
Kalray MPPA®

Massively Parallel Processor Array

Parallel Processing
with the MPPA
Manycore Processor

Benoît Dupont de Dinechin, CTO

14 Novembre 2018

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 2 ©2018 – Kalray SA All Rights Reserved

KALRAY IN A NUTSHELL

We design processors
at the heart of new
intelligent systems

Financial and industrial shareholders

4
offices
Grenoble, Sophia (France),
Silicon Valley (Los Altos, USA),
Yokohama (Japan)

Pengpai

Page 3 ©2018 – Kalray SA All Rights Reserved

~80 people

~70 engineers

A unique

technology,

result of 10

years of

development

KALRAY: PIONEER OF MANYCORE PROCESSORS

Scalable Computing Power

Data processing in real time

Completion of dozens
of critical tasks in parallel

Low power consumption

Programmable / Open system

Security & Safety

#1

#2

#3

#4

#5

#6

Page 4 ©2018 – Kalray SA All Rights Reserved

OUTSOURCED PRODUCTION
(A FABLESS BUSINESS MODEL)

PARTNERSHIP WITH THE WORLD LEADER IN PROCESSOR MANUFACTURING

Sub-contracted production

Signed framework agreement with GUC,
subsidiary of TSMC
(world top-3 in semiconductor manufacturing)

Limited investment

No expansion costs

Production on the basis of purchase orders

Page 5 ©2018 – Kalray SA All Rights Reserved

INTELLIGENT DATA CENTER :
KEY COMPETITIVE ADVANTAGES

KALRAY: THE SOLUTION THAT BRINGS INTELLIGENCE “ON THE FLY”

TO THE WORLD OF DATA CENTERS

First “NVMe-oF all-in-one” certified solution *

8x more powerful than the latest products
announced by our competitors**

Power consumption below 20W***

* Kalray KTC80 has been certified in April 2018 by the independent certification Inter Operability
Laboratory ((University of New Hampshire). No competitors’ products has been certified so far
(www.iol.unh.edu/registry/nvmeof)
** Kalray KTC80 : 288 cores @ 550MHz = 158GHz / Mellanox Bluefield : 16 cores @ 1.2GHz = 19.2GHz /
Broadcom Stingray : 8 cores @ 2GHz = 16 GHz
*** Kalray measurement of KTC80

Page 6 ©2018 – Kalray SA All Rights Reserved

OUR MPPA IS A UNIQUE SOLUTION TO ADDRESS
TWO MAIN CHALLENGES FACED BY OEMs

Page 7 ©2018 – Kalray SA All Rights Reserved

A need for performance

A need to consolidate
the electronic functions in the car

Perf. increase

x100

up to

x1,000

50 to 100
processors

per car
today

x

AGGREGATION PERFORMANCE

KALRAY MPPA
TECHNOLOGY

MPPA® PRODUCT FAMILY AND ROADMAP

8

MANYCORE TECHNOLOGY THAT ENABLES PROCESSOR OPTIMIZATION

BASED ON EVOLVING MARKET REQUIREMENTS

BOSTAN COOLIDGE -1 COOLIDGE -2 Dx

PROCESS 28 nm 16 nm 16 nm 12 nm or 7nm

PERFORMANCE
1 DL TOPS

700 MFLOPS SP

24 DL TOPS
1 TFLOPS SP
3 TFLOPS HP

48 DL TOPS / 96
TDL OPS

100 TOPS / 200
TOPS

USE
Boards SC

(40G)
Prototypes

Boards and
storage chip

controllers (100G)
Accelerator

intelligent car

Qualification Car
Market DC - NFV

DC

CONSUMPTION
(WATTS)

8W – 25W 5W – 15W 5W – 20W 2W – 10W

2018 2019 2020 2021

COMMERCIAL LAUNCH

UNDER DEVELOPMENT UNDER DEFINITION

Page 8 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 9 ©2018 – Kalray SA All Rights Reserved

Motivation for Multicore and Manycore Processors

Page 10 ©2018 – Kalray SA All Rights Reserved

Past contributions to CPU performances: clock speed increase,
instruction-level parallelism, thread-level parallelism

Intuitively, these are Manycore Processors

Page 11 ©2018 – Kalray SA All Rights Reserved

Processor Cores Year Applications

Tilera/Mellanox TILE-Gx72 72x 64-bit VLIW cores 2014 Networking, Storage

Parallela Epiphany-V 1024x 64-bit RISC cores 2016 Embedded HPC

Intel Xeon Phi Knights
Landing

72x Atom cores with four
threads per core

2016 Supercomputing

Sunway SW26010
(TaihuLight)

260x 64-bit RISC cores 2016 Supercomputing

Kalray MPPA3-80 Coolidge 85x 64-bit VLIW cores 2018 Embedded HPC,
Networking, Storage

REX Computing NEO 256x 64-bit VLIW cores 2018 Embedded HPC,
Supercomputing

NVIDIA Xavier 512x 64-bit CUDA cores 2018 Embedded HPC

Challenge: managing interference between cores

Classic Multicore Memory Hierarchy

Page 12 ©2018 – Kalray SA All Rights Reserved

Challenge: programmability of DMA and private memories

Embedded Multicore Memory Hierarchy

Page 13 ©2018 – Kalray SA All Rights Reserved

Memory locality and core clustering are architecturally visible

• Scratch-pad memory (SPM), software-managed caches, local memory, ‘shared memory’ (GPGPUs)

• ‘compute unit’ associates processing cores and data transfer engines operating on a local memory

• Sunway SW26010 processor with 64KB SPM per CPE core (source U. of Tennessee / Jack Dongarra):

A Qualitative Definition of Manycore Processors

Page 14 ©2018 – Kalray SA All Rights Reserved

Source: http://rexcomputing.com/

REX Computing NEO Architecture (Defunct)

