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KALRAY IN A NUTSHELL 

We design processors  
at the heart of new 
intelligent systems 

Financial and industrial shareholders 

4 
offices 
Grenoble, Sophia (France),  
Silicon Valley (Los Altos, USA), 
Yokohama (Japan) 

Pengpai 
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~80 people 

~70 engineers  

A unique 

technology,  

result of 10 

years of 

development 



KALRAY: PIONEER OF MANYCORE PROCESSORS 

 

Scalable Computing Power 

 

 

Data processing in real time 
 
 
Completion of dozens  
of critical tasks in parallel 
 
 
Low power consumption 
 

 

Programmable / Open system 
 

 

Security & Safety 

 

#1 
 

 

#2 
 

 

#3 
 

 

#4 
 

 

#5 
 

 

#6 
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OUTSOURCED PRODUCTION 
(A FABLESS BUSINESS MODEL) 

PARTNERSHIP WITH THE WORLD LEADER IN PROCESSOR MANUFACTURING 

Sub-contracted production 

Signed framework agreement with GUC, 
subsidiary of TSMC  
(world top-3 in semiconductor manufacturing) 

Limited investment 

No expansion costs 

Production on the basis of purchase orders 
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INTELLIGENT DATA CENTER :  
KEY COMPETITIVE ADVANTAGES 

KALRAY: THE SOLUTION THAT BRINGS INTELLIGENCE “ON THE FLY”  

TO THE WORLD OF DATA CENTERS 

First “NVMe-oF all-in-one” certified solution * 
 
8x more powerful than the latest products 
announced by our competitors** 
 
Power consumption below 20W*** 

* Kalray  KTC80 has been certified in April 2018 by the independent certification Inter Operability  
Laboratory ((University of  New Hampshire). No competitors’ products has been certified so far 
(www.iol.unh.edu/registry/nvmeof) 
** Kalray KTC80 : 288 cores @ 550MHz = 158GHz / Mellanox Bluefield : 16 cores @ 1.2GHz = 19.2GHz / 
Broadcom Stingray : 8 cores @ 2GHz = 16 GHz 
*** Kalray measurement of KTC80 
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OUR MPPA IS A UNIQUE SOLUTION TO ADDRESS  
TWO MAIN CHALLENGES FACED BY OEMs 
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A need for performance 
 

A need to consolidate  
the electronic functions in the car 
 

Perf. increase 

x100  

up to 

x1,000 

50 to 100 
processors 

per car  
today 

x 

AGGREGATION PERFORMANCE 

KALRAY MPPA 
TECHNOLOGY 



MPPA® PRODUCT FAMILY AND ROADMAP 

8 

MANYCORE TECHNOLOGY THAT ENABLES PROCESSOR OPTIMIZATION 

BASED ON EVOLVING MARKET REQUIREMENTS 
 

BOSTAN COOLIDGE -1 COOLIDGE -2 Dx 

PROCESS 28 nm 16 nm 16 nm  12 nm or 7nm  

PERFORMANCE 
1 DL TOPS 

700 MFLOPS SP 

24 DL TOPS  
1 TFLOPS SP 
3 TFLOPS HP 

48 DL TOPS / 96 
TDL  OPS 

100 TOPS / 200 
TOPS 

USE 
Boards SC 

(40G) 
Prototypes 

Boards and 
storage chip 

controllers (100G) 
Accelerator  

intelligent car 

Qualification Car 
Market DC - NFV 

DC 

CONSUMPTION 
(WATTS) 

8W – 25W 5W – 15W 5W – 20W 2W – 10W 

  
2018 2019 2020 2021 

COMMERCIAL LAUNCH 

UNDER DEVELOPMENT UNDER DEFINITION 
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Motivation for Multicore and Manycore Processors 
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Past contributions to CPU performances: clock speed increase, 
instruction-level parallelism, thread-level parallelism 



Intuitively, these are Manycore Processors 
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Processor Cores Year Applications 

Tilera/Mellanox TILE-Gx72 72x 64-bit VLIW cores 2014 Networking, Storage 

Parallela Epiphany-V 1024x 64-bit RISC cores 2016 Embedded HPC 

Intel Xeon Phi  Knights 
Landing 

72x Atom cores with four 
threads per core 

2016 Supercomputing 

Sunway  SW26010 
(TaihuLight ) 

260x 64-bit RISC cores 2016 Supercomputing 

Kalray MPPA3-80 Coolidge 85x 64-bit VLIW cores 2018 Embedded HPC, 
Networking, Storage 

REX Computing NEO 256x 64-bit VLIW cores 2018 Embedded HPC, 
Supercomputing 

NVIDIA Xavier 512x 64-bit CUDA cores 2018 Embedded HPC 



Challenge: managing interference between cores 

Classic Multicore Memory Hierarchy 
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Challenge: programmability of DMA and private memories 

Embedded Multicore Memory Hierarchy 
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Memory locality and core clustering are architecturally visible 

• Scratch-pad memory (SPM), software-managed caches, local memory, ‘shared memory’ (GPGPUs) 

• ‘compute unit’ associates processing cores and data transfer engines operating on a local memory 

• Sunway SW26010 processor with 64KB SPM per CPE core (source U. of Tennessee / Jack Dongarra): 

A Qualitative Definition of Manycore Processors 
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Source:  http://rexcomputing.com/ 

REX Computing NEO Architecture (Defunct) 
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Classic GPGPU architecture: NVIDIA Fermi 

• GPGPU ‘compute units’ called Streaming Multiprocessors (SM) 

• Each SM comprises 32 ‘streaming cores’ or  ‘CUDA cores’ that 
share a local memory, caches and a global memory hierarchy  

• Threads are scheduled and executed atomically by ‘warps’, 
where they execute the same instruction or are inactive 

• Hardware multithreading enables warp execution switching on 
each cycle, helping cover memory access latencies 

GPGPU programming models (CUDA, OpenCL) 

• Each SM executes ‘thread blocks’, whose threads may share 
data in the local memory and access a common memory 
hierarchy 

• Synchronization inside a thread block by barriers, local 
memory accesses, atomic operations, or shuffle operations 
(NVIDIA) 

• Synchronization between thread blocks through host program  
or global memory atomic operations in kernels 

GPGPUs as Manycore Processors 
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Example of NVIDIA Volta 

