

MIMAC

MIcro-tpc MAtrix of Chambers for 3D-Directional Dark Matter detection

Daniel Santos LPSC-Grenoble October 23rd 2023

Directional detection principle

The only signature able to correlate the rare events in a detector to the DM galactic halo !!

CS-IN2P3- October 23rd 2023

Angular modulation of WIMP flux

Modulation is sidereal (tied to stars) not diurnal (tied to Sun)

D. Santos (LPSC Grenoble)

CS-IN2P3- October 23rd 2023

There are many "angles" for nuclear recoils... 3D tracks are needed...

Map of recoils in galactic coordinates (HealPix)

Robust with respect to Background events

100 WIMP evts + 100 Background evts

CS-IN2P3- October 23rd 2023

Phenomenology: Discovery

J. Billard et al., PLB 2010
J. Billard et al., arXiv:1110.6079

<u>Proof of discovery</u>: Signal pointing toward the Cygnus constellation

Blind likelihood analysis in order to establish the galactic origin of the signal

A complex background will always be there. Lower the energy even more uncertain will be.

Even the **target nuclei** are a source of such gamma-rays by neutron capture, difficult to prevent from entering inside

MIMAC: Detection strategy

Scheme of a MIMAC µTPC

Evolution of the collected charges on the anode

Measurement of the ionization energy:

Charge integrator connected to the mesh coupled to a FADC sampled at 50 MHz

CS-IN2P3- October 23rd 2023

Ionization Quenching Factors SRIM-Simulations (LPSC)

CS-IN2P3- October 23rd 2023

Portable Ionization Quenching Facility (COMIMAC) (Electrons and Nuclei of known energies)

In a gas detector the IQF depends on the gas mixture and on its « quality »!

For more information on COMIMAC: J-F. Muraz et al. NIM A, 2016

CS-IN2P3- October 23rd 2023

D. Santos (LPSC Grenoble)

5 000 Canal

COMIMAC-IQF measurements of H in CH₄ compared with simulations NEWS-G collaboration, arXiv 2201.09566, published in ERJ-C (2022)

CS-IN2P3- October 23rd 2023

D. Santos (LPSC Grenoble)

Nuclear recoil calibration with neutrons

Neutron monochromatic field:

AMANDE facility at IRSN of Cadarache

- Neutrons with a well defined energy from resonances of nuclear

Selection of ⁴He nuclear recoils : D(d(1.8 MeV),n)

Discrimination from protons, ¹²C, ¹⁶O, and (n,α) reactions

Monoenergetic measurements : detection of target pollutions

D(d(1.8 MeV.n) : neutrons of 5 MeV

D(d(3.2 MeV.n) : neutrons of 6.5 MeV

700 mbar He/CO₂ (5%)

(Cadarache)

Fast neutron spectroscopy from 1 MeV up to 15 MeV with Mimac-FastN,

a mobile and directional fast neutron spectrometer, N. Sauzet, D. Santos, O. Guillaudin, G. Bosson, J. Bouvier, T. Descombes, M. Marton, J.F. Muraz, NIM A 965 (2020) 163799

CS-IN2P3- October 23rd 2023

D. Maire et al.

« Neutron energy reconstruction and fluence determination at 27 keV with the LNE-IRSN-MIMAC μ -TPC recoil detector » IEEE Transactions on Nuclear Science, 63(3) : 1934-1941, June 2016

D. Maire *et al.* « First measurement of a 127 KeV neutron field with a µ-TPC spectrometer » Nuclear Science, IEEE Transactions, 61(2014) 2090

Electron-recoil Discrimination

Low energy (8 and 27 keV) mono-energetic neutron spectroscopy

⁴⁵Sc(p,n) neutron resonances

- \rightarrow Sampling at 50 MHz (20 ns)

5/16

C₄H₁₀+. 50% CHF₃ at 30 mbar

Event display of an « electron event» with a total measured ionization energy of 24.5 keV, with a secondary electron

CS-IN2P3- October 23rd 2023

Directionality at high gain – SimuMimac

At high-gain, measurements and simulations used to strongly disagree

Measured and simulated fluorine track lengths

We developed **SimuMimac** (C.Beaufort 2021), a simulation tool based on SRIM and Garfield++ to model the physics of the detector from the primary electron cloud to the signal formation

- SimuMimac agrees with the measurements
- Main difference with standard simulation code = takes into account the current induced by the motion of the ions
 D. Santos (LPSC Grenoble)

Signal contributions at high-gain (primary electrons and secondary ions) Cyprien Beaufort et al. arxiv.org/2112.12469

D. Santos (LPSC Grenoble)

Directionality – Mono-energetic (27 keV) Neutron field spectrum reconstruction

Directional performances at 27 keV:

- Energy reconstructed agrees within 2.5% with the energy of the monoenergetic neutron field
- Angular resolution better than 10°

Directionality and head-tail recognition in the keV-range with the MIMAC detector by deconvolution of the ionic signal, Cyprien Beaufort et al. JCAP08(2022)057