Page 15 ©2018 – Kalray SA All Rights Reserved

Classic GPGPU architecture: NVIDIA Fermi

• GPGPU ‘compute units’ called Streaming Multiprocessors (SM)

• Each SM comprises 32 ‘streaming cores’ or ‘CUDA cores’ that
share a local memory, caches and a global memory hierarchy

• Threads are scheduled and executed atomically by ‘warps’,
where they execute the same instruction or are inactive

• Hardware multithreading enables warp execution switching on
each cycle, helping cover memory access latencies

GPGPU programming models (CUDA, OpenCL)

• Each SM executes ‘thread blocks’, whose threads may share
data in the local memory and access a common memory
hierarchy

• Synchronization inside a thread block by barriers, local
memory accesses, atomic operations, or shuffle operations
(NVIDIA)

• Synchronization between thread blocks through host program
or global memory atomic operations in kernels

GPGPUs as Manycore Processors

Page 16 ©2018 – Kalray SA All Rights Reserved

Example of NVIDIA Volta

• 64x FP32 cores per SM

• 32x FP64 cores per SM

• 8x Tensor cores per SM

Tensor core operations

• Tensor Core perform D = A x B + C,
where A, B, C and D are matrices

• A and B are FP16 4x4 matrices

• D and C can be either FP16 or FP32 4x4
matrices

• Higher performance is achieved when
A and B dimensions are multiples of 8

• Maximum of 64 floating-point mixed-
precision FMA operations per clock

GPGPU Tensor Cores for Deep Learning (NVIDIA)

Page 17 ©2018 – Kalray SA All Rights Reserved

Restrictions of GPGPU programming

• CUDA is a proprietary programming environment

• OpenCL programming by writing host code and device
code, then connecting them through a low-level API

• GPGPU kernel programming lacks standard features of
C/C++, such as recursion or accessing a file system

Performance issues with ‘thread divergence’

• Branch divergence: a simple if...then...else construct will
force all threads in a warp to execute both the "then"
and the "else" path

• Memory divergence: when hardware cannot coalesce
the set of warp global memory accesses into one or two
L1 cache blocks

Time-predictability issues

• Dynamic allocation of thread blocks to SMs

• Dynamic warp scheduling and out-of-order execution of
warps on each SM

Limitations of GPGPUs for Accelerated Computing

Page 18 ©2018 – Kalray SA All Rights Reserved

Warp Scheduler

Intra-Warp

Coalescer

Load/Store Unit

to L2,

DRAM

Load

Group

by

cache

line

Acces

sCach

e

Lines

L1 Cache

MSHR MSHR MSHR MSHR

Memory access coalescing (Kloosterman et al.)

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 19 ©2018 – Kalray SA All Rights Reserved

Scalar loop

• Loop-carried dependences lexically backward or left-to-right in statement.

Vector loop

• Loop-carried dependences lexically forward or right-to-left in statement.

Independent loop

• No loop-carried dependences

Data Dependences in Innermost Loops

 DO I = 1, N

S1 A(I+1) = A(I) + B(I)

 ENDDO

S1 A(2) = A(1) + B(1)

S1 A(3) = A(2) + B(2)

S1 A(4) = A(3) + B(3)

S1 A(5) = A(4) + B(4)

 DO I = 1, N

S1 A(I) = A(I+1) + B(I)

 ENDDO

S1 A(1) = A(2) + B(1)

S1 A(2) = A(3) + B(2)

S1 A(3) = A(4) + B(3)

S1 A(4) = A(5) + B(4)

 DO I = 1, N

S1 A(I) = A(I) + B(I)

 ENDDO

Page 20 ©2018 – Kalray SA All Rights Reserved

Loop Iterations: Scalar, Vector, Independent

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

load

load

add

store

T
im

e

Page 21 ©2018 – Kalray SA All Rights Reserved

OpenCL 1.2 has two parallel execution models

• Data parallel, with one work item per processing element

• Task parallel, with one work item per compute unit

- Task parallel model is exploited by FPGAs and by DSPs

OpenCL For Manycore Processors

Page 22 ©2018 – Kalray SA All Rights Reserved

Executes a kernel at each point in a grid domain

• To process a 1024 x 1024 image

• Create one kernel instance per pixel

- 1,048,576 kernel executions

- 65536 working groups of 16 work items

- 4096 iterations on 16 Compute Units of 16 Processing Elements

OpenCL Data Parallel Model

__kernel void vecAdd(__constant double *a,

 __constant double *b,

 __global double *c)

{

 unsigned int id = get_global_id(0);

 c[i] = a[i] + b[i];

}

/* 16 work items in each workgroup */

size_t localSize = 16;

/* Start 16 work-groups of 16 work-items) */

size_t globalSize = localSize * 16;

/* enqueue the tasks 16 work-groups of 16 work-

items */

err = clEnqueueNDRangeKernel(queue, kernel, 1,

NULL, &globalSize, &localSize, 0, NULL, NULL);

#define n 256

void vecAdd(const double *a,

 const double *b,

 double *c,

 int n)

{

 int i;

 for (i=0; i<n; i++) {

 c[i] = a[i] + b[i];

 }

}
T

im
e

 =

4
0

9
6

 i
te

ra
ti
o

n
s

16 Compute Units of 16 processing element

Page 23 ©2018 – Kalray SA All Rights Reserved

OpenMP for Multicore Programming

A parallel region starts
redundant execution

Work sharing constructs
assign different pieces of
work to threads

Synchronization is
explicit (here critical
section) or implicit
(barriers end constructs)

Page 24 ©2018 – Kalray SA All Rights Reserved

OpenMP for SIMD/Vector Execution

Page 25 ©2018 – Kalray SA All Rights Reserved

First map data to the accelerator, then distribute work to the accelerator threads

OpenMP for Accelerator Offloading

Page 26 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 27 ©2018 – Kalray SA All Rights Reserved