• 64x FP32 cores per SM 

• 32x FP64 cores per SM 

• 8x Tensor cores per SM 

Tensor core operations 

• Tensor Core perform D = A x B + C, 
where A, B, C and D are matrices 

• A and B are FP16 4x4 matrices 

• D and C can be either FP16 or FP32 4x4 
matrices 

• Higher performance is achieved when 
A and B dimensions are multiples of 8 

• Maximum of 64 floating-point mixed-
precision FMA  operations per clock 

GPGPU Tensor Cores for Deep Learning (NVIDIA) 
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Restrictions of GPGPU programming 

• CUDA is a proprietary programming environment 

• OpenCL programming by writing host code and device 
code, then connecting them through a low-level API 

• GPGPU kernel programming lacks standard features of 
C/C++, such as recursion or accessing a file system 

Performance issues with ‘thread divergence’ 

• Branch divergence: a simple if...then...else construct will 
force all threads in a warp to execute both the "then" 
and the "else" path 

• Memory divergence: when hardware cannot coalesce 
the set of warp global memory accesses into one or two 
L1 cache blocks 

Time-predictability issues 

• Dynamic allocation of thread blocks to SMs 

• Dynamic warp scheduling  and out-of-order execution of 
warps on each SM 

Limitations of GPGPUs for Accelerated Computing 
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Warp Scheduler 

Intra-Warp 

Coalescer 

Load/Store Unit 

to L2, 

DRAM 

Load 

Group 

by 

cache 

line 

Acces

sCach

e 

Lines 

L1 Cache 

MSHR MSHR MSHR MSHR 

Memory access coalescing (Kloosterman et al.) 
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Scalar loop 

• Loop-carried dependences lexically backward or left-to-right in statement. 

 

 

 

Vector loop 

• Loop-carried dependences lexically forward or right-to-left in statement. 

 

 

 

Independent loop 

• No loop-carried dependences 

 

 

 

Data Dependences in Innermost Loops 

  DO I = 1, N 

S1  A(I+1) = A(I) + B(I) 

  ENDDO 

S1 A(2) = A(1) + B(1) 

S1 A(3) = A(2) + B(2) 

S1 A(4) = A(3) + B(3) 

S1 A(5) = A(4) + B(4) 

  DO I = 1, N 

S1  A(I) = A(I+1) + B(I) 

  ENDDO 

S1 A(1) = A(2) + B(1) 

S1 A(2) = A(3) + B(2) 

S1 A(3) = A(4) + B(3) 

S1 A(4) = A(5) + B(4) 

  DO I = 1, N 

S1  A(I) = A(I) + B(I) 

  ENDDO 
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Loop Iterations: Scalar, Vector, Independent 

load 
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load 
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load 
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store 

load 

load 
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store 
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load 

add 
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OpenCL 1.2 has two parallel execution models 

• Data parallel, with one work item per processing element 

• Task parallel, with one work item per compute unit 

- Task parallel model is exploited by FPGAs and by DSPs 

 

 

 

 

OpenCL For Manycore Processors 
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Executes a kernel at each point in a grid domain 

• To process a 1024 x 1024 image 

• Create one kernel instance per pixel 

- 1,048,576 kernel executions 

- 65536 working groups of 16 work items 

- 4096 iterations  on  16 Compute Units of  16 Processing Elements                                  

OpenCL Data Parallel Model 

__kernel void vecAdd( __constant double *a, 

                      __constant double *b, 

                      __global double *c) 

{ 

     unsigned int id = get_global_id(0); 

     c[i] = a[i] + b[i]; 

} 

 

/* 16 work items in each workgroup */ 

size_t localSize = 16; 

/* Start 16 work-groups of 16 work-items) */ 

size_t globalSize = localSize * 16; 

/* enqueue the tasks 16 work-groups of 16 work-

items */ 

err = clEnqueueNDRangeKernel(queue, kernel, 1, 

NULL, &globalSize, &localSize, 0, NULL, NULL); 

#define n 256 

 

void vecAdd( const double *a, 

             const double *b, 

             double *c, 

             int n) 

{ 

     int i; 

     for (i=0; i<n; i++) { 

          c[i] = a[i] + b[i]; 

     } 

} 
T

im
e

 =
 

4
0

9
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16 Compute Units of 16 processing element 
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OpenMP for Multicore Programming 

 

 

 

 

A parallel region starts 
redundant execution 

Work sharing constructs 
assign different pieces of 
work to threads 

Synchronization is 
explicit (here critical 
section) or implicit 
(barriers end constructs) 
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OpenMP for SIMD/Vector Execution 
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First map data to the accelerator, then distribute work to the accelerator threads 

OpenMP for Accelerator Offloading 
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IBM BlueGene series, Cray XT series 

• Compute nodes with multiple cores and shared memory 

• I/O nodes with high-speed devices and a Linux operating system 

• Specialized networks between the compute nodes and the I/O nodes 

 

Supercomputer Distributed Memory Architecture 
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A Single Program Multiple Data (SPMD) execution model 

• All processes execute the same code 

• Processes participate in collective operations 

• Global data is seen as the combination of local data 

• One-sided communications and bulk synchronizations 

 

Variants of symmetric parallel programming models 

• Gorlatch-style MPI programming ‘Send-Receive Considered Harmful’ 

• Supercomputer communication libraries: 

- Cray SHMEM, DoE ARMCI, Berkeley GASNet, IBM DCMF & PAMI 

• Partitioned Global Address Space (PGAS) languages: 

- Co-Array Fortran (CAF), Unified Parallel C (UPC), Titanium 

• Bulk Synchronous Parallel (BSP) programming models 

What is Symmetric Parallel Programming 
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Origin and uses 

• Introduced by Cray (1993) for the Cray T3D 

• Supported by SGI (1997), Quadrics (1998) 

• GPSHMEM (2000) implementation on top of ARMCI 

• Base of Cray F-- (1997), which became co-array Fortran 

• Evolutions: ordered -> unordered, blocking -> non blocking 

One-sided primitives + atomic, collective operations 

• shmem_long_put(dst, src, len, pe); shmem_long_get(...); 

• shmem_swap(dst, src, pe); shmem_wait(var, value); 

• shmem_long_sum_to_all(...); 

• shmem_barrier(...); shmem_fence(); shmem_quiet(); 

Symmetric memory allocation 

• Replicated static variables at same local address 

• Dynamic memory allocation: shmalloc(size); 

Cray SHMEM Communication Library (1995) 
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Simple Program Multiple Data with symmetric data 

• Same program replicated as a fixed number of concurrent ‘images’ 

• Images execute asynchronous ‘segments’ between SYNC statements 

• Global data is composed of image data with co-dimensions 
- FLOAT A(10,20)[*] 

Co-Array Fortran syntax extensions 

• Uses normal rounded brackets ( ) to point to data in local memory 

• Uses square brackets [ ] to point to data in remote memory 
- IF (this_image() > 1) ! Get data from left neighbor 

A(1:10,1:2) = A(1:10,19:20)[this_image()-1] 

Co-Array Fortran for Distributed Memory (2008) 

A(10,20) A(10,20) A(10,20) 

image 1 image 2 image N 
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The ‘bridging model’ of L. Valiant 

• SPMD and distributed memory 

• Bulk message passing 

• Superstep synchronization 

Oxford University BSPLib 

• Introduce put() and get() one- 
sided operations like SHMEM 

• Registration of local objects 
<=> symmetric memory space 

Paderborn University BSP (PUB) 

• Collectives (reduce, scan, etc.) 