Directionality – Mono-energetic (8 keV) Neutron field spectrum reconstruction

Directional performances at 8 keV:

• Energy reconstructed agrees within 4.0% and angular resolution better than 15°

Cyprien Beaufort et al. JCAP08(2022)057

From proton and carbon recoils at 27 keV C. Beaufort et al. (2023, to be published)

MIMAC-bi-chamber module prototype

MIMAC (bi-chamber module)at Modane Underground Laboratory (France) since June 22nd 2012. Upgraded June 2013, and June 2014 till February 2018

-working at 50 mbar (CF₄+28% CHF₃+2% C₄H₁₀)

-in a permanent circulating mode
 -Remote controlled

 and commanded

 -Calibration control twice per week

Since then upgraded with new detectors and with the Cathode signal. Reinstall at LSM in 09/22

A "very interesting recoil event" (~34 keVee)

CS-IN2P3- October 23rd 2023

Radon Progeny

RPR: « In coincidence » events

First detection of 3D tracks of Rn progeny

Electron/recoil discrimination

Mesure: $\begin{cases} E_{ioni}(^{214}\text{Pb}) = 32.90 \pm 0.16 \text{ keVee} \\ E_{ioni}(^{210}\text{Pb}) = 45.60 \pm 0.29 \text{ keVee} \end{cases}$

First measurement of 3D nuclear-recoil tracks coming from radon progeny

MIMAC detection strategy validation

RPR events occur at different positions in the detector...

Bi-chamber-512 module (with the Cathode Signal and the new low background 10 cm detectors) installed in february 2023

- working at 30 mbar (C_4H_{10} +50% CHF₃)
- -Permanent circulating mode
- -Remote controlled and commanded
- A periodic calibration by X-ray generator

CS-IN2P3- October 23rd 2023

New MIMAC low background detector

Gaz : MIMAC 50 mbar HT grille : -560 V Drift field : -150 V/cm

16,3 % FWHM (6 keV) Gain ~25 000 Energy threshold <1 keV D. Santos (LPSC Grenoble)

Kapton micromegas readout Piralux Pilar

CS-IN2P3- October 23rd 2023

The first physics run of the Bi-chamber in february 2023 at Modane Chamber 1(old detector)- Chamber 2 (new detector) 127 h analysed at moderate gain (470 V) Only recoils after the BDT, mainly from the Rn progeny. Improvement of the new detector showing very few Rn progeny contributions

Each recoil will be compared with the WIMP « wind » direction at the time of the event

X-ray Calibration of the new detector Bi-chamber Module at 500 V, 3000V drift

CS-IN2P3- October 23rd 2023

X-ray calibration of both chambers simultaneously

A typical electron event in the chamber 2

The new 35 cm "new technology" MIMAC detector compared to the old one

TRAVAUX RÉALISÉS

Fonctionnement de la carte électronique sur table seule	 Image: A start of the start of
Couplage de la carte électronique avec le détecteur 35 x 35 cm, sur table	 Image: A start of the start of

- Synchronisation des ASIC et des FPGA,
- Programmation des FPGA,
- Soft de reconstruction des pistes (nouveau routage carte+détecteur),
- Adaptation soft d'acquisition pour tests, et intégration protocole Ethernet,
- Résolution de problématiques CEM (blindages, conductivité entre les masses,...)
- Caractérisation du bruit électronique intrinsèque,
- Tests de déclenchement sur événement simulé.

TRAVAUX RÉALISÉS

Valeurs des seuils de déclenchement des pistes, issues des mesures de bruit après travail

Après autocalibration

Déclenchement des pistes pendant l'acquisition de 4000 signaux de 600 ns

Avant autocalibration

Signal injecté

800

→ Prochaine étape : tests avec de vrais événements

The different tasks foreseen in the next two years between the LPSC and the Chinese partners.

$MIMAC - 1m^3 = 16 \text{ bi-chamber modules (}2x 35x35x26 \text{ cm}^3\text{)}$

New technology anode 35cmx35cm

New electronic board (1792 channels)

Only one big chamber

CS-IN2P3- October 23rd 2023

MIMAC (MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble) : D. Santos, C. Beaufort (CDD), F.Naraghi

- SDI : O. Guillaudin, N. Sauzet
- Electronics : E. Lagorio, O. Bourrion

G. Bosson (r (2020)), J. Bouvier (r (2020)), J.L. Bouly (r (2023)),

- Data Acquisition: T. Descombes
- COMIMAC (quenching) : J-F. Muraz

CCPM (Marseille): J. Busto, C. Tao

IRSN- LMDN (Cadarache): M. Petit, T. Vinchon (spectroscopie neutronique métrologique)

Prototype hosted in IHEP (Beijing-China): ZhiminWang, Changgen Yang USTC (University of Science and Technology of China, Hefei) Zhiyong Wang