IBM BlueGene series, Cray XT series

• Compute nodes with multiple cores and shared memory

• I/O nodes with high-speed devices and a Linux operating system

• Specialized networks between the compute nodes and the I/O nodes

Supercomputer Distributed Memory Architecture

Page 28 ©2018 – Kalray SA All Rights Reserved

A Single Program Multiple Data (SPMD) execution model

• All processes execute the same code

• Processes participate in collective operations

• Global data is seen as the combination of local data

• One-sided communications and bulk synchronizations

Variants of symmetric parallel programming models

• Gorlatch-style MPI programming ‘Send-Receive Considered Harmful’

• Supercomputer communication libraries:

- Cray SHMEM, DoE ARMCI, Berkeley GASNet, IBM DCMF & PAMI

• Partitioned Global Address Space (PGAS) languages:

- Co-Array Fortran (CAF), Unified Parallel C (UPC), Titanium

• Bulk Synchronous Parallel (BSP) programming models

What is Symmetric Parallel Programming

Page 29 ©2018 – Kalray SA All Rights Reserved

Origin and uses

• Introduced by Cray (1993) for the Cray T3D

• Supported by SGI (1997), Quadrics (1998)

• GPSHMEM (2000) implementation on top of ARMCI

• Base of Cray F-- (1997), which became co-array Fortran

• Evolutions: ordered -> unordered, blocking -> non blocking

One-sided primitives + atomic, collective operations

• shmem_long_put(dst, src, len, pe); shmem_long_get(...);

• shmem_swap(dst, src, pe); shmem_wait(var, value);

• shmem_long_sum_to_all(...);

• shmem_barrier(...); shmem_fence(); shmem_quiet();

Symmetric memory allocation

• Replicated static variables at same local address

• Dynamic memory allocation: shmalloc(size);

Cray SHMEM Communication Library (1995)

Page 30 ©2018 – Kalray SA All Rights Reserved

Simple Program Multiple Data with symmetric data

• Same program replicated as a fixed number of concurrent ‘images’

• Images execute asynchronous ‘segments’ between SYNC statements

• Global data is composed of image data with co-dimensions
- FLOAT A(10,20)[*]

Co-Array Fortran syntax extensions

• Uses normal rounded brackets () to point to data in local memory

• Uses square brackets [] to point to data in remote memory
- IF (this_image() > 1) ! Get data from left neighbor

A(1:10,1:2) = A(1:10,19:20)[this_image()-1]

Co-Array Fortran for Distributed Memory (2008)

A(10,20) A(10,20) A(10,20)

image 1 image 2 image N

Page 31 ©2018 – Kalray SA All Rights Reserved

The ‘bridging model’ of L. Valiant

• SPMD and distributed memory

• Bulk message passing

• Superstep synchronization

Oxford University BSPLib

• Introduce put() and get() one-
sided operations like SHMEM

• Registration of local objects
<=> symmetric memory space

Paderborn University BSP (PUB)

• Collectives (reduce, scan, etc.)

• Split BSP to sub-BSP machines

NestStep languages of C. Kessler

• Manage ‘replicated’ and ‘distributed’ objects

Bulk Synchronous Parallel Models

Processors (or cores)

Local

Computation

Global

Communication

Superstep

Synchronization

effects of communications

visible only after superstep

Page 32 ©2018 – Kalray SA All Rights Reserved

SPMD image queries

• bsp_order(); // Number of images in the SPMD program

• bsp_rank(); // Rank of image, in [0 … bsp_order()-1]

Registration and bulk synchronization

• bsp_register(object, size); // Register a local object for communications

• bsp_unregister(n); // Undo n latest calls to bsp_register()

• bsp_sync(); // Superstep synchronization

One-sided communications

• bsp_put(rank, object, addr, data, size); // Put data to registered object

• bsp_get(rank, object, addr, data, size); // Get data from registered object

Delayed communications semantics

• While executing superstep, capture put() sources in buffers

• At the end of superstep, capture get() sources in registered data

• Write data associated with put() or get() to destinations

Minimal BSP Interface

Page 33 ©2018 – Kalray SA All Rights Reserved

Dense matrix-matrix multiplication algorithm by Gerbessiotis

• P images, each image maintains a tile of matrices A, B, C

• Each image receives other tiles by ‘get’ operations followed by ‘sync’

Gerbessiotis MatMulG algorithm

Dense Matrix Multiplication with the BSP Model

√p

√p

get from matrix A

get from matrix B

Page 34 ©2018 – Kalray SA All Rights Reserved

McColl 1998 “Foundations of Time-Critical Scalable Computing”

Distributed Algorithms with the BSP Model

Page 35 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 36 ©2018 – Kalray SA All Rights Reserved

Sequential “processes” connected through FIFO “channels”

Blocking “read”, non blocking “write” on channels

Processes are also called “actors” or “agents”

Determinacy of results, independent of actor firing sequence

Kahn Process Networks (KPNs) [Kahn 1974]

A1 A4 A2

A3

A5

A6

processes channels

Page 37 ©2018 – Kalray SA All Rights Reserved

Dataflow Process Networks (DPN) [Lee & Parks 1995]

• Kahn Process Network with functional actors (no persistent state) and sequential firing rules
(pre-defined order using only blocking reads)

Static Dataflow (SDF) [Lee & Messerschmitt 1987]

• Agents producing and consuming a constant number of tokens

• Single-rate SDF is also known as Homogenous SDF (HSDF)

Synchronous Dataflow (SDF) [Benveniste et al. 1994]

• Time advances in lockstep with one or more clocks (Signal, Esterel, Lustre, SCADE Suite)

Cyclo-Static Dataflow (CSDF) [Lauwereins 1994]

• A cyclic state machine unconditionally advances at each firing

• Known number of tokens produced and consumed for each state

Computational Process Networks (CPN) [Karp & Miller 1966]