• Split BSP to sub-BSP machines 

NestStep languages of C. Kessler 

• Manage ‘replicated’ and ‘distributed’ objects 

 

 

 

 

 

 

 

Bulk Synchronous Parallel Models 

Processors (or cores) 

Local 

Computation 

Global 

Communication 

Superstep 

Synchronization 

effects of communications 

visible only after superstep 

Page 32 ©2018 – Kalray SA All Rights Reserved 



SPMD image queries 

• bsp_order(); // Number of images in the SPMD program 

• bsp_rank(); // Rank of image, in [0 … bsp_order()-1] 

Registration and bulk synchronization 

• bsp_register(object, size); // Register  a local object for communications 

• bsp_unregister(n); // Undo n latest calls to bsp_register() 

• bsp_sync(); // Superstep synchronization 

One-sided communications 

• bsp_put(rank, object, addr, data, size); // Put data to registered object 

• bsp_get(rank, object, addr, data, size); // Get data from registered object 

Delayed communications semantics 

• While executing superstep, capture put() sources in buffers 

• At the end of superstep, capture get() sources in registered data 

• Write data associated with put() or get() to destinations 

Minimal BSP Interface 
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Dense matrix-matrix multiplication algorithm by Gerbessiotis 

• P images, each image maintains a tile of matrices A, B, C 

• Each image receives other tiles by ‘get’ operations followed  by ‘sync’ 

Gerbessiotis MatMulG algorithm 

Dense Matrix Multiplication with the BSP Model 

√p 

√p 

get from matrix A 

get from matrix B 
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McColl 1998 “Foundations of Time-Critical Scalable Computing” 

Distributed Algorithms with the BSP Model 
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Sequential “processes” connected through FIFO “channels” 

Blocking “read”, non blocking “write” on channels 

Processes are also called “actors” or “agents” 

Determinacy of results, independent of actor firing sequence 

Kahn Process Networks (KPNs) [Kahn 1974] 

A1 A4 A2 

A3 

A5 

A6 

processes channels 
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Dataflow Process Networks (DPN) [Lee & Parks 1995] 

• Kahn Process Network with functional actors (no persistent state) and sequential firing rules 
(pre-defined order using only blocking reads) 

Static Dataflow (SDF) [Lee & Messerschmitt 1987] 

• Agents producing and consuming a constant number of tokens  

• Single-rate SDF is also known as Homogenous SDF (HSDF) 

Synchronous Dataflow (SDF) [Benveniste et al. 1994] 

• Time advances in lockstep with one or more clocks (Signal, Esterel, Lustre, SCADE Suite) 

Cyclo-Static Dataflow (CSDF) [Lauwereins 1994] 

• A cyclic state machine unconditionally advances at each firing 

• Known number of tokens produced and consumed for each state 

Computational Process Networks (CPN) [Karp & Miller 1966] 

• SDF extended with ‘firing thresholds’: # input tokens > # consumed tokens 

Dataflow Models of Computation 
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Ptolemy II (Berkeley) for Actor-Oriented Design 

Hierarchical 
component 

modal 
model 

dataflow 
controller 

example Ptolemy II model: hybrid 
control system 

 Framework for experimentation 
with actor-oriented design, 
concurrent semantics, visual 
syntaxes, and hierarchical, 
heterogeneous design. 

 

 

 

 

 

 

 

 

 

     http://ptolemy.eecs.berkeley.edu 
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Filters are unit of computation 

• No global resources 

FIFO channels operations 

• peek(index) / pop() / push(value) 

• peek / pop / push rates must be constant 

Graph optimizations 

• Horizontal/vertical filter fusion/fission 

• Time/frequency domains 

Teleport messaging 

• Synchronize mode changes with data flow 

Program morphing 

• Update application graph while running 

RAW machine code generation 

• RAW project founded Tilera 

parallel computation 

 may be 

any StreamIt 

language 

construct 

joiner splitter 

pipeline 

feedback 

loop 
joiner splitter 

splitjoin 

filter 

http://cag.lcs.mit.edu/streamit 
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• Computation blocks and communication graph written in C  

• Cyclostatic data production & consumption 

• Firing thresholds of Karp & Miller 

• Dynamic dataflow extensions 

Sigma-C Dataflow Programming Environment 

Automatic mapping on 

MPPA® memory, computing, 

& communication resources 
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Sigma-C Agent Example 

agent Inverter() 
{ 
 
    interface 

    { 
        in<unsigned char> input; /*< input byte stream */ 
        out<unsigned char> output; /*< output byte stream */ 
 
        spec{input; output}; 

    } 
 
    void invert (void) exchange (input pel_in, output pel_out) 
    { 
     pel_out = 255 - pel_in; 

    } 
 
    void start () 
    { 
     invert(); 

    } 
} 

interface section for input/ 

output channels 

exchange keyword flags 

direct operations on input 

/ output channels 

standard C code within the agent 

start function is an infinite loop 

agent keyword followed 

by the name of the agent 

state machine specification for 

data production & consumption 
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Example of Cyclostatic Specs 

    spec{{input; output1}; {input; output2}}; 
     
    void fn1 (void) exchange (input i, output1 o) 
    { 

 /* Function code */ 
    } 
 
    void fn2 (void) exchange (input i, output2 o) 
    { 

 /* Function code */ 
    } 
 
    void start () 
    { 

 fn1(); 
 fn2(); 
    } 

Two exchange functions,  

one for each spec state 

input 

output2 

output1 
Send every 

other input 

to a different 

output (split) 
Consume one input at a time 

A1 
[1,1] 

[1,0] 

[0,1] 
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Generalization of Karp & Miller Thresholds 

agent Filter() 
{ 
 
    interface 

    { 
        in<unsigned char> input; 
        out<unsigned char> output; 

 
        spec{ {input[1:5]; output} }; 

