be	taken	in	charge	by	a	single
sub-project	Reprises,	and	the	containers	by	the	sub-project	ComputeOps,	this	within	a	master-
project	Decalog.

A	few	global	recommendations	have	been	made:

Among	the	plethora	of	software	technologies	available,	favor	those	that	preserve
portability	and	durability	of	code	and	its	performance.
Strive	to	collaborate	with	computer	science	and	applied	mathematics	laboratories.
Publish	with	them.	Look	for	interns.	Imagine	co-supervised	theses.
Strive	to	have	some	physicists	in	the	team.	Contribute	to	the	collection	of	tutorials	that
will	be	used	to	disseminate	the	know-how	to	the	largest	possible	technical	and	physics
audience.	Organize	collective	face-to-face	sessions.
Organize	face-to-face	meetings	once	or	twice	a	year,	on	the	model	of	the	first	IN2P3
HPC-HTC	day,	which	brought	together	about	30	people	who	were	already	working	on
these	topics	individually.

In	the	rest	of	this	document,	we	will	mainly	talk	about	activities	related	to	the	"Reprises"	sub-
project	and	its	sympathizers.	If	the	central	theme	is	the	Portability	of	Performance	(facing	more
and	more	heterogeneous	hardware),	it	quickly	appeared	other	P	in	the	problematic,	intricate
one	to	another:

Precision:	new	computational	hardware,	often	oriented	towards	automatic	learning,
reinforces	the	return	of	reduced	floating-point	types	for	computation,	and	one	must
make	sure	that	this	does	not	jeopardize	the	results,	and	does	not	exacerbate	the
numerical	discrepancies	that	can	appear	from	one	hardware	to	another.
Productivity	(of	the	developer):	as	most	of	the	code	is	written	by	non-expert
researchers	(in	computer	science),	it	is	necessary	to	select	affordable	technologies.
Perenniality:	beyond	the	simple	portability	from	one	hardware	to	another,	we	are	of
course	sensitive	to	the	fact	that	a	code	can	last	without	the	need	for	too	frequent
updates	or	rewriting	over	time.
Profiling:	no	performance	is	possible	without	profiling	of	computing	and	data	exchange
times.

The	central	objective	is	to	study	the	new	hardware	used	for	computation	(CPU,	GPU),	and	the
software	evolution	necessary	to	take	advantage	of	it	efficiently,	while	preserving	the	accuracy
of	the	computation,	the	portability,	and	the	durability	of	the	written	code.	By	portability,	we	do
not	mean	the	simple	possibility	to	compile,	but	above	all	to	have	reasonable	performances
considering	the	hardware	capabilities.

The	scope	of	Reprises	does	not	include:

hardware	not	available	in	the	short	term	in	our	computing	centers,	such	as	quantum
computers,
machine	learning,	but	rather	the	lower-level	programming	of	GPUs	that	makes	it
possible,
distributed	computing	(we	limit	ourselves	to	optimization	at	the	level	of	a	single
machine),
operating	systems	other	than	Linux.

First	period	(2017-2019)



The	activities	of	Reprises	started	around	11	engineers,	from	7	laboratories:	IPHC,	IPNO,	LAL,
LAPP,	LLR,	LPC,	LUPM.	The	equivalent	in	FTE/year	is	around	1.5,	and	probably	doesn't	pay	full
tribute	to	the	energy	and	time	devoted	by	all	of	them,	often	in	the	context	of	their	official
physics	collaborations.	Half	of	Decalog's	budget,	about	6	k€/year,	essentially	allowed	them	to
meet	once	or	twice	a	year,	as	well	as	a	few	participations	in	conferences	and	workshops.

At	that	time,	the	main	external	partners	were	neighbors	and	natural	partners	in	the	framework
of	the	Labex	P2IO	of	the	University	Paris-Sud:	IAS,	SERMA	(CEA),	EDF.	P2IO	also	financed	the
ACP	(Accelerated	Computing	for	Physics)	platform	with	43	k€	(AMP	EPYC	server	with	U280
Xilinx	FPGA	board),	which	the	Reprises	engineers	largely	benefited	from	for	their	tests.

The	activities	of	the	group	were	essentially	based	on	monthly	tele-meetings	where	participants
offered	feedback	on	the	tools	and	technologies	evaluated	in	their	respective	physics
collaborations.	Three	technical	themes	quickly	emerged,	around	what	are	the	main
performance	pools	to	be	exploited,	while	striving	to	remain	portable:

CPU	vectorization,
GPU	and	FPGA	acceleration,
the	reasoned	reduction	of	precision.

The	group	has	thus	been	able	to	increase	its	competence,	to	the	point	of	collectively	producing
a	significant	contribution	to	the	IN2P3's	2019	prospects.	In	terms	of	dissemination	of	these
skills	outside	the	group,	we	will	also	note:

5	presentations	at	the	JIs	2018,
contributions	to	the	IN2P3	computer	school	on	functional	programming,
contributions	to	the	3rd	ASTERICS-OBELICS	International	School,
2	presentations	at	the	GPU@CC-IN2P3	workshop
7	publications	(a	majority	in	conference	proceedings).

Note	that	during	this	same	period,	HPC	teams	are	also	mobilized	across	the	Atlantic	on	the
theme	of	portable	performance,	as	evidenced	by	a	site	linked	to	the	DOE
(https://performanceportability.org/)	and	the	P3HPC	workshop	included	in	the	SuperComputing
conference	(https://p3hpc.org/).	There	are	also	some	HPC-like	activities	at	IN2P3,	such	as
plasma	simulation	with	Smilei,	which	primarily	focused	on	MPI	distributed	computing,	but	must
also	now	address	the	node	level	optimization,	and	the	performance	portability	accross	the
french	and	european	super-computers.

Second	period	(2020-2022)
As	the	group	communicated	with	colleagues	of	the	institute,	and	as	participants	moved,	the	list
of	involved	laboratories	was	extended	to	Subatech,	LPNHE	and	L2I,	while	keeping	the	number
of	participants	and	the	FTE	equivalent	rather	stable.