• SDF extended with ‘firing thresholds’: # input tokens > # consumed tokens

Dataflow Models of Computation

Page 38 ©2018 – Kalray SA All Rights Reserved

Ptolemy II (Berkeley) for Actor-Oriented Design

Hierarchical
component

modal
model

dataflow
controller

example Ptolemy II model: hybrid
control system

 Framework for experimentation
with actor-oriented design,
concurrent semantics, visual
syntaxes, and hierarchical,
heterogeneous design.

 http://ptolemy.eecs.berkeley.edu
Page 39 ©2018 – Kalray SA All Rights Reserved

Filters are unit of computation

• No global resources

FIFO channels operations

• peek(index) / pop() / push(value)

• peek / pop / push rates must be constant

Graph optimizations

• Horizontal/vertical filter fusion/fission

• Time/frequency domains

Teleport messaging

• Synchronize mode changes with data flow

Program morphing

• Update application graph while running

RAW machine code generation

• RAW project founded Tilera

parallel computation

 may be

any StreamIt

language

construct

joiner splitter

pipeline

feedback

loop
joiner splitter

splitjoin

filter

http://cag.lcs.mit.edu/streamit

Page 40 ©2018 – Kalray SA All Rights Reserved

• Computation blocks and communication graph written in C

• Cyclostatic data production & consumption

• Firing thresholds of Karp & Miller

• Dynamic dataflow extensions

Sigma-C Dataflow Programming Environment

Automatic mapping on

MPPA® memory, computing,

& communication resources

Page 41 ©2018 – Kalray SA All Rights Reserved

Sigma-C Agent Example

agent Inverter()
{

 interface

 {
 in<unsigned char> input; /*< input byte stream */
 out<unsigned char> output; /*< output byte stream */

 spec{input; output};

 }

 void invert (void) exchange (input pel_in, output pel_out)
 {
 pel_out = 255 - pel_in;

 }

 void start ()
 {
 invert();

 }
}

interface section for input/

output channels

exchange keyword flags

direct operations on input

/ output channels

standard C code within the agent

start function is an infinite loop

agent keyword followed

by the name of the agent

state machine specification for

data production & consumption

Page 42 ©2018 – Kalray SA All Rights Reserved

Example of Cyclostatic Specs

 spec{{input; output1}; {input; output2}};

 void fn1 (void) exchange (input i, output1 o)
 {

 /* Function code */
 }

 void fn2 (void) exchange (input i, output2 o)
 {

 /* Function code */
 }

 void start ()
 {

 fn1();
 fn2();
 }

Two exchange functions,

one for each spec state

input

output2

output1
Send every

other input

to a different

output (split)
Consume one input at a time

A1
[1,1]

[1,0]

[0,1]

Page 43 ©2018 – Kalray SA All Rights Reserved

Generalization of Karp & Miller Thresholds

agent Filter()
{

 interface

 {
 in<unsigned char> input;
 out<unsigned char> output;

 spec{ {input[1:5]; output} };

 }

 void
 start (void) exchange (input i[1:5], output o)
 {

 o = (i[0] + i[1] + i[2] + i[3] + i[4] + i[5])/3;
 }
}

Agent can access 6 tokens for

reading but only 1 token is

consumed at each transition

1 2 3 4 5 6 7 8 9 10

Accessible in 1st transition

Accessible in 2nd transition

Consumed in

1st transition

Consumed in

2nd transition

input stream

Page 44 ©2018 – Kalray SA All Rights Reserved

Static Dataflow Graph Boundedness

Balance equations

• 2 N(A) - N(B) = 0

• N(B) - N(C) = 0

• 2 N(A) - N(C) = 0

• 2 N(A) - N(C) = 0

Graph incidence matrix

Matrix must be non-full rank

• Any multiple of the repetition vector N = |1
2 2|T satisfies the balance equations

Solution to balance equations ensures
bounded buffers execution

B C

A
2

1

1

1

2
2

1
1

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

Page 45 ©2018 – Kalray SA All Rights Reserved

At program startup, some channels may be non-empty

• Required for the liveness of some dataflow graphs
• void preload(input_channel, int token_nbr, int data_size, void *input_data);

Pre-Loaded Tokens in Channels

B C

A
1

2

1

3

2

3 1

2

0

B C

A
1

2

1

3

2

3 2

1

0

B C

A
1

2

1

3

2

3 2

2

0

B C

A
1

2

1

3

2

3 3

1

0

B C

A
1

2

1

3

2

3 2

2

0

DEADLOCK BACBA

BACBA CBA

Page 46 ©2018 – Kalray SA All Rights Reserved

Symbolic execution of the dataflow graph

• Execute one agent firing at a time

• Find an ‘hyperperiod’, where each agent executes its number of times in the repetition
vector and where the channel token count returns to the same values

• Preloaded tokens in channels and firing thresholds may delay the first occurrence of the
hyperperiod

Symbolic execution of a balanced static dataflow graph always succeeds, unless the
graph is not alive

• Take advantage of choice over ready agent firing to heuristically optimize objectives such as
maximum buffer use

Sequencing Static Dataflow Graphs

Page 47 ©2018 – Kalray SA All Rights Reserved

Static Dataflow graph execution can be interpreted

Efficient parallel execution is achieved by unfolding a dependence graph that
ensures correct buffer accesses

• True data dependence arcs and buffer size feedback arcs

Dataflow Graph and Dependence Graph

A

B

C

A B C 3 3

Page 48 ©2018 – Kalray SA All Rights Reserved

Sigma-C Dataflow Compilation and Execution [Retired]