Conclusions

- **MIMAC** has opened new possibilities in the DM search and Neutron spectroscopy.
- At low energies giving a lot of flexibility on targets, pressure, energy range...
- Ionization quenching factor measurements have been determined experimentally showing an important differences with respect to simulations !
- 3D nuclear recoil tracks from Rn progeny have been observed and can be used for calibration at 30 keV nuclear recoil range.
- New degrees of freedom are available to discriminate electrons from nuclear recoils.
- Angular resolution and directional studies of 3D tracks are now possible at the keV range.
- A new generation of high-definition DIRECTIONAL detectors (a needed signature for DM discovery) has been validated.
- Large active volumes, with the new 35x35 cm² detector, with a high 3D spatial resolution will open new windows beyond the neutrino floor and at low mass Wimps
- If the DM is not made of Wimps... The directional detection will also be needed to convince us that we understand what we've detected...

CS-IN2P3- October 23rd 2023

DArk photoN DirEctionaL detectION(Dandelion) at 1 meV

C. Beaufort, M. Bastero-Gil, A. Catalano, D-S. Erfani-Harami, O. Guillaudin, D. Santos, S. Savorgnano, and F. Vezzu

EXCLUSION:

A 30-day measurement would improve by **more than one order of magnitude** the existing limits

DISCOVERY:

The directional detection leads to an **unprecedented discovery potential**

DISCOVERY AND POLARIZATION:

The detection of a DP could allow the **identification of its polarization**

Preprint sent today to arXiv

First controlled Nuclear 3D tracks, using COMIMAC

CS-IN2P3- October 23rd 2023

Directional experiments around the world

Cathode Signal to place the 3D-track

- The cathode signal is produced by the primary electrons drift. It is produced before the anode signal produced by the avalanche.
- (C. Couturier, Q. Riffard, N. Sauzet et al. (2017))

Measurement in a MIMAC chamber of an alpha passing through the active volume parallel to the cathode at 10 cm distance.

MIMAC-Cathode Signal measurements giving the **drift velocity** of primary electrons !!

(C. Couturier, Q. Riffard, N. Sauzet et al. 2017)

Figure 4. Measure of the time differences (TAC) between the grid signal and the delayed cathode signal in the "START Grid" configuration, as a function of the distance of the α source from the anode (green points); error bars correspond to the standard deviation of the mean. A linear fit of these points is superimposed in red and provides the values of the drift velocity and the additional delay.

First Cathode Signals from the MIMAC bichamber background (O. Guillaudin, D.S. et al.)

Chamber 1

Chamber 2

Measuring the time between the "event production" and the avalanche signal !! Covering the 26 cm drift distance (13 us x 20 um/ns) !!

CS-IN2P3- October 23rd 2023

3D event-localization in MIMAC

NEWS-G (LSM results) (A spherical Gas detector)

WIMP exclusion limit (S140@LSM, 135mbar CH4)

Quenching Factor of H in CH4

CS-IN2P3- October 23rd 2023

MIMAC-Exclusion limits

Directional detection: comparison of strategies

 Emulsion layers target = C (low masses), Ar, Br, Kr (high masses)

size 40±9 nm

 Anisotropic crystals target = O (low masses), Zn, W (high masses)

No tracks ; only statistical distributions (!) • Low pressure TPCs target = F

D'Ambrosio et al. 2014 CS-IN2P3- October 23rd 2023

Directional detection: comparison of strategies

• Emulsion

• Anisotropic crystals

+ 250 A

- Stals
- Low pressure TPCs

~1 mm (10⁵ times longuer !!)

(SRIM simulations)

~10 nm

CS-IN2P3- October 23rd 2023

~100 nm

O in Crystal (29keV) CS-IN2P3- October 23rd 2023

SRIM simulation of O (20 keV) in ZnO_4W showing the secondary recoils

CS-IN2P3- October 23rd 2023

D. Santos (LPSC Grenoble)

C (22 keV) in emulsion (SRIM simulation)

In emulsions and solids the transverse development is in general greater than the longitudinal !!

Directional detection: Directionality 'D'

CS-IN2P3- October 23rd 2023

How big is a 1 tonne directional detector?

14 m x 14 m x 14 m directional dark matter detector

MINOS

SNO

Super-Kamiokande

Mini-

BooNE

D. Santos (LPSC Grenoble)

55

TPC directional detectors

	DRIFT	MIMAC	NEWAGE	DMTPC
	Boulby	Modane	Kamioka	SNOLAB
Gas mix	73%CS2 +25%CF4 +2%O2	70%CF4 +28%CHF3 +2%C4H10	CF4	CF4
Current volume	800 L	6 L	37 L	1000 L
Drift	ion, 50 cm	e , 25 cm	e, 41 cm	e , 27 cm
Threshold (keVee)	20	1	50	20
Readout	Multi-Wire Proportional Counters	Micromegas	micro-pixel chamber +GEM	CCD

Adapted from Mayet et al. [arXiv:1602.03781]