The	usual	budget	has	been	partially	renewed,	but	the	pandemic	having	impacted	the	travels
beyond	the	forecasts,	we	have	been	authorized	to	reconvert	a	part	of	this	budget	in	some
hardware	investments:

in	2020,	a	"mobile"	server	dedicated	to	training	in	computational	optimization	(Intel	18-
core	CPU,	NVidia	Turing	generation	GPU)
in	2021,	a	server	with	an	ARM	processor	(Ampère	Altra	Q32-17),	which	is	still	being
installed.



In	addition	to	regular	exchanges	on	new	technologies,	which	are	published	at	a	steady	pace,
the	group	has	expanded	its	collective	production	for	other	engineers	and	researchers	at	the
Institute:

the	effort	made	for	the	prospectives	has	been	pursued	to	write	a	guide	in	web	format,
with	the	ambition	of	keeping	up	to	date	recommendations	to	physicists;	this	is	still	in
progress,	with	the	objective	of	a	first	communicable	version	for	the	JIs	of	autumn	2022;
the	list	of	available	tutorials	is	growing,	and	they	can	now	be	given	in	person,	in	the
most	remote	vacation	villages	of	the	country,	thanks	to	the	mobile	server	that	has
been	carefully	configured	as	a	mini	computing	center,	with	its	"front-end	nodes"	and	its
"computing	nodes"	served	by	a	batch	system;
contributions	to	doctoral/post-doctoral	nuclear	physics	school	have	been	given
[PhyNuBE	school]	to	raise	awareness	about	parallel	programming	and	precision	issues
among	the	new	generation	of	physics	software	developpers.
a	new	school	on	heterogeneous	programming	is	planned	for	2023,	currently	submitted
to	the	CNRS	as	a	thematic	school,	7	years	after	the	one	where	everything	started.

On	the	side	of	external	partners,	the	links	have	weakened	for	the	moment	with	SERMA	and
EDF,	but	we	have	pursued	our	collaboration	with	IAS	and	our	policy	of	rapprochement	with
computer	science	laboratories,	and	succeeded	in	launching	three	co-supervised	theses:

LUPM	2019-2022:	Optimization	of	the	simulation	of	atmospheric	cascades	for	gamma-
ray	astronomy	experiments.	With	Philippe	Langlois	(LIRMM).
IJCLab	2021-2024:	Configuration	and	control	of	the	accuracy	of	the	calculation,
application	to	low-energy	gamma-ray	measurements.	MITI	funding.	With	Fabienne
Jezequelle	(LIP6).
IJCLab	2021-2024:	GPU	and	performance	portability	-	heterogeneous	approaches	and
applications.	Funded	by	UPSaclay.	With	Joel	Falcou	(LISN).

Some	other	highlights:

participation	to	JIs'20,	JIs'21	and	CHEP'21	;
8	publications	(3	journals,	4	proceedings,	1	invited	presentation).

Technical	highlights
Below,	we	detail	a	little	more	the	major	topics	that	have	caught	our	attention,	namely
vectorization,	GPUs,	FPGAs	and	floating-point	accuracy.

Vectorization
Vectorization	is	one	method	to	perform	multiple	identical	computations	on	different	data	at	the
same	time	in	a	single	CPU	core.
Nowaday,	vectorization	is	crucial	to	use	CPU	effectively.	Since	2018,	CPUs	can	perform	up	to	16
floating	point	operation	per	core	at	the	same	time.	Thus,	not	using	this	computing	opportunity
leads	to	a	direct	lost	of	more	than	93%	of	the	archivable	peak	performance,	even	with	multi-
threading.

Recent	compilers	are	able	to	vectorize	simple	computations	but	generally	fail	if	it	becomes	too
complex.	However,	many	solutions	are	developped	to	solve	this	issue.	Solutions	such	as	SYCL,
Eve,	xtensor,	xsimd	provide	high	or	low	level	API	to	address	both	vectorization	and



architectures	abstraction.	Libraries	such	as	LAPACK,	BLAS	or	ATLAS	provide	vectorized
functions	for	linear	algebra	computation.

When	the	issue	of	the	vectorization	is	solved,	comes	the	variety	of	vectorisable	architectures
(i.e.	Intel	sse2,	ssse3,	sse4.1,	sse4.2,	AVX,	AVX2,	AVX512f,	AVX512wb,	etc).	Precompiling
binaries	for	almost	all	previous	architectures	is	needed	but	tedious	and	generally	can	lead	to
bugs.	Again,	compilers	are	able	to	create	binaries	specialised	on	several	architectures,	but	only
for	computation	they	can	well	optimise.	Otherwise,	linking	has	to	be	done	manually,	or	the
application	has	to	be	compiled	on	the	fly	(this	is	generally	the	choice	of	python	libraries	such	as
numba,	rapids	or	cunumeric).	This	solution	works,	but	compilers	have	to	be	deployed	on
computing	nodes,	and	executed	when	other	jobs	are	computing	or	performing	I/O	operations.
HPC	Proxy,	developped	by	Reprises'	members,	allows	to	generate	an	intermediate	library,
allowing	to	choose	at	runtime	the	implementation	adapted	to	the	current	hardware.	Libraries
generated	with	HPC	Proxy	are	able	to	work	together	in	order	to	diminish	the	number	of
targeted	architectures,	and	simplify	installation	managing.

GPU/FPGA
Much	virtual	ink	has	been	spilled	on	the	appropriateness	of	using	so-called	accelerators,	and
the	right	way	to	program	them.	Of	those,	the	most	advanced	studies	right	now	concern	GPUs
and	FPGAs.

GPU

Pioneers	have	generally	acquired	expertise	in	CUDA	hardware	and	software,	and	prefer	to
cultivate	that	expertise	and	take	advantage	of	the	new	features	that	NVidia	keeps	adding	to
keep	ahead	of	the	competition.	This	has	the	obvious	drawback	of	strengthening	NVidia's
monopoly	on	GPU	computing,	enabling	one	company	to	single-handedly	direct	the	evolution	of
GPUs	in	directions	that	may	not	be	beneficial	to	scientists,	for	example	by	increasing	hardware
prices	or	priorizing	features	that	are	hard	to	apply	to	scientific	research	like	neural	network
inference.