    } 
 
    void 
    start (void) exchange (input i[1:5], output o) 
    { 

      o = (i[0] + i[1] + i[2] + i[3] + i[4] + i[5])/3; 
    } 
} 

Agent can access 6 tokens for  

reading but only 1 token is 

consumed at each transition 

1 2 3 4 5 6 7 8 9 10 

Accessible in 1st transition 

Accessible in 2nd transition 

Consumed in  

1st transition 

Consumed in  

2nd transition 

input stream 
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Static Dataflow Graph Boundedness 

 

 

 

 

 

 

Balance equations 

• 2 N(A) - N(B) = 0 

•    N(B) - N(C) = 0 

• 2 N(A) - N(C) = 0 

• 2 N(A) - N(C) = 0 

Graph incidence matrix 

 

 

 

 

 

Matrix must be non-full rank 

• Any multiple of the repetition vector N = |1   
2   2|T satisfies the balance equations 

Solution to balance equations ensures 
bounded buffers execution 

B C 

A 
2 

1 

1 

1 

2 
2 

1 
1 

2 -1 0 
0 1 -1 
2 0 -1 
2 0 -1 

M = 
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At program startup, some channels may be non-empty 

• Required for the liveness of some dataflow graphs 
• void preload(input_channel, int token_nbr, int data_size, void *input_data); 

Pre-Loaded Tokens in Channels 

B C 

A 
1 

2 

1 

3 

2 

3 1 

2 

0 

B C 

A 
1 

2 

1 

3 

2 

3 2 

1 

0 

B C 

A 
1 

2 

1 

3 

2 

3 2 

2 

0 

B C 

A 
1 

2 

1 

3 

2 

3 3 

1 

0 

B C 

A 
1 

2 

1 

3 

2 

3 2 

2 

0 

DEADLOCK BACBA 

BACBA CBA 
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Symbolic execution of the dataflow graph 

• Execute one agent firing at a time 

• Find an ‘hyperperiod’, where each agent executes its number of times in the repetition 
vector and where the channel token count returns to the same values 

• Preloaded tokens in channels and firing thresholds may delay the first occurrence of the 
hyperperiod 

Symbolic execution of a balanced static dataflow graph always succeeds, unless the 
graph is not alive 

• Take advantage of choice over ready agent firing to heuristically optimize objectives such as 
maximum buffer use 

 

 

Sequencing Static Dataflow Graphs 
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Static Dataflow graph execution can be interpreted 

 

Efficient parallel execution is achieved by unfolding a dependence graph that 
ensures correct buffer accesses 

• True data dependence arcs and buffer size feedback arcs 

 

Dataflow Graph and Dependence Graph 

A 

B 

C 

A B C 3 3 

Page 48 ©2018 – Kalray SA All Rights Reserved 



Sigma-C Dataflow Compilation and Execution [Retired] 

Source 

Files 

P1 

P2 

P3 

P4 

Generated C source files 

Dataflow graph and data files 

Buffer sizes, Sequence, 

Mappings, NoC configuration 

Native 

Simulator 

Runtime 

Monitor 

Simulated 

Execution 

MPPA® 

Execution 
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COMPA (IETR INSA Rennes) 
Algorithm graph 
Hierarchical SDF 

Architecture graph 

Mapping/Scheduling 

Automatic code generation 

Calcu
l 

Com. Com. Calcu
l 

Simulation 

https://preesm.github.io 
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Low-Level Image Filtering Application 
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Cluster Level 

Core Level 



Software Synthesis for MPPA® (multi-CPU model) 
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Core Level 

Cluster Level 
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MPPA® MANYCORE HIGHLIGHTS 
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INTEGRATED MANYCORE 
PROCESSOR 

• Secure Cores 

• Application Cores 

• Visio/Deep learning Co-processor 

• High-performance low-latency I/O 

CPU EASE OF 
PROGRAMMING 

• C/C++ GNU programming 
environment 

• Support OpenCL 

• 64-bit addresses, little-endian 

• Rich operating system 
environment 

SCALABLE MASSIVELY 
PARALLEL COMPUTING 

• MPPA® processors can be tiled 
together, in package or on 

board 

• MPPA® processors can easily be 
integrated into a system with 
other processors (FPGA, CPU, 

GPU) 

DSP TYPE OF 
ACCELERATION 

• Energy efficiency 

• Timing predictability 

• Software programmability 

 



Efficiency of CPUs, DSPs, FPGAs, ASICs (ISSCC) 

GPUs at same energy efficiency as DSPs 

Pag
e 55 
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C10 C11 

C8 C9 

C2 C3 

C0 C1 

SYS. 
CORE 

DMA 

D-Noc Router 

C14 C15 

C12 

C6 C7 

C4 C5 

DSU 

DMA 

D-Noc Router 

Shared 
Memory 
(SMEM) 

C13 

MPPA®-256 Bostan 
TSMC CMOS 28HP, 600MHz 
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VLIW CORE 
Architecture 

• 32-bit or 64-bit addresses 

• 5-issue VLIW architecture 

• MMU + I&D cache (8KB+8KB) 

• 32-bit/64-bit IEEE 754-2008 FMA FPU 

Security 

• crypto co-processor (AES/SHA/CRC/…) 

Performance 

• 6 GFLOPS SP per core 

COMPUTE CLUSTER 
Architecture  

• 16 user cores (SMP) + 1 system core 

Communication  

• NoC Tx and Rx interfaces 

Memory: 

• 2 MB multi-banked shared (77GB/s 
Shared Memory BW) 

Debug 

• Debug Support Unit (DSU) 

MANYCORE PROCESSOR 
Architecture: Distributed memory  

• 16 compute clusters 

• 2 I/O clusters (2x quad-core each) 

• Data & control networks-on-chip (NoC) 

Performance 

• 1 TFLOPS SP  

Devices 

• DDR3, 4 Ethernet 10G and 8 PCIe Gen3 
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MPPA®-80 Coolidge 
TSMC CMOS 16FFC, 1.2 GHz 
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3RD GENERATION VLIW CORE 
Architecture updates 
• 64-bit core 
• 6-issue VLIW architecture 
• MMU + I&D cache (16KB+16KB) 
• 16-bit/32-bit/64-bit IEEE 754-2008 FPU 
• Vision/CNN tightly coupled co-processor 

COMPUTE CLUSTER 
Architecture updates 
• 16 CPU VLIW cores 64bits 
• 16 Tensor co-processors 
• Safety/Security dedicated core 
Memory 
• L1 cache coherency (configurable) 