Source

Files

P1

P2

P3

P4

Generated C source files

Dataflow graph and data files

Buffer sizes, Sequence,

Mappings, NoC configuration

Native

Simulator

Runtime

Monitor

Simulated

Execution

MPPA®

Execution

Pag
e 49

©2018 – Kalray SA All

Rights Reserved

COMPA (IETR INSA Rennes)
Algorithm graph
Hierarchical SDF

Architecture graph

Mapping/Scheduling

Automatic code generation

Calcu
l

Com. Com. Calcu
l

Simulation

https://preesm.github.io

Page 50 ©2018 – Kalray SA All Rights Reserved

Low-Level Image Filtering Application

Page 51 ©2016 – Kalray SA All Rights Reserved

Cluster Level

Core Level

Software Synthesis for MPPA® (multi-CPU model)

Page 52 ©2016 – Kalray SA All Rights Reserved

Core Level

Cluster Level

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 53 ©2018 – Kalray SA All Rights Reserved

Page 54

MPPA® MANYCORE HIGHLIGHTS

©2018 – Kalray SA All Rights Reserved

INTEGRATED MANYCORE
PROCESSOR

• Secure Cores

• Application Cores

• Visio/Deep learning Co-processor

• High-performance low-latency I/O

CPU EASE OF
PROGRAMMING

• C/C++ GNU programming
environment

• Support OpenCL

• 64-bit addresses, little-endian

• Rich operating system
environment

SCALABLE MASSIVELY
PARALLEL COMPUTING

• MPPA® processors can be tiled
together, in package or on

board

• MPPA® processors can easily be
integrated into a system with
other processors (FPGA, CPU,

GPU)

DSP TYPE OF
ACCELERATION

• Energy efficiency

• Timing predictability

• Software programmability

Efficiency of CPUs, DSPs, FPGAs, ASICs (ISSCC)

GPUs at same energy efficiency as DSPs

Pag
e 55

©2018 – Kalray SA All

Rights Reserved

C10 C11

C8 C9

C2 C3

C0 C1

SYS.
CORE

DMA

D-Noc Router

C14 C15

C12

C6 C7

C4 C5

DSU

DMA

D-Noc Router

Shared
Memory
(SMEM)

C13

MPPA®-256 Bostan
TSMC CMOS 28HP, 600MHz

Page 56 ©2018 – Kalray SA All Rights Reserved

VLIW CORE
Architecture

• 32-bit or 64-bit addresses

• 5-issue VLIW architecture

• MMU + I&D cache (8KB+8KB)

• 32-bit/64-bit IEEE 754-2008 FMA FPU

Security

• crypto co-processor (AES/SHA/CRC/…)

Performance

• 6 GFLOPS SP per core

COMPUTE CLUSTER
Architecture

• 16 user cores (SMP) + 1 system core

Communication

• NoC Tx and Rx interfaces

Memory:

• 2 MB multi-banked shared (77GB/s
Shared Memory BW)

Debug

• Debug Support Unit (DSU)

MANYCORE PROCESSOR
Architecture: Distributed memory

• 16 compute clusters

• 2 I/O clusters (2x quad-core each)

• Data & control networks-on-chip (NoC)

Performance

• 1 TFLOPS SP

Devices

• DDR3, 4 Ethernet 10G and 8 PCIe Gen3

IO cores

C C C

C C C C

C C C C

C C C C

IO cores

IO cores

4
x

1
0

G
 /

 4
0

G

 E
th

e
rn

e
t

4
x

1
0

G
 /

 4
0

G

 E
th

e
rn

e
t

DDR IO cores PCIe

DDR PCIe

C

PFB

BCU Co-processor (crypto/CRC)

ALU1

ALU0

MAU ID RF

LSU

Data
CACHE

MAC

Tiny ALU

FPU

Tiny ALU
Data

CACHE

MPPA®-80 Coolidge
TSMC CMOS 16FFC, 1.2 GHz

Page 57 ©2018 – Kalray SA All Rights Reserved

LP
D

D
R

 / D
D

R

16-lane PCIe

C

C

CC

C

Ethernet

GPIO
SPI
I2C

UART

Secure
Boot

Static Memory
Controller

CAN

USB 2.0

LP
D

D
R

 / D
D

R

Ethernet

0

2

1

3

Secure
Core

Crypto
Acc

Mailbox

DSU

NoC & AXI

4

6

5

7

8

10

9

11

12

14

13

15

Local
Memory

4MB

SMEM
L2$

DMA

Secure
Mem

LP
D

D
R

 / D
D

R

16-lane PCIe

C

C

CC

C

Ethernet

GPIO
SPI
I2C

UART

Secure
Boot

Static Memory
Controller

CAN

USB 2.0

LP
D

D
R

 / D
D

R

Ethernet

3RD GENERATION VLIW CORE
Architecture updates
• 64-bit core
• 6-issue VLIW architecture
• MMU + I&D cache (16KB+16KB)
• 16-bit/32-bit/64-bit IEEE 754-2008 FPU
• Vision/CNN tightly coupled co-processor

COMPUTE CLUSTER
Architecture updates
• 16 CPU VLIW cores 64bits
• 16 Tensor co-processors
• Safety/Security dedicated core
Memory
• L1 cache coherency (configurable)

• 4MB memory configurable (614GB/s)

MANYCORE PROCESSOR
Architecture updates
• 80 or 160 CPU cores
• 600/900/1200MHz frequency modes
Memory
• L2 cache coherency between clusters
• L2 refill in DDR and Direct access to

DDR from clusters

MPPA3® NoC architecture

• Wormhole switching with source routing

• 2 virtual channels, 4x TX DMA channels

• RDMA, remote queues, remote atomics

• 128-bit flits, up to 17 flits/packet (256B payload)

4x 25Gbps Ethernet lanes reused for NoC extension

• NoC packet encapsulation into IEEE 802.1Q standard for VLAN

• Designed for direct connections between 2 to 4 chips (using FEC)