OpenMP,	a	hallmark	of	HPC,	has	also	been	adapted	to	GPU	use	for	a	long	time,	and	HPC	tools
such	as	Smilei	currently	favor	this	approach,	especially	for	the	use	of	AMD	GPUs,	and	soon	Intel
ones.	Yet,	OpenMP's	directive-based	programming	model	and	very	low-level	configuration
mechanism	(where	matters	such	as	loop	unrolling	must	be	tuned	explicitly)	makes	it	hard	to
use	in	higher-level	programming	languages	like	C++,	especially	if	good	performance	on
multiple	hardware	targets	is	desired.	A	higher-level	alternative	called	OpenACC	was	devised,
but	it	was	never	well	supported	outside	of	the	NVidia	ecosystem,	and	remains	tedious	to	use
from	C++.	True	to	their	directives	approach,	the	Smilei	team	mixes	OpenMP	and	OpenACC	with
the	help	of	preprocessor	instructions.	As	is	almost	always	the	case,	simplification	and
portability	for	the	developer	comes	at	the	cost	of	increased	complexity	of	the	compilation
machinery.

OpenACC	can	also	be	used	for	Fortran	environment	where	the	Matlab-like	array	expressions
gracefully	capture	vector-type	parallelism.	At	IJCLab,	it	has	proved	efficient	on	a	theoretical
nuclear	astrophysics	code	to	compute	electron	capture	cross-section	in	nuclei	during	neutron
star	collapse.	Moving	to	GPU	provided	some	speedup,	strongly	depending	(from	one	to	five)	on
hardware	generation	and	amount	of	memory,	but	a	speedup	of	two	already	came	from	the
rewriting	of	code	in	vectorizable	array	expression,	on	top	of	a	speedup	of	fifty	from	optimizing
the	naive	sequential	code.	Many	tracks	can	yet	be	explored:	newer	generations	of	GPU	have
new	compute	capabilities,	such	as	direct	matrix	products,	as	well	as	larger	memory,	splitting



the	work	across	multiple	GPU	should	also	be	assessible	in	OpenACC's	high-level	language.
Operational	issues	have	been	a	burden,	when	sharing	the	GPU	between	different	Operating
Systems	in	containers:	GPU	systems	version	are	changing	often,	and	should	live	with	a	recent
OS	and	software	stack	for	development	purposes,	while	the	lab	central	servers	have	to	stay
with	older	and	more	stable	OS.

Advocates	of	less	proprietary	solutions	initially	focused	on	OpenCL,	invoking	easier	portability
to	Intel's	then-popular	Xeon	Phi	platform.	But	OpenCL	is	another	tedious	API	to	program,	and
Intel	has	since	abandoned	the	Xeon	Phi	hardware	line.	This,	together	with	the	need	for	direct
hardware	manufacturer	support	(which	NVidia	will	only	provide	with	extreme	moderation)
makes	OpenCL	a	less	popular	choice	these	days,	though	it	is	still	useful	for	embedded
computing	and	FPGAs.

The	Khronos	group,	who	maintain	the	OpenCL	specification,	has	also	introduced	SYCL,	a	single-
source	C++	programming	model	whose	look	and	feel	is	closer	to	that	of	CUDA.	Initially	meant
to	be	an	abstraction/convenience	layer	atop	OpenCL,	SYCL	has	more	recently	evolved	into	a
backend-agnostic	direction,	allowing	direct	implementation	over	manufacturer-specific	APIs	like
CUDA,	which	bypasses	the	need	for	direct	manufacturer	support	that	held	OpenCL	back.

SYCL's	popularity	has	been	on	a	steady	rise	since	Intel	has	made	it	a	central	part	of	its	new
oneAPI	programming	model,	as	part	of	its	ongoing	return	to	the	GPU	manufacturing	business.
As	long	as	one	pays	close	attention	to	Intel's	tendency	to	liberally	promote	extensions	that	are
not	part	of	the	standard	SYCL	specification	when	said	specification	does	not	progress	fast
enough	for	their	taste,	this	is	a	very	positive	evolution.

The	use	of	SYCL	for	HEP	particle	tracking	is	being	investigated	at	IJCLab,	among	other	places
and	notably	led	to	the	"Comparing	SyCL	data	transfer	strategies	for	tracking	use	cases"
publication	at	ACAT	2021.

Before	SYCL	became	popular,	another	approach	that	was	widely	taken	was	to	have	an
abstraction	layer	that	can	dispatch	to	either	OpenMP,	CUDA,	or	HIP	(an	AMD	technology	that
provides	a	CUDA-like	API	on	top	of	either	CUDA	itself	or	AMD's	software	stack).	Examples
include	Raja,	Kokkos	and	Alpaka,	as	well	as	offerings	taking	a	more	aggressive	code	generation
approach	like	SkePU.	Many	of	these	frameworks	also	attempt	to	provide	higher-level
programming	primitives	(data	structures	and/or	algorithms),	which	means	that	there	might	still
be	a	benefit	to	using	them,	especially	if	they	managed	to	support	SYCL	as	a	backend	(which	so
far	has	proven	very	difficult	as	they	make	lots	of	CUDA-specific	assumptions	in	their
implementation).

But	these	same	high-level	constructs	also	often	make	it	harder	to	port	existing	CUDA
codebases	into	code	that	make	idiomatic	use	of	the	framework's	higher-level	constructs,	and
introduces	a	higher	risk	of	ending	up	betting	on	a	software	project	that	will	ultimately	prove	to
be	a	dead	end.	Especially	given	that	at	this	point	in	time,	there	is	no	clear	winner	emerging
among	all	these	options	:	while	Kokkos	is	generally	most	popular,	some	projects	also	have	a
strong	political	stance	against	it	as	a	result	of	it	being	engineered	by	proud	atomic	bomb
manufacturers.

As	programming	language	standards	evolve,	it	also	becomes	possible	to	envision	making	GPU
programming	part	of	the	language's	standard	capabilities,	without	any	need	for	supplementary
frameworks	or	APIs.	An	early	example	of	this	is	provided	by	NVidia's	newer	compilers,	which
allow	standard	C++	or	Fortran	programs	using	the	language-provided	abstract	parallel
programming	facilities	to	be	transparently	ported	to	the	GPU	just	by	rebuilding	them	with	the
vendor-supplied	compiler,	often	with	reasonable	execution	performance.