• 4MB memory configurable (614GB/s) 

MANYCORE PROCESSOR 
Architecture updates 
• 80 or 160 CPU cores 
• 600/900/1200MHz frequency modes 
Memory 
• L2 cache coherency between clusters 
• L2 refill in DDR and Direct access to 

DDR from clusters 



MPPA3® NoC architecture 

• Wormhole switching with source routing 

• 2 virtual  channels, 4x TX DMA channels 

• RDMA, remote queues, remote atomics 

• 128-bit flits, up to 17 flits/packet (256B payload) 

4x 25Gbps Ethernet lanes reused for NoC extension 

• NoC packet encapsulation into IEEE 802.1Q standard for VLAN 

• Designed for direct connections between 2 to 4 chips (using FEC) 

• VCs map to IEEE 802.1Qbb Priority-based Flow Control (PFC) classes 

MPPA3® Coolidge NoC 

Page 58 ©2018 – Kalray SA All Rights Reserved 

C4 

C1 

C3 

C2 

C0 

ET

H 

C4 

C1 

C3 

C2 

C0 

ET

H 

25GbE  

100GbE 

100GbE  

MAC dst 

6 bytes 

MAC src 

6 bytes 

VLAN etype 

0x8100 

2 bytes 

VLAN TCI 

PFC (3 bits) / CFI (1 bit) / 

NoC pkt nb (12 bits) 

2 bytes 

NoC pkt0 NoC pkt1 

NoCX etype 

0xB000 

2 bytes 

FCS 

4 bytes 



MPPA3® Coolidge Global Interconnects 
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RDMA NoC 

AXI Crossbar 

… 
… 



MPPA3® Coolidge Compute Cluster 
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MPPA3® Coolidge Memory Hierarchy 
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VLIW Core L1 Caches 
• 16KB / 4-way LRU instruction cache per core 

• 16KB / 4-way LRU data cache per core 

• 64B cache line size 

• Write-through,  write no-allocate (write around) 

• Coherency configurable across all L1 data caches 

• DMA writes are L1 cache-coherent 

Cluster L2 Cache & Scratch-Pad 
Memory 
• Scratch-pad from 2MB to 4MB  

• 16 independent banks, full crossbar 

• Interleaved or banked address mapping 

• L2 cache from 0MB to 2MB 

• 16-way Set Associative  

• 256B cache line size 

• Write-back, write allocate 

• Optionally coherency across clusters 

2x DDR4 64-bit / 

2x LPDDR4 64-bit 

D$ I$ D$ I$ 
x 16 

16 Cores 

Scratch-Pad L2 Cache 

Cluster 

L1 

cache 

coheren

cy 

L2 cache 

coherenc

y 

enable 

/disable 

enable 

/disable 



MPPA3® Coolidge 3rd Generation 64-Bit VLIW Core 

Unified scalar and SIMD ISA 

• 64x 64-bit general-purpose registers 

• Operands can be single registers, register pairs 
(128-bit) or register quadruples (256-bit) 

• Immediate operands up to 64-bit, including F.P. 

• 128-bit SIMD instructions by dual-issuing 64-bit 
on the two ALUS or by using the FPU datapath 

FPU capabilities 

• 64-bit x 64-bit + 128-bit → 128-bit 

• 128-bit op 128-bit → 128-bit 

• FP16x4 SIMD 16 x 16 + 32 → 32 

• FP32x2 FMA, FP32x4 FADD, FP32 FMUL Complex 

• FP32 Matrix Multiply 2x2 Accumulate 
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COOLIDGE VLIW CORE PIPELINE 



MPPA3® Coolidge Tensor Coprocessor 

Extend core ISA with « wide » SIMD 

• 64x 256-bit wide vector register file 

• Matrix-oriented arithmetic operations 

Full integration into core pipeline 

• Move instructions with matrix-transpose  

• Proper dependency / cancel management 

Leverage MPPA memory hierarchy 

• SMEM directly accessible from coprocessor 

• Memory load stream aligment operations 

Arithmetic performances 

• 128x INT8→INT32 MAC/cycle 

• 64x INT16→INT64 MAC/cycle 

• 16x FP16→FP32 FMA/cycle 
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MPPA3® Tensor Coprocessor Matrix Operations 

• INT16 to INT64 convolutions: 

(4x4)int16 . (4x4)int16 += (4x4)int64 

16x DP4-ADD → 64 MAC/cycle 

• INT8 to INT32 convolutions 

(4x8)int8 . (8x4)int8 += (4x4)int32 

16x DP8-ADD → 128 MAC/cycle 
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AxB += C AxB += C 



KONIC80, MPPA®-256 Bostan PCIe Board 

Features 

• 80GbE (2x40GbE, 8x10GbE) full duplex, line rate 

• PCIe Gen3 16-lanes providing a throughput of up 
to 128Gbps Full duplex  

• 2,500 instructions per packet @240Mpps 

• 256 C/C++ programmable cores 

• 1 TOPS 

• Low-power/20W typical 

• 40MB  on-chip memory + 5MB caches 

• 2x 4GB DDR3  

• Dedicated HW for packet acquisition, 
classification and emission 

• True Random Number Generator (TRNG) 

• 128 Crypto Co-Processors  for 80Gbps full-duplex 
MACSec, IPSec and SSL offload 

 Software 

 OpenDataPlane SDK 

 Virtualization Offload 

 VXLAN, NVGRE, GENEVE, TRILL 

 OVS offload 

 Storage virtualization 

 iSCSI termination 

 virtio storage interfaces 

 Kernel-bypass 

 DPDK, ODP, socket 

Page 65 ©2018 – Kalray SA All Rights Reserved 



AB06 Board for MPPA® Bostan and MPPA® Coolidge 

The MPPA® processor is mounted on a 
SOM (System on Module) mezzanine 
board with DDR, PCIe, Ethernet, CAN 

An optional host CPU SOM (x86, ARMv8) 
can be plugged on the other side 
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Cohesive Coding Environment 

• All cores implement the same Instruction Set Architecture (ISA) 

Open Standards Programming 

• Supports C, C++, OpenMP 3, OpenCL 1.2 programming models 

Software Development Tools 

• Eclipse, GCC, GDB, LLVM, Trace, etc. 