• VCs map to IEEE 802.1Qbb Priority-based Flow Control (PFC) classes

MPPA3® Coolidge NoC

Page 58 ©2018 – Kalray SA All Rights Reserved

C4

C1

C3

C2

C0

ET

H

C4

C1

C3

C2

C0

ET

H

25GbE

100GbE

100GbE

MAC dst

6 bytes

MAC src

6 bytes

VLAN etype

0x8100

2 bytes

VLAN TCI

PFC (3 bits) / CFI (1 bit) /

NoC pkt nb (12 bits)

2 bytes

NoC pkt0 NoC pkt1

NoCX etype

0xB000

2 bytes

FCS

4 bytes

MPPA3® Coolidge Global Interconnects

Page 59 ©2018 – Kalray SA All Rights Reserved

RDMA NoC

AXI Crossbar

…
…

MPPA3® Coolidge Compute Cluster

Page 60 ©2018 – Kalray SA All Rights Reserved

8K @

256bit data

32bit ECC

x 16 banks

bank 0

x 16 x 8

PE Core 0 PE Core 15 DMA AXI slave

256 bits 256 bits 128 bits 128 bits

Periph

Registers

DMA

APIC

DSU

Periph

8K @

256bit data

32bit ECC

bank 15

Security

Acc 0

AES / GCM

Hashing

Periph

Secure

Bank

Periph

Security

Acc 1

AES / GCM

Hashing

Periph

Security & Safety

256 bits

NON SECURE ZONE SECURE ZONE

RM Core

256bit data

32bit ECC

MPPA3® Coolidge Memory Hierarchy

Page 61 ©2018 – Kalray SA All Rights Reserved

VLIW Core L1 Caches
• 16KB / 4-way LRU instruction cache per core

• 16KB / 4-way LRU data cache per core

• 64B cache line size

• Write-through, write no-allocate (write around)

• Coherency configurable across all L1 data caches

• DMA writes are L1 cache-coherent

Cluster L2 Cache & Scratch-Pad
Memory
• Scratch-pad from 2MB to 4MB

• 16 independent banks, full crossbar

• Interleaved or banked address mapping

• L2 cache from 0MB to 2MB

• 16-way Set Associative

• 256B cache line size

• Write-back, write allocate

• Optionally coherency across clusters

2x DDR4 64-bit /

2x LPDDR4 64-bit

D$ I$ D$ I$
x 16

16 Cores

Scratch-Pad L2 Cache

Cluster

L1

cache

coheren

cy

L2 cache

coherenc

y

enable

/disable

enable

/disable

MPPA3® Coolidge 3rd Generation 64-Bit VLIW Core

Unified scalar and SIMD ISA

• 64x 64-bit general-purpose registers

• Operands can be single registers, register pairs
(128-bit) or register quadruples (256-bit)

• Immediate operands up to 64-bit, including F.P.

• 128-bit SIMD instructions by dual-issuing 64-bit
on the two ALUS or by using the FPU datapath

FPU capabilities

• 64-bit x 64-bit + 128-bit → 128-bit

• 128-bit op 128-bit → 128-bit

• FP16x4 SIMD 16 x 16 + 32 → 32

• FP32x2 FMA, FP32x4 FADD, FP32 FMUL Complex

• FP32 Matrix Multiply 2x2 Accumulate

Page 62 ©2018 – Kalray SA All Rights Reserved

COOLIDGE VLIW CORE PIPELINE

MPPA3® Coolidge Tensor Coprocessor

Extend core ISA with « wide » SIMD

• 64x 256-bit wide vector register file

• Matrix-oriented arithmetic operations

Full integration into core pipeline

• Move instructions with matrix-transpose

• Proper dependency / cancel management

Leverage MPPA memory hierarchy

• SMEM directly accessible from coprocessor

• Memory load stream aligment operations

Arithmetic performances

• 128x INT8→INT32 MAC/cycle

• 64x INT16→INT64 MAC/cycle

• 16x FP16→FP32 FMA/cycle

Page 63 ©2018 – Kalray SA All Rights Reserved

C
O

R
E

C

o
-P

ro
ce

ss
o

r

SMEM

256-bit

256-bit

Register
File

Vector
Register File

Execution
Units

Basic Linear
Algebra Unit

256-bit

Control

MPPA3® Tensor Coprocessor Matrix Operations

• INT16 to INT64 convolutions:

(4x4)int16 . (4x4)int16 += (4x4)int64

16x DP4-ADD → 64 MAC/cycle

• INT8 to INT32 convolutions

(4x8)int8 . (8x4)int8 += (4x4)int32

16x DP8-ADD → 128 MAC/cycle

Page 64 ©2018 – Kalray SA All Rights Reserved

AxB += C AxB += C

KONIC80, MPPA®-256 Bostan PCIe Board

Features

• 80GbE (2x40GbE, 8x10GbE) full duplex, line rate

• PCIe Gen3 16-lanes providing a throughput of up
to 128Gbps Full duplex

• 2,500 instructions per packet @240Mpps

• 256 C/C++ programmable cores

• 1 TOPS

• Low-power/20W typical

• 40MB on-chip memory + 5MB caches

• 2x 4GB DDR3

• Dedicated HW for packet acquisition,
classification and emission

• True Random Number Generator (TRNG)

• 128 Crypto Co-Processors for 80Gbps full-duplex
MACSec, IPSec and SSL offload

 Software

 OpenDataPlane SDK

 Virtualization Offload

 VXLAN, NVGRE, GENEVE, TRILL

 OVS offload

 Storage virtualization

 iSCSI termination

 virtio storage interfaces

 Kernel-bypass

 DPDK, ODP, socket

Page 65 ©2018 – Kalray SA All Rights Reserved

AB06 Board for MPPA® Bostan and MPPA® Coolidge

The MPPA® processor is mounted on a
SOM (System on Module) mezzanine
board with DDR, PCIe, Ethernet, CAN

An optional host CPU SOM (x86, ARMv8)
can be plugged on the other side

Page 66 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 67 ©2018 – Kalray SA All Rights Reserved

Page 68

Cohesive Coding Environment

• All cores implement the same Instruction Set Architecture (ISA)

Open Standards Programming

• Supports C, C++, OpenMP 3, OpenCL 1.2 programming models

Software Development Tools

• Eclipse, GCC, GDB, LLVM, Trace, etc.