This	standards-driven	approach	does	not	yet	provide	a	full	GPU	programming	model	matching
the	capabilities	of	other	approaches,	however.	For	example	it	does	not	yet	include	explicit	data
movement	primitives,	instead	relying	on	the	GPU	driver's	ability	to	automatically	move	data
between	the	CPU	and	the	GPU,	which	may	result	in	suboptimal	performance.	Mostly	because
programming	languages	themselves	do	not	yet	have	such	primitives	in	their	standard
vocabulary.

Given	SYCL's	intent	to	ultimately	become	part	of	C++'s	standard	feature	set,	there	is	hope	that
this	will	eventually	change,	but	at	the	pace	of	C++	evolution	such	a	change	could	take	many
years	to	materialize,	and	even	longer	to	be	supported	by	compilers	other	than	those	of	each
individual	GPU	manufacturer.	We	will	come	back	to	why	the	latter	is	a	problem	later	on.

An	even	higher-level	alternative	is	provided	by	the	use	of	ready-made	libraries,	mostly	provided
by	GPU	manufacturers,	implementing	common	computations	(linear	algebra,	fast	Fourier
transform,	neural	network	training...)	using	the	GPU	under	the	hood.	This	is	the	approach	that
is	most	commonly	used	in	programming	languages	like	Python,	and	that	should	be	especially
encouraged	for	programmers	who	are	not	GPU	experts,	although	it	only	works	well	where	a
large	chunk	of	the	computation	to	be	performed	is	already	available	as	a	pre-made	library.

Finally,	a	section	on	GPU	computing	would	not	be	complete	without	mentioning	the	growing
issue	of	vendor	software	stacks.	Unlike	in	CPU	computing,	where	widely	available	compilers
such	as	gcc	and	clang	can	target	pretty	much	every	popular	CPU	architecture	out	there,	GPU
computing	tends	to	be	tied	to	software	that	is	directly	provided	by	GPU	vendors.	Such	software
is	often	less	mature	than	equivalent	CPU	offering,	for	example	it	tends	to	be	significantly
harder	to	install	and	to	feature	compilers	that	will	reject	valid	standard	code	constructs.
Combined	to	the	general	unavailability	of	vendor	support	staff,	this	raises	new	software
portability	challenges.

Vendors	also	remove	support	for	older	hardware	in	newer	software,	partly	to	encourage	new
purchases,	which	raises	questions	of	planned	obsolescence	and	computation	repeatability.
Here,	it	would	be	beneficial	to	investigate	avenues	for	archiving	older	vendor	software	stacks
before	they	disappear,	and	for	streamlining	the	general	process	of	installing	GPU	computing
stacks.

FPGA

In	the	HEP,	the	FPGAs	are	generally	known	as	parts	of	the	read-out	chains,	treating	the
detector	signals	coming	from	the	read-out	cards	and	applying	more	or	less	complex	algorithms,
being	capable	to	generate	selection	decisions	like	the	event	triggers.	This	can	already	be	seen
as	a	non-standard	calculus	and	it	was	the	starting	point	to	think	about	asking	more	from	this
kind	of	hardware	resources.	Two	technologies	existed	on	the	market,	Altera	and	Xilinx,	the
latter	created	by	the	inventor	of	the	FPGA.	OpenCL,	a	product	of	the	Khronos	group,	was
quickly	adopted	as	the	standard	for	implementing	real	computing	on	FPGAs,	and	enthusiastic
volunteers	–	and	specialists	in	“direct”	FPGA	programming	-	started	to	work	by	the	side	of	the
FPGA	manufacturers	to	build	the	so	called	Board	Support	Packages,	containing	the	necessary
basic	FPGA	firmware	allowing	to	translate	the	OpenCL	language	units	in	an	optimal	way	(an
FPGA	is	tunable	in	almost	every	aspect,	thus	quite	tricky	to	adjust).

In	2017,	the	electronics	department	of	CERN	organized	a	seminar	followed	by	a	hands-on
workshop	with	experts	from	Intel	(fresh	owner	of	Altera	at	that	time),	which	represented	the
start	of	a	partnership	between	CERN	and	Intel.	The	trigger-less	read-out	of	the	LHCb	detector
was	the	first	one	to	test	a	combination	of	Intel	Xeon	and	FPGA,	on	a	two	socket	server.	On	the



Machine	Learning	side,	Xilinx	occupied	quickly	the	place	with	the	HLS4ML	package	(High	Level
Synthesis	for	Machine	Learning,	with	a	Python	interface)	for	fast	inference	of	deep	neural
networks	used	for	level	1	trigger	and	data	acquisition.

This	event	was	pushing	forward	the	interest	for	this	domain	and	established	this	subject	within
the	Reprises	project	from	the	very	beginning.

Unfortunately,	the	harsh	competition	between	Intel	and	Xilinx	(now	part	of	AMD)	put	an	end	to
the	“romantic	epoch”	of	playing	around	by	programming	all	kind	of	code	on	the	FPGAs	using
plain	OpenCL	and	studying	the	performances	in	speed	and	numerical	precision.	Today	the
flagship	is	Machine	Learning	and	other	AI	applications	and	the	two	companies	have	narrowed
their	activity	towards	the	production	of	powerful	computing	solutions	(and	quite	expensive),
with	targeted	software	and	applications	(AMD/Xilinx	seems	to	be	slightly	ahead).	The	dynamic
on	the	market	of	their	products	and	their	prices	demands	a	serious	commitment	and	important
resources	in	order	to	keep	track	with	the	rapid	evolution	in	this	field	(CERN	was	able	to	raise
such	a	task	force).

Many	things	have	been	learned	during	those	years	and	their	large	majority	is	still	valid.	The
accumulated	expertise	allows	us	to	efficiently	follow	what	is	happening	now	and	what	will	come
in	the	next	years	and,	more	useful,	to	provide	reasonable	counsels	for	starting	to	invest	in	and
use	such	hardware	resources	for	the	HEP	projects	in	the	IN2P3	laboratories.

Precision
While	reducing	the	precision	may	keep	accuracy	of	the	computation	good	enough	for	the
scientific	goal	and	provide	some	speedup	at	the	same	time,	this	equilibrium	must	be	tested
experimentaly:	beyond	the	measurement	of	speedup,	the	code	has	to	be	converted,	but	also
sometimes	tuned,	for	other	precisions	than	the	default	one	and	the	achieved	accuracy	for
these	other	precisions	must	be	evaluated.