Operating Systems 

• Linux kernel and I/O drivers on I/O clusters 
• Lightweight POSIX OS on compute clusters 

Tools & Libraries 

• Code generator for deep learning inference 
• Optimized BLAS and FFT libraries 

AccessCore™ Software Development Kit 
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MPPA® Embedded Platform Roadmap 

Hard Real-Time 

(high-integrity) 

Soft Real-Time 

(time-predictable) 

Best Effort 

(high-performance) 

OpenMP 

OpenCL 

OpenVX 

BLAS, FFT, CV 

Deep Learning 

Model-based with 

time 

SCADE (+ Asterios) 

(Simulink + LET) 

mOS mOS 

Embedded Linux 

(PREEMPT RT) 
 

Cluster OS  Kalray 

(PikeOS  Sysgo) 
 

SCADE  Esterel Tech. 

(Asterios Krono-Safe) 

OSEK/VDX  eSOL 

(POSIX  FreeRTOS) 

POSIX PSE52 with 

usage domain 

restrictions 
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OpenCL 1.2 on the MPPA Platform 
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Difference between GPGPUs and manycore processors based on CPUs or DSPs 

• No core hardware multithreading for automatic overlapping of memory latencies 

• Significant benefits from direct communication between Work Groups (non-standard) 

- Avoid using the external memory (Global Memory) for data transfers 

From TI KeyStone ‘Optimization Techniques for Device (DSP) Code’ 

• Prefer Kernels with 1 work-item per work-group (DSP seen as one Compute Unit) 

• Use async_work_group_copy and async_work_group_strided_copy 

- “it is almost always better to write the values to a local buffer and then copy that local buffer back to a 
global buffer using the OpenCL async_work_group_copy function” 

On the MPPA, extend the standard OpenCL asynchronous copies 

• OpenCL asynchronous copies are restricted to dense local memory accesses 

• Need to provide enough local memory => 1 Work Group per Cluster preferred 

• Extensions for 2D/3D accesses in global memory (done on ST P2012 OpenCL) 

OpenCL Issues on a CPU-Based Manycore Processor 
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Parts of standard OpenCL that are useful on 
a CPU-based manycore processor 

• Host program allocates global buffers, creates 
executable kernels, and dispatches work in 
queues 

• Kernel invocation with a user-defined argument 
list, which distinguishes between local and 
global objects 

OpenCL extensions required for CPU-based 
manycore processors 

• Kernel code in standard C/C++/OpenMP and/or 
assembly language 

• Kernel code with classic CPU multi-threading [TI’s 
“OpenMP Dispatch With OpenCL” on KeyStone-II] 

• Kernel code that accesses the local memory of 
other Compute Units 

OpenCL Data-Parallel and Task-Parallel+POSIX 
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Inspired by HPC clusters one-sided communication & synchronization 

• Cray SHMEM, ORNL ARMCI, Berkeley GasNet, MPI-3 one-sided subset 

• Cannot directly reuse these libraries because of the MPPA architecture 

Asynchronous remote data transfers 

• Put (remote write) and Get (remote read) operations with data reshaping 

• All data transfer operations return immediadely to caller 

• An event structure can be used to wait/test for local completion 

MPPA Asynchronous Operations Principles (1) 
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Point-to-point synchronization operations 

• Remote fence (global completion), peek, poke, post-add, fetch-clear, fetch-add 

• Locally, wait for the comparison between a local variable and a value to be true 

• No busy waiting, only lock-free data structures 

 

 

 

 

 

 

 

Remote queues N to 1 (Rqueues) 

• Push on a remote queue-like memory segment, with atomicity if possible 

• Classic distributed synchronization primitive, foundation of active messages 

MPPA Asynchronous Operations Principles (3) 
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MPPA Asynchronous Operations API Overview 

Dense Transfers 

• mppa_async_get 

• mppa_async_put 

• mppa_async_get_spaced 

• mppa_async_put_spaced 

• mppa_async_get_indexed 

• mppa_async_put_indexed 

Sparse Transfers 

• mppa_async_sget_spaced 

• mppa_async_sput_spaced 

• mppa_async_sget_blocked2d 

• mppa_async_sput_blocked2d 

• mppa_async_sget_blocked3d 

• mppa_async_sput_blocked3d 

 

 

Asynchronous Events 

• mppa_async_event_wait 

• mppa_async_event_test 

Global Synchronization 

• mppa_async_fence 

• mppa_async_peek 

• mppa_async_poke 

• mppa_async_postadd 

• mppa_async_fetchclear 

• mppa_async_fetchadd 

• mppa_async_evalcond 

Remote queues 

• mppa_async_enqueue 

• mppa_async_dequeue 
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Example extracted from a tiled matrix multiply algorithm 

• Inner loop is first converted to a dense Put (mppa_async_put) 

• Outer loop is then converted to a sparse Put (mppa_async_sput_spaced) 

• Use of blocking calls (last Put parameter is NULL instead of event pointer) 

Illustration of Code Transformations for Put/Get 
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Safety-critical control-command applications 

• Model-based programming using SCADE Suite® from Esterel Technologies 

• Complemented with static timing analysis of binary code (aiT from AbsInt) 

• Retargeting of the formally proven bug-free CompCert C99 compiler 

Motivations for multicore and manycore execution 

• Distribute the compute load across cores and reduce memory interferences 

 

 

 

 

 

 

 

• Effective implementation of multi-rate harmonic  applications 

• Envision use of fast Model Predictive Control (MPC) techniques 

SCADE Code Generation for the MPPA® 
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Example of SCADE Suite Program 
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Dependencies represented by wires. 



Group several operator instances in “parallel subsets” 

• Parallel subsets can be nested 

• Compiler verifies that parallel subset are dependence-free 

• Instances of the same subset can be in different operators  (if they end up in the same 
unexpanded operator) 

• Each instance in a subset may be executed on a different “thread” 

Partitioning is captured using user annotations 

• Scade model is unchanged 

• Occurrence pragma beginning by the prefix “#par_” 

• The suffix is the identifier of the parallel subset 

• Textual & graphical format 

 

SCADE Suite Program Input Model 

 o1, o2 = #par_SetName MyNode(i1, i2, i3); 
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Rely on OpenMP 2.5 features 

• One parallel region for each parallel subset 

• Task parallelism (omp section) for operators 

• Data parallelism (omp for) for iterators 

Dynamic thread scheduling 

• The OpenMP runtime is provided by the 
C/C++ compiler (GCC) 

 

KCG OpenMP Code Generation 

function imported N1(i:int32) returns (o:int32); 
function imported N2(i:int32) returns (o:int32); 
function imported N3(idx : int32) returns (o:int32); 
 
function root(i1,i2:int32) returns (z:int32) 
var x,y:int32; a:int32^10; 
let 
  x = #par_1 N1(i1); 
  y = #par_1 N2(i2); 
  a = (#par_1 mapi N3 <<10>>)(); 
  z = x + y + a[0]; 
tel 

void root(inC_root *inC, 
          outC_root *outC) 
{ 
 array_int32_10 a; 
 kcg_size idx; 
 kcg_int32 x,y; 
 