Operating Systems

• Linux kernel and I/O drivers on I/O clusters
• Lightweight POSIX OS on compute clusters

Tools & Libraries

• Code generator for deep learning inference
• Optimized BLAS and FFT libraries

AccessCore™ Software Development Kit

©2018 – Kalray SA All Rights Reserved

OPEN

SOFTWARE

&

TOOLS

MPPA® Embedded Platform Roadmap

Hard Real-Time

(high-integrity)

Soft Real-Time

(time-predictable)

Best Effort

(high-performance)

OpenMP

OpenCL

OpenVX

BLAS, FFT, CV

Deep Learning

Model-based with

time

SCADE (+ Asterios)

(Simulink + LET)

mOS mOS

Embedded Linux

(PREEMPT RT)

Cluster OS Kalray

(PikeOS Sysgo)

SCADE Esterel Tech.

(Asterios Krono-Safe)

OSEK/VDX eSOL

(POSIX FreeRTOS)

POSIX PSE52 with

usage domain

restrictions

©2018 – Kalray SA All Rights Reserved Page 69

OpenCL 1.2 on the MPPA Platform

Pag
e 70

©2018 – Kalray SA All

Rights Reserved

Difference between GPGPUs and manycore processors based on CPUs or DSPs

• No core hardware multithreading for automatic overlapping of memory latencies

• Significant benefits from direct communication between Work Groups (non-standard)

- Avoid using the external memory (Global Memory) for data transfers

From TI KeyStone ‘Optimization Techniques for Device (DSP) Code’

• Prefer Kernels with 1 work-item per work-group (DSP seen as one Compute Unit)

• Use async_work_group_copy and async_work_group_strided_copy

- “it is almost always better to write the values to a local buffer and then copy that local buffer back to a
global buffer using the OpenCL async_work_group_copy function”

On the MPPA, extend the standard OpenCL asynchronous copies

• OpenCL asynchronous copies are restricted to dense local memory accesses

• Need to provide enough local memory => 1 Work Group per Cluster preferred

• Extensions for 2D/3D accesses in global memory (done on ST P2012 OpenCL)

OpenCL Issues on a CPU-Based Manycore Processor

Page 71 ©2018 – Kalray SA All Rights Reserved

Parts of standard OpenCL that are useful on
a CPU-based manycore processor

• Host program allocates global buffers, creates
executable kernels, and dispatches work in
queues

• Kernel invocation with a user-defined argument
list, which distinguishes between local and
global objects

OpenCL extensions required for CPU-based
manycore processors

• Kernel code in standard C/C++/OpenMP and/or
assembly language

• Kernel code with classic CPU multi-threading [TI’s
“OpenMP Dispatch With OpenCL” on KeyStone-II]

• Kernel code that accesses the local memory of
other Compute Units

OpenCL Data-Parallel and Task-Parallel+POSIX

Page 72 ©2018 – Kalray SA All Rights Reserved

Inspired by HPC clusters one-sided communication & synchronization

• Cray SHMEM, ORNL ARMCI, Berkeley GasNet, MPI-3 one-sided subset

• Cannot directly reuse these libraries because of the MPPA architecture

Asynchronous remote data transfers

• Put (remote write) and Get (remote read) operations with data reshaping

• All data transfer operations return immediadely to caller

• An event structure can be used to wait/test for local completion

MPPA Asynchronous Operations Principles (1)

Page 74 ©2018 – Kalray SA All Rights Reserved

Point-to-point synchronization operations

• Remote fence (global completion), peek, poke, post-add, fetch-clear, fetch-add

• Locally, wait for the comparison between a local variable and a value to be true

• No busy waiting, only lock-free data structures

Remote queues N to 1 (Rqueues)

• Push on a remote queue-like memory segment, with atomicity if possible

• Classic distributed synchronization primitive, foundation of active messages

MPPA Asynchronous Operations Principles (3)

Page 75 ©2017 – Kalray SA All Rights Reserved

MPPA Asynchronous Operations API Overview

Dense Transfers

• mppa_async_get

• mppa_async_put

• mppa_async_get_spaced

• mppa_async_put_spaced

• mppa_async_get_indexed

• mppa_async_put_indexed

Sparse Transfers

• mppa_async_sget_spaced

• mppa_async_sput_spaced

• mppa_async_sget_blocked2d

• mppa_async_sput_blocked2d

• mppa_async_sget_blocked3d

• mppa_async_sput_blocked3d

Asynchronous Events

• mppa_async_event_wait

• mppa_async_event_test

Global Synchronization

• mppa_async_fence

• mppa_async_peek

• mppa_async_poke

• mppa_async_postadd

• mppa_async_fetchclear

• mppa_async_fetchadd

• mppa_async_evalcond

Remote queues

• mppa_async_enqueue

• mppa_async_dequeue

Page 76 ©2018 – Kalray SA All Rights Reserved

Example extracted from a tiled matrix multiply algorithm

• Inner loop is first converted to a dense Put (mppa_async_put)

• Outer loop is then converted to a sparse Put (mppa_async_sput_spaced)

• Use of blocking calls (last Put parameter is NULL instead of event pointer)

Illustration of Code Transformations for Put/Get

Page 77 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 78 ©2018 – Kalray SA All Rights Reserved

Safety-critical control-command applications

• Model-based programming using SCADE Suite® from Esterel Technologies

• Complemented with static timing analysis of binary code (aiT from AbsInt)

• Retargeting of the formally proven bug-free CompCert C99 compiler

Motivations for multicore and manycore execution

• Distribute the compute load across cores and reduce memory interferences

• Effective implementation of multi-rate harmonic applications

• Envision use of fast Model Predictive Control (MPC) techniques

SCADE Code Generation for the MPPA®

Page 79 ©2018 – Kalray SA All Rights Reserved

Example of SCADE Suite Program

Page 80 ©2018 – Kalray SA All Rights Reserved

Dependencies represented by wires.