Yet	another	aspect	is	to	obtain	a	definite	statement	on	the	accuracy	goal	of	the	collaboration:
the	computing	aspect	of	the	knowledge	extraction	process	must	be	assessed	in	the	same	way
as,	for	instance,	the	detector	aspect:	the	uncertainties,	both	systematic	and	statistical,	have	to
be	studied	carefully.	In	our	case,	uncertainties	exist	at	the	levels	of	the	numerical	method,	of
implementation	and	specific	set	of	libraries,	of	the	rounding	settings	as	well	as	the	selected
level	of	precision.	An	article	has	been	written	(Revisiting	"What	Every	Computer	Scientist
Should	Know	About	Floating-point	Arithmetic")	to	provide	examples	of	good	numerical
practices	relevant	to	the	physics	community.	Furthermore,	these	numerical	aspects	have	been
included	in	a	lecture	about	good	computing	practices	given	at	PhyNuBE	school	(Low	Energy
Nuclear	Physics)	(https://indico.in2p3.fr/event/20625/).

As	for	the	precision	conversion,	we	usually	rely	on	the	generic	programming	paradigm,	with
varied	ease	of	use	within	different	languages	ecosystems,	but	this	is	only	the	tip	of	the	iceberg:
the	numerical	methods	may	also	change	with	the	precision	level	(such	as	expansion	to	higher
order	requiring	new	coefficients).	C++	provides	easy	ways	to	access	genericity,	and	even
modern	Fortran	allows	enough	simple	genericity	to	adress	these	issues.

Concerning	the	control	of	the	accuracy	of	floating-point	computing,	the	French	computer
science	community	seems	to	be	at	the	forefront,	in	particular	on	stochastic	arithmetic	tools.
The	authors	of	the	three	best-known	tools	(Cadna,	Verrou	and	Verificarlo)	are	now	cooperating
within	the	InterFLOP	consortium	(https://www.interflop.fr/).



The	engineers	of	IN2P3	are	following	this	movement	closely.	After	having	cooperated	with	the
authors	of	Verrou	(Floating-point	profiling	of	ACTS	using	Verrou),	a	thesis	is	co-
supervised	with	Fabienne	Jezequel,	around	the	use	of	CADNA	on	a	nuclear	physics	code	(Agata
collaboration	Pulse	Shape	Analysis).	Our	first	works	around	CADNA	have	focused	on	the
compatibility	of	the	tool	with	some	of	the	most	important	libraries	of	the	domain	:	Eigen,	ROOT,
Eigen	being	a	template	library	proved	easy	to	instrument.	Basic	comparisons	for	matrix
inversion	and	diagonalisation	have	confirmed	the	stability	of	the	algorithms,	even	for	ill-
conditioned	matrices.

The	work	on	Pulse	Shape	Analysis	confirmed	the	memory-boundness	of	the	algorithm:	90%	of
time	is	lost	in	cache-misses.	Usual	speedup	strategies	such	as	vectorization	have	no	effect	in
this	case.	We	have	plans	to	reduce	the	precision	to	half-precision	(FP16	soon	and	even	BF16	for
a	future	GPU	version)	knowing	that	we	can	assert	the	resulting	accuracy	with	CADNA.
What	is	more,	CADNA	has	shown	a	number	of	numerical	instabilities	in	the	algorithm.	We	also
plan	to	test	fixed	point	computations,	which	should	prove	useful	in	online	computing.

Some	recommendations	are	easy	to	implement	for	non-experts,	and	particularly	on	new
projects:	define	all	floating	point	variables	with	a	generic	type,	and	then	be	able	to	change	it
for	every	compilation	between	FP32	(float),	FP64	(double),	FP80	(long	double).	For	Precision,	as
well	as	for	Performance,	some	dedicated	metrology	has	appeared	necessary,	and	non-experts
should	contact	reference	members	of	the	collaboration.

SWOT-like	final	comments
Internal	strengths
The	design,	construction	and	implementation	of	very	large	equipment,	especially	in	particle
physics,	allows	IN2P3	to	have	a	large	population	of	engineers,	and	also	very	large	equipment	in
scientific	computing,	where	the	heterogeneity	of	the	material	is	very	large,	and	the	portability
of	the	code	a	primary	concern.	The	institute	can	and	must	be	at	the	forefront	of	this	subject
and	work	in	concert	with	CERN	and	the	major	laboratories	in	the	field.

External	opportunities
The	persistent	competition	between	NVidia	and	Intel	allows	the	former	to	avoid	definitively
installing	its	monopoly	on	accelerators,	and	the	latter	to	indirectly	advance	more	portable
solutions.	Let's	hope	it	lasts...

The	dynamism	of	French	computer	science	research	is	both	an	opportunity	(especially	in
floating-point	computing)	and	a	threat,	in	the	sense	that	it	controls	teaching	and	attracts	the
best	students	in	the	field.	We	advocate	a	systematic	cooperation	with	computer	science
laboratories,	and	a	concretization	of	these	cooperations	around	interns	and	co-supervised	PhD
students,	while	remaining	vigilant	on	the	fact	that	computer	science	researchers	may	be	less
concerned	than	we	are	about	the	concrete	and	short-term	application	of	the	latest	advances.	It
is	also	necessary	to	offer	courses	in	scientific	computing	to	M2	students.

We	must	also	emphasize	that	the	particle	physics	community	is	very	organized,	notably
through	the	HEP	Software	Fundation,	or	European	projects	such	as	Aida200	and	AidaInnova.	By
participating	in	these	activities,	we	can	meet	international	experts,	and	better	motivate
industrialists	to	take	our	priorities	into	account.



Internal	weaknesses
The	management	of	IN2P3	R&D	projects	is	inspired	by	the	management	of	physics	projects,
which	leads	to	some	difficulties,	starting	with	the	counting	of	contributions	in	FTEs.	Because
they	are	not	always	encouraged	by	their	management	to	spend	a	significant	part	of	their	time
on	projects	of	general	interest	(more	general	than	the	laboratory),	most	of	the	engineers
contribute	within	the	framework	of	the	physics	collaborations	to	which	they	are	attached,	and
will	always	prefer	to	declare	most	of	their	FTEs	in	these	collaborations,	because	this	conditions
the	budgets	granted	by	the	institute.	This	is	even	more	true	for	physicists.	The	system	thus
encourages	isolated	work,	with	certainly	exchanges	of	feedback,	but	to	the	detriment	of
transverse	productions.	Would	a	more	matrix-based	counting	system	allow	a	better	account	of
R&D	contributions	?