 /* par_1 */ 
 #pragma omp parallel 
 { 
   #pragma omp sections nowait 
   { 
     #pragma omp section 
     x = N1(inC->i1); 
 
     #pragma omp section 
     y = N2(inC->i2); 
   } 
 
   #pragma omp for nowait 
   for (idx = 0; idx < 10; idx++) { 
     a[idx] = N3((kcg_int32) idx); 
   } 
 } 
 outC->z = x + y + a[0]; 
} 
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Overview 

• Generate tasks that communicate with one-to-one channels (KPN) 

- One task for the root operator 

- One task for each instance of operator in a parallel subset 

• Developed in the setting of the ITEA3 ASSUME project 

- Also support AbsInt aiT and INRIA CompCert targeting to MPPA® cores 

Properties 

• Target agnostic: KCG uses macros for all target operations 

• Instantiated for the Pthread and the MPPA Low-Level ‘bare’ runtime 

• Code generation is independent from the allocation of tasks 

KCG Task-Based Code Generation 

void N_worker() 
{ 
  recv(in_channel, i);  // receive inputs 
  o = N(i);             // call operator  
  send(out_channel, o); // send outputs 
} 
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SCADE Workflow for the MPPA® Bostan Processor  

ANSYS 

• Modified the KCG compiler 

Kalray 

• Defined the C macros for targeting the Low Level 
programming APIs 

• Interprets a mapping file 

 

 

 

 

Target 

• A single compute cluster 

• I/O is memory-mapped 

SCADE Model 

KCG 

SCADE → MPPA code generator 

XML .c 

PE 0 PE 1 PE 15 ... 

Configuration XML 

(mapping on PEs) 

WCET 
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One memory bank per PE core 

• Determined by a linker map and 
section attributes in code/data 

• Non-interfering memory accesses 
except for channels 

Communication interference 

• Remote write policy for channel data: 
multicast to successors 

 

 

Managing Local Memory Interference 

Task N1 

Task N2 

Task N3 

PE 1 

 

PE 2 

PE 3 

Task N4 

Task N5 

Task N6 PE 4 

Task N7 
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The science and engineering  of creating  intelligent machines. (John McCarthy, 1956) 

• Machine Learning (ML): Field of study that gives computers  the ability  to learn 
without being explicitly programmed (Arthur Samuel, 1959) 

• Deep Learning (DL): Allows computational models that are composed of 
multiple processing layers to learn representations of data with multiple levels 
of abstraction (Yann Le Cun et al., 2015) 

• Convolutional Neural Networks (CNN): Most filtering operations performed 
by feature maps are discrete convolutions 

 

Artificial Intelligence 

Page 87 ©2018 – Kalray SA All Rights Reserved 



Training: Learning part– Off-line – Millions of data (images, sounds, …) – FP32 

 

 

 

 

Inference: Classification / Recognition / Detection– On-line / Real time – FP16 / INT8 

Machine Learning Steps  
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R-CNN, Fast & Faster R-CNN (Girshick & Ren, 2014-
2016)  
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Regional CNN and improvements use two steps for object detection 

1) Proposal of candidate regions (initially by sementation, then by neural computing)  

2) Classification of candidate regions (neural computing and refinment steps) 



YOLO v1-3 « You Only Look Once » (Redmon 2016-2018) 
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Single-step method (contrairement aux « R-CNN ») 

• Input image is processed only once by the network 

• Approximate localization of small objects in clusters 



KaNN: Kalray CNN Inference Code Generator 

KaNN 
Optimizer 

KaNN 
Code Generator 

 
 

MPPA® platform 
 
 
 
 
 
 

Video Sources Output /Display 

KaNN 

INPUT DATA 
• Camera 
• Images 
• Lidar 

RESULTS  
• Classification 
• Segmentation 

Trained  
Neural Network 

Import 
Model 

Deploy 
Runtime 
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NxN convolutions decomposed as accumulations of N2 1x1 convolutions  

• 1x1 convolutions can be computed in parallel and accumulated in any order 

• Pixels  layout is sequential along depth (channels) for dense memory accesses 

CNN Inference on a MPPA® Processor (1) 
st
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Partition images across clusters, splitting along spatial and/or depth dimensions  

• Spatial dimension splitting requires that the full set of parameters be loaded from external memory 

• Channel dimension splittig requires access to the whole input image and a subset of the parameters 

• NoC multicasting of parameters fosters spatial dimension splitting except for small dimensions (e.g. FC) 

CNN Inference on a MPPA® Processor (2) 
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Process layers sequentially, distributing computations across all available clusters 

Each cluster local memory stores a tile + shadow region of the previous layer 

Compute the current layer in 3 steps to overlap with shadow region transfers 

CNN Inference on a MPPA® Processor (3) 

Step 1 

Step 2 

Step 3 

Initial results 

stored into the 

output layer 

Intermediate 

results added to 

step 1 results and 

stored into the 

output layer 

Final results 

added to step 2 

results and 

stored into the 

output layer 

Part of the convolution 

computed at this step 

Neurons being processed 

by the compute cluster 

Neurons being transfered 

from neighbours compute 

clusters 
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Build a buffer allocation and task execution schedule in cluster memory to overlap 
parameter transfers from external memory  with computations on local memory 

Allocation and scheduling are performed on the CNN network, considering an image 
correspond to pre and post tasks, and computations correspond to a malleable task 

 

 

 

 

 

On MPPA® processors, parameter loading from DDR leverages NoC multicasting 

CNN Inference on a MPPA® Processor (4) 



Page 96 

For layers where images do not fit on-chip, stream sub-tiles from DDR memory 

• All clusters remote write their tile of output image to DDR memory, then enter a synchronization barrier 

• After clusters leave the barrier, they pipeline the remote read from DDR / operate / put to DDR of sub-tiles 

• Larger sub-tiles factor more control overhead but reduce the amount of pipelining 

CNN Inference on a MPPA® Processor (5) 