Group several operator instances in “parallel subsets”

• Parallel subsets can be nested

• Compiler verifies that parallel subset are dependence-free

• Instances of the same subset can be in different operators (if they end up in the same
unexpanded operator)

• Each instance in a subset may be executed on a different “thread”

Partitioning is captured using user annotations

• Scade model is unchanged

• Occurrence pragma beginning by the prefix “#par_”

• The suffix is the identifier of the parallel subset

• Textual & graphical format

SCADE Suite Program Input Model

 o1, o2 = #par_SetName MyNode(i1, i2, i3);

Page 81 ©2018 – Kalray SA All Rights Reserved

Rely on OpenMP 2.5 features

• One parallel region for each parallel subset

• Task parallelism (omp section) for operators

• Data parallelism (omp for) for iterators

Dynamic thread scheduling

• The OpenMP runtime is provided by the
C/C++ compiler (GCC)

KCG OpenMP Code Generation

function imported N1(i:int32) returns (o:int32);
function imported N2(i:int32) returns (o:int32);
function imported N3(idx : int32) returns (o:int32);

function root(i1,i2:int32) returns (z:int32)
var x,y:int32; a:int32^10;
let
 x = #par_1 N1(i1);
 y = #par_1 N2(i2);
 a = (#par_1 mapi N3 <<10>>)();
 z = x + y + a[0];
tel

void root(inC_root *inC,
 outC_root *outC)
{
 array_int32_10 a;
 kcg_size idx;
 kcg_int32 x,y;

 /* par_1 */
 #pragma omp parallel
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 x = N1(inC->i1);

 #pragma omp section
 y = N2(inC->i2);
 }

 #pragma omp for nowait
 for (idx = 0; idx < 10; idx++) {
 a[idx] = N3((kcg_int32) idx);
 }
 }
 outC->z = x + y + a[0];
}

Page 82 ©2018 – Kalray SA All Rights Reserved

Overview

• Generate tasks that communicate with one-to-one channels (KPN)

- One task for the root operator

- One task for each instance of operator in a parallel subset

• Developed in the setting of the ITEA3 ASSUME project

- Also support AbsInt aiT and INRIA CompCert targeting to MPPA® cores

Properties

• Target agnostic: KCG uses macros for all target operations

• Instantiated for the Pthread and the MPPA Low-Level ‘bare’ runtime

• Code generation is independent from the allocation of tasks

KCG Task-Based Code Generation

void N_worker()
{
 recv(in_channel, i); // receive inputs
 o = N(i); // call operator
 send(out_channel, o); // send outputs
}

Page 83 ©2018 – Kalray SA All Rights Reserved

SCADE Workflow for the MPPA® Bostan Processor

ANSYS

• Modified the KCG compiler

Kalray

• Defined the C macros for targeting the Low Level
programming APIs

• Interprets a mapping file

Target

• A single compute cluster

• I/O is memory-mapped

SCADE Model

KCG

SCADE → MPPA code generator

XML .c

PE 0 PE 1 PE 15 ...

Configuration XML

(mapping on PEs)

WCET

Page 84 ©2018 – Kalray SA All Rights Reserved

One memory bank per PE core

• Determined by a linker map and
section attributes in code/data

• Non-interfering memory accesses
except for channels

Communication interference

• Remote write policy for channel data:
multicast to successors

Managing Local Memory Interference

Task N1

Task N2

Task N3

PE 1

PE 2

PE 3

Task N4

Task N5

Task N6 PE 4

Task N7

Page 85 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 86 ©2018 – Kalray SA All Rights Reserved

The science and engineering of creating intelligent machines. (John McCarthy, 1956)

• Machine Learning (ML): Field of study that gives computers the ability to learn
without being explicitly programmed (Arthur Samuel, 1959)

• Deep Learning (DL): Allows computational models that are composed of
multiple processing layers to learn representations of data with multiple levels
of abstraction (Yann Le Cun et al., 2015)

• Convolutional Neural Networks (CNN): Most filtering operations performed
by feature maps are discrete convolutions

Artificial Intelligence

Page 87 ©2018 – Kalray SA All Rights Reserved

Training: Learning part– Off-line – Millions of data (images, sounds, …) – FP32

Inference: Classification / Recognition / Detection– On-line / Real time – FP16 / INT8

Machine Learning Steps

Page 88 ©2018 – Kalray SA All Rights Reserved

R-CNN, Fast & Faster R-CNN (Girshick & Ren, 2014-
2016)

Page 89 ©2018 – Kalray SA All Rights Reserved

Regional CNN and improvements use two steps for object detection

1) Proposal of candidate regions (initially by sementation, then by neural computing)

2) Classification of candidate regions (neural computing and refinment steps)

YOLO v1-3 « You Only Look Once » (Redmon 2016-2018)

Page 90 ©2018 – Kalray SA All Rights Reserved

Single-step method (contrairement aux « R-CNN »)

• Input image is processed only once by the network

• Approximate localization of small objects in clusters

KaNN: Kalray CNN Inference Code Generator

KaNN
Optimizer

KaNN
Code Generator

MPPA® platform

Video Sources Output /Display

KaNN

INPUT DATA
• Camera
• Images
• Lidar

RESULTS
• Classification
• Segmentation

Trained
Neural Network

Import
Model

Deploy
Runtime

Page 91 ©2018 – Kalray SA All Rights Reserved

Page 92 ©2017 – Kalray SA All Rights Reserved

NxN convolutions decomposed as accumulations of N2 1x1 convolutions

• 1x1 convolutions can be computed in parallel and