More	generally,	since	there	are	many	specialties	and	few	specialists,	we	may	dream	the
institute	to	find	a	way	to	create	cross-laboratory	teams	(if	possible	without	forcing	all	the
institute's	engineers	to	migrate	to	the	CC).	In	a	world	that	is	converting	to	telework,	why	not
tele-teams	IN2P3?	But	how	to	reward	the	laboratories	for	the	time	that	these	engineers	would
spend	outside,	for	example	in	a	task	force	profiling,	performance,	portability?	One	can	also
wonder	about	the	fragility	of	activities	that	rely	on	a	single	specialist	at	the	level	of	the
institute,	on	subjects	as	fundamental	as	floating-point	computing	for	example.

As	far	as	test	equipment	(and	sometimes	software)	is	concerned,	we	can	see	that	the	project
has	been	able	to	use	opportunistically	equipment	acquired	by	others	(P2IO),	or	to	make	some
purchases	in	the	very	particular	context	of	COVID.	But	it	would	be	much	more	efficient	to	have
a	centralized	platform	somewhere,	with	its	own	dedicated	operating	engineer	and	a	permanent
budget	for	acquiring	new	equipment	as	it	becomes	available.	CERN	had	such	a	structure,	the
TechLab...	which	it	seems	to	have	stopped.	It	would	be	instructive	to	know	why.

Finally,	we	know	the	benefits	of	working	in	cooperation	with	computer	laboratories.	It	is	a	long-
term	work,	which	is	only	fully	motivating	for	every	partner	if	this	cooperation	is	done	through
shared	doctoral	students	and	interns.	This	raises	the	problem	of	funding.	The	funding	of	the
trainees	is	entirely	based	on	private	resources	of	the	laboratories.	Isn't	this	a	handicap	for	the
smallest	of	them	?	HdR	and	technical	theses	are	strongly	encouraged...	as	long	as	their	funding
does	not	come	in	deduction	of	the	one	of	pure	physics	or	pure	computer	science	theses,	and
the	windows	for	inter-disciplinary	subjects	are	few.	The	current	"good"	phase	is	perhaps	only	a
positive	statistical	fluctuation.

External	Threats
While	GPU	portability	tools	are	more	and	more	focused	on	advanced	languages	such	as	C++,
the	young	recruits	of	the	institute	arrive	more	and	more	with	a	basic	Python	culture,	and	a
reluctance	to	use	other	languages,	perceived	as	more	complex	and	dedicated	to	specific	niches
in	which	they	do	not	want	to	be	locked.	As	time	goes	by,	we	could	lose	our	ability	to	develop
powerful	frameworks	tailored	to	our	problems,	and	depend	on	what	players	such	as	NVidia,
Intel,	Google...	will	provide	us.

Also,	the	ease	of	writing	portable	code	often	comes	with	increased	complexity	of	backend
installation,	build	mechanics	and	code	distribution.	Those	who	have	been	around	SYCL	know
this.	The	institute	definitively	need	more	specialists	in	advanced	server	administration,
software	distribution,	DevOps	and	containers.



References
Publications
2021

A	Common	Tracking	Software	Project	(https://arxiv.org/abs/2106.13593),	Xiaocong	Ai	et
al.	(dont	H.Grasland).
A	C++	Cherenkov	photons	simulation	in	CORSIKA	8
(https://doi.org/10.1051/epjconf/202125103011),	Matthieu	Carrère,	Luisa	Arrabito,
Johan	Bregeon,	David	Parello,	Philippe	Langlois	and	Georges	Vasileiadis.

2020

Optimizing	Cherenkov	Photons	Generation	and	Propagation	in	CORSIKA	for	CTA	Monte–
Carlo	Simulations	(https://arxiv.org/abs/2006.14927),	Luisa	Arrabito,	Konrad	Bernlöhr,
Johan	Bregeon,	Matthieu	Carrère,	Adnane	Khattabi,	Philippe	Langlois,	David	Parello,	and
Guillaume	Revy.
Revisiting	"What	Every	Computer	Scientist	Should	Know	About	Floating-point
Arithmetic"	(https://doi.org/10.48550/arXiv.2012.02492),	Vincent	Lafage

2019

Adaptive	SIMD	optimizations	in	particle-in-cell	codes	with	fine-grain	particle	sorting
(https://arxiv.org/abs/1810.03949)	,	Arnaud	Beck,	Julien	Dérouillat,	Mathieu	Lobet,
Asma	Farjallah,	Francesco	Massimo,	Imen	Zemzemi,	Frédéric	Perez,	Tommaso	Vinci,
Mickael	Grech.
A	deep	neural	network	method	for	analyzing	the	CMS	High	Granularity	Calorimeter
(HGCAL)	events	(https://zenodo.org/record/3599481),	G.	Grasseau,	Abhinav	Kumar,
Andrea	Sartirana,	Artur	Lobanov,	Florian	Beaudette,	Pierre	Ouannes.
Performance	optimization	of	the	air	shower	simulation	program	for	the	Cherenkov
Telescope	Array	(https://doi.org/10.1051/epjconf/201921405041),	Matthieu	Carrère,
Luisa	Arrabito,	Konrad	Bernlöhr,	Johan	Bregeon,	Gernot	Maier,	Philippe	Langlois,
David	Parello,	Guillaume	Revy.