©2017 – Kalray SA All Rights Reserved 

post 

operation 

parameters 

get 

post 

get 

operation 

get 

post 

operation 

Input image in DDR 

Sub-tile 

Tile 



Page 97 ©2017 – Kalray SA All Rights Reserved 

Exécution de réseaux multiple par partitionnement spatial du MPPA 

Multiple CNN Inferences on the MPPA®-80 Coolidge 

Division sur  5 

tuiles 

Couche du CNN0 

Couche du CNN1 
Couche du CNN2 MPPA3®-80 Coolidge 

Tuile 3 Tuile 4 

Tuile 0 

Tuile 1 

Tuile 2 
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AlexNet (FPS) SqueezeNet 1.0 (FPS) SqueezeNet 1.1 (FPS) GooLeNet (FPS)

Intel CPU i5 2.7 GHz

Embedded GPU 1GHz
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MPPA® Bostan vs CPU & GPU on CNN Inference 
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MPPA®: A PROCESSOR FOR DEEP LEARNING 

51 

77 

100 

2500 

3000 

6000 

20nm GPU *

BOSTAN*

@ 600MHz (28nm)

16nm GPU *

12nm GPU **

COOLIDGE 80**

@ 600Mhz (16nm)

COOLIDGE 80**

@ 1200MHz (16nm)

GoogleNet 
(Frame per second) 

MPPA processors are especially well-suited for 
efficient deep learning and computer vision 

 

• Specific Co-processor for Vision and Learning 

- 16-bits floats for more than 3 TFLOPS 

- 8-bits fixed point for up to 6TFLOPS 

 

• High on chip memory bandwidth 300GB/s to 
store data closer to the compute units 

 

• Fast and direct communication between clusters 
and chip for faster communication between 
layers 
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(*) Measurement  
(**) Estimation 
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Bostan 
@500MHz 

Coolidge-80 v1 
@1.2 GHz 

Coolidge-80 v2 
@1.2 GHz 

GoogleNet 65 fps (FP32)* 
1500 fps (INT16)** 
3000 fps (INT8)** 

3000 fps (INT16)** 
6000 fps (INT8)** 

SqueezeNet 1.1 218 fps (FP32)* 
4950 fps (INT16)** 
9900 fps (INT8)** 

9900 fps (INT16)** 
19800 fps (INT8)** 

SqueezeNet 1.0 106 fps (FP32)* 
2610 fps (INT16)** 
5220 fps (INT8)** 

5220 fps (INT16)** 
10440 fps (INT8)** 

VGG-16 7 fps (FP32)* 
180 fps (INT16)** 
360 fps (INT8)** 

360 fps (INT16)** 
720 fps (INT8)** 

ResNet-50 35 fps (FP32)* 
870 fps (INT16)** 
1740 fps (INT8)** 

1740 fps (INT16)** 
3480 fps (INT8)** 

MPPA® DEEP LEARNING PERFORMANCES 
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(*) Measurements of computing on MPPA® 
(**) Estimation based on simulation and results from Bostan 



KaNN Integration into  
3rd Party Autonomous Software Platforms  

MPPA Processing Perception of  

BAIDU Apollo 

MPPA Processing Perception of  

Autoware 
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Presentation 

Manycore Processors 

Manycore Programming 

Symmetric Parallel Models 

Untimed Dataflow Models 

Kalray MPPA® Hardware 

Kalray MPPA® Software 

Model-Based Programming 

Deep Learning Inference 

Conclusions 

Outline 
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Consolidating the MPPA® Eco-System 
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BLAS 



OpenVX express a graph of image operations (‘Nodes’) 

• Nodes can be run on any hardware or processor and coded in any 
language 

Graph-based computing enables implementations to 
optimize for power and performance 

• Nodes may be fused by the implementation to eliminate memory 
transfers 

• Processing can be tiled to keep data entirely in local memory/cache 

Minimizes host interaction during frame-rate graph 
execution 

Khronos OpenVX for Computational Imaging 
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Build and check the Single-Rate Directed Acyclic Graph  

• No multi-writer on outputs 

• No unconnected image buffers 

• At least one user input and output 

Detect kernel fusion opportunities on virtual images 

• Pairwise grouping of adjacent nodes 

• Local memory capacity constraints 

• Kernel dependency pattern 

• Edge type (real or virtual) 

Code generation for SPMD execution 

• Topological sort scheduling of nodes 

• Build allocation plan for local memory buffers 

• Select commands for tiling/skewing runtime engines 

Kalray OpenVX Compilation Workflow 

Page 105 ©2018 – Kalray SA All Rights Reserved 



Kalray OpenVX N-Buffering Tiling Engine 
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Tile Tile Tile Tile 

Tile Tile Tile Tile 

Tile Tile Tile Tile 

Tile Tile Tile Tile 



Automated kernel fusion in MPPA2® OpenVX environment 

MPPA2® Bostan Performances on OpenVX 
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The MPPA® manycore architecture excels on standard CNN inference 

• Not only on performance, but also on energy efficiency and time-predictability 

• The key is to exploit the high-bandwidth local memory shared by cores in a cluster 

• This is achieved by the KaNN code generation tool working from standard frameworks 

Techniques applied by the KaNN code generator are generalized 

• KaNN extensions to 8-bit/16-bit fixed-point inference as supported by standard frameworks 
(TensorFlow gemmlowp, Caffe Ristretto) 

• OpenVX framework for MPPA® processors to be released in 2019 

Standard OpenCL environment must be extended 

• OpenCL Task Parallel mode extensions to support C/C++, pthreads & OpenMP, and 
asynchronous one-sided operations between Compute Units (MPPA® compute clusters) 

Model-based execution environments 

• Model-based environments (SCADE, Simulink) unlocks use of manycore processors 

• Further developments that combine SCADE Suite (Esterel) and Asterios (Krono-Safe) 

Conclusions and Perspectives 
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MPPA® Technology 

SAFETY SECURITY DETERMINISM PERFORMANCE STANDARDS 

• Hardware 
partitioning 

• Software 
partitioning 

• Hypervisor 
support 

• ISO26262 ASIL B/C 

• Hardware root of 
trust 

• Secure boot  

• Authenticated 
debug 

• Trusted execution 
environment 

• Encrypted 
application code 

• Fully timing 
compositional cores 

• Banked on-chip 
memory 

• Interference-free 
local interconnect 

• Network-on-Chip 
(NoC) service 
guarantees 

• High-end floating-
point and bit-level 
processing 

• DSP-style energy 
efficiency 

• Scalability by 
replicating clusters 

• Standard 
programming 
environments 
(C/C++, OpenMP, 
POSIX, OpenCL, 
OpenVX) 

• Standard 
development tools 
(Eclipse, GCC, GDB, 
LLVM, Linux) 
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SCALABLE 

• Adaptability to E/E architecture  

• Low range to high range car lines 

• Allow distribution of functions 
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