2018

Polynomial	data	compression	for	large-scale	physics	experiments
(https://arxiv.org/abs/1805.01844),	Pierre	Aubert,	Thomas	Vuillaume,	Gilles	Maurin,
Jean	Jacquemier,	Giovanni	Lamanna,	Nahid	Emad.
Data	Analysis	with	SVD	for	Physical	Expriments,	Application	to	the	Cherenkov	Telescope
Array	(http://meetings.siam.org/sess/dsp_talk.cfm?p=89494),	Pierre	Aubert,	Thomas
Vuillaume,	Florian	Gaté,	Gilles	Maurin,	Jean	Jacquemier,	Nahid	Emad,	Giovanni
Lamanna.
Floating-point	profiling	of	ACTS	using	Verrou	(https://www.epj-
conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_05025/epjconf_chep2018_05025.html)
Hadrien	Grasland,	David	Chamont,	François	Févotte,	Bruno	Lathuilière.
Deployment	of	a	Matrix	Element	Method	code	for	the	ttH	channel	analysis	on	GPU's
platform	(https://www.epj-
conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06028/epjconf_chep2018_06028.html)
G.	Grasseau,	F.	Beaudette,	A.	Zabi,	C.	Martin	Perez,	A.Chiron,	T.	Strebler,	G.	Hautreux.

https://arxiv.org/abs/2106.13593
https://doi.org/10.1051/epjconf/202125103011
https://arxiv.org/abs/2006.14927
https://doi.org/10.48550/arXiv.2012.02492
https://arxiv.org/abs/1810.03949
https://zenodo.org/record/3599481
https://doi.org/10.1051/epjconf/201921405041
https://arxiv.org/abs/1805.01844
http://meetings.siam.org/sess/dsp_talk.cfm?p=89494
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_05025/epjconf_chep2018_05025.html
https://www.epj-conferences.org/articles/epjconf/abs/2019/19/epjconf_chep2018_06028/epjconf_chep2018_06028.html


Before

Matrix	element	method	for	high	performance	computing	platforms
(https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092009),	G.	Grasseau,	D.
Chamont,	F.	Beaudette,	L.	Bianchini,	O.	Davignon,	L.	Mastrolorenzo,	C.	Ochando,	P.
Paganini,	T	Strebler.

Reports

Rapport	de	prospective	pour	l'IN2P3
(https://reprises.in2p3.fr/ressource/docs/prospective-gt09-reprises-rapport-v3.pdf)
Présentation	lors	du	GT09	(https://reprises.in2p3.fr/ressource/docs/prospective-gt09-
reprises-presentation-pppp.pdf)

Webography
Reprises

Webinaire	:	Retour	sur	la	conférence	de	Nvidia	GTC	2022
(https://indico.in2p3.fr/event/27394/)
Webinaire	:	Retour	sur	la	conférence	de	Nvidia	GTC	2021
(https://indico.in2p3.fr/event/25027/)
Retour	sur	la	conférence	de	Nvidia	GTC	2020
(https://gitlab.in2p3.fr/CodeursIntensifs/Reprises/-/wikis/reunion-2020-05-27)
Guide	Reprises	(https://reprises.in2p3.fr/)
Quatrieme	Reprise	(2022)	(https://indico.in2p3.fr/event/25485/)
Prospectives	IN2P3,	GT09	:	le	point	de	vue	du	collectif	Reprises	(2019)
(https://reprises.in2p3.fr/ressource/docs/prospective-gt09-reprises-rapport-v3.pdf)
Troisieme	Reprise	(2019)	(https://indico.in2p3.fr/event/20057/)
Deuxieme	Reprise	(2019)	(https://indico.in2p3.fr/event/18881/)
Premiere	Reprise	(2018)	(https://indico.in2p3.fr/event/17470/)

IN2P3	Computing

13e	Journées	Informatiques	IN2P3/IRFU	(2021)	(https://indico.in2p3.fr/event/25008/)
Journées	R&T	IN2P3	(2021)	(https://indico.ijclab.in2p3.fr/event/6256/)
12èmes	Journées	Informatiques	IN2P3/IRFU	(2020)
(https://indico.in2p3.fr/event/21046/)
11èmes	Journées	Informatique	IN2P3/IRFU	(2018)	(https://indico.in2p3.fr/event/17206/)
Projets	IN2P3	R&D	transverse	"Calcul&Données"	(2018)
(https://indico.in2p3.fr/event/16883/)
Activités	et	vision	pour	le	domaine	HTC	/	HPC	(2017)
(https://indico.in2p3.fr/event/14008/)(un	talk	de	ma	part)
Journée	Calcul	(2017)	(https://indico.in2p3.fr/event/14075/)

Plateforms

GridCL	(http://polywww.in2p3.fr/projet-gridcl)
ACP	(https://gitlab.in2p3.fr/grasseau/acp-public/-/wikis/home)
CERN	Techlab
(https://twiki.cern.ch/twiki/bin/view/HardwareLabs/HardwareLabsPublic/TechLab)

CNRS,	INRIA,	ORAP

https://iopscience.iop.org/article/10.1088/1742-6596/664/9/092009
https://reprises.in2p3.fr/ressource/docs/prospective-gt09-reprises-rapport-v3.pdf
https://reprises.in2p3.fr/ressource/docs/prospective-gt09-reprises-presentation-pppp.pdf
https://indico.in2p3.fr/event/27394/
https://indico.in2p3.fr/event/25027/
https://gitlab.in2p3.fr/CodeursIntensifs/Reprises/-/wikis/reunion-2020-05-27
https://reprises.in2p3.fr/
https://indico.in2p3.fr/event/25485/
https://reprises.in2p3.fr/ressource/docs/prospective-gt09-reprises-rapport-v3.pdf
https://indico.in2p3.fr/event/20057/
https://indico.in2p3.fr/event/18881/
https://indico.in2p3.fr/event/17470/
https://indico.in2p3.fr/event/25008/
https://indico.ijclab.in2p3.fr/event/6256/
https://indico.in2p3.fr/event/21046/
https://indico.in2p3.fr/event/17206/
https://indico.in2p3.fr/event/16883/
https://indico.in2p3.fr/event/14008/
https://indico.in2p3.fr/event/14075/
http://polywww.in2p3.fr/projet-gridcl
https://gitlab.in2p3.fr/grasseau/acp-public/-/wikis/home
https://twiki.cern.ch/twiki/bin/view/HardwareLabs/HardwareLabsPublic/TechLab


45e	Forum	:	Quelles	précisions	pour	le	HPC	?	(2020)	(http://orap.irisa.fr/45e-forum-
quelles-precisions-pour-le-hpc/)
44e	Forum	:	Concilier	pérennité	et	performance,	quels	défis	pour	l’Exascale?	(2019)
(http://orap.irisa.fr/44e-forum-concilier-perennite-et-performance-quels-defis-pour-
lexascale/)
Precision,	Reproductibilité	en	Calcul	et	Informatique	Scientifique	(2017)
(https://precis.sciencesconf.org/)
Interflop	(https://github.com/interflop/interflop)

AIDA	european	projects

AidaInnova	WP12	(https://aidainnova.web.cern.ch/wp12)
Aida	2020	WP	(http://aida2020.web.cern.ch/activities/wp3-advanced-software)

CERN

CERN	Compute	Accelerator	Forum	(https://indico.cern.ch/category/12741/)
ATLAS	Heterogeneous	Computing	and	Accelerator	Forum	(HCAF)
(https://indico.cern.ch/category/7001/)	(HCAF)
ACTS	Parallelization	(https://indico.cern.ch/category/7968/)

HEP	Software	Fundation

HEP	Software	Foundation	(http://hepsoftwarefoundation.org/)
HSF	WLCG	Virtual	Workshop	on	New	Architectures,	Portability,	and	Sustainability	(2020)
(https://indico.cern.ch/event/908146/timetable/)
HSF	Training	(https://indico.cern.ch/category/10294/)
HSF	C++	(https://github.com/hsf-training/cpluspluscourse)

HEP	Conferences

ACAT	21	(https://indico.cern.ch/event/855454/)
vCHEP	21	(https://indico.cern.ch/event/948465/)
JLab	Software	and	Computing	Round	Table	(https://www.jlab.org/software-and-
computing-round-table)

High	Performance	Computing

P3HPC	(https://p3hpc.org/)
Portability	Across	DOE	Office	of	Science	HPC	Facilities
(https://performanceportability.org/)
IOWCL	(https://www.iwocl.org/)
ISC-HPC	(https://www.isc-hpc.com/id-2020.html)

Schools

PhyNuBE	school:	Parallel	programming
(https://indico.in2p3.fr/event/20625/contributions/101997/)
PhyNuBE	school:	Good	computing	practices	for	physicists	and	PhD	students
(https://indico.in2p3.fr/event/20625/contributions/97682/)
Ecole	informatique	IN2P3	"Utilisation	de	la	programmation	fonctionnelle	dans	nos
environnements	scientifiques"	(2019)
(http://formation.in2p3.fr/Info19/ProgFonct19.html)
3rd	ASTERICS/OBELICS	international	school	(https://www.asterics2020.eu/event/third-
asterics-obelics-international-school)

http://orap.irisa.fr/45e-forum-quelles-precisions-pour-le-hpc/
http://orap.irisa.fr/44e-forum-concilier-perennite-et-performance-quels-defis-pour-lexascale/
https://precis.sciencesconf.org/
https://github.com/interflop/interflop
https://aidainnova.web.cern.ch/wp12
http://aida2020.web.cern.ch/activities/wp3-advanced-software
https://indico.cern.ch/category/12741/
https://indico.cern.ch/category/7001/
https://indico.cern.ch/category/7968/
http://hepsoftwarefoundation.org/
https://indico.cern.ch/event/908146/timetable/
https://indico.cern.ch/category/10294/
https://github.com/hsf-training/cpluspluscourse
https://indico.cern.ch/event/855454/
https://indico.cern.ch/event/948465/
https://www.jlab.org/software-and-computing-round-table
https://p3hpc.org/
https://performanceportability.org/
https://www.iwocl.org/
https://www.isc-hpc.com/id-2020.html
https://indico.in2p3.fr/event/20625/contributions/101997/
https://indico.in2p3.fr/event/20625/contributions/97682/
http://formation.in2p3.fr/Info19/ProgFonct19.html
https://www.asterics2020.eu/event/third-asterics-obelics-international-school


Ecole	informatique	IN2P3	"Parallélisme	sur	Matériel	Hétérogène"	(2016)
(https://indico.in2p3.fr/event/13126/)

Lectures

CADNA	(https://www-pequan.lip6.fr/~jezequel/AFAE.html)
EVE	(https://jfalcou.github.io/eve/simd-101.html)
PERF	(https://grasland.pages.in2p3.fr/tp-perf/)
Introduction	au	C++
(https://lappweb.in2p3.fr/~paubert/introductioncplusplus/index.html)
Introduction	to	code	optimisation
(https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/index.html)
Introduction	to	Valgrind
(https://lappweb.in2p3.fr/~paubert/INTRODUCTION_VALGRIND/index.html)
Introduction	to	GDB
(https://lappweb.in2p3.fr/~paubert/INTRODUCTION_GDB/index.html)
Development	and	optimisation
(https://lappweb.in2p3.fr/~paubert/DEVELOPMENT_AND_OPTIMISATION/index.html)
Performance	with	Nan	and	other	exotic	values
(https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_NAN/index.html)
Introduction	à	Gitlab
(https://lappweb.in2p3.fr/~paubert/INTRODUCTION_GITLAB/index.html)
Introduction	to	Maqao
(https://lappweb.in2p3.fr/~paubert/INTRODUCTION_MAQAO/index.html)
Performance	with	stencil
(https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html)

Industrials

"HPC	a	clever	mix	between	hardware	and	software",	Pierre	Aubert,	2020	for	DELL	Swiss

https://indico.in2p3.fr/event/13126/
https://www-pequan.lip6.fr/~jezequel/AFAE.html
https://jfalcou.github.io/eve/simd-101.html
https://grasland.pages.in2p3.fr/tp-perf/
https://lappweb.in2p3.fr/~paubert/introductioncplusplus/index.html
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/index.html
https://lappweb.in2p3.fr/~paubert/INTRODUCTION_VALGRIND/index.html
https://lappweb.in2p3.fr/~paubert/INTRODUCTION_GDB/index.html
https://lappweb.in2p3.fr/~paubert/DEVELOPMENT_AND_OPTIMISATION/index.html
https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_NAN/index.html
https://lappweb.in2p3.fr/~paubert/INTRODUCTION_GITLAB/index.html
https://lappweb.in2p3.fr/~paubert/INTRODUCTION_MAQAO/index.html
https://lappweb.in2p3.fr/~paubert/PERFORMANCE_WITH_STENCIL/index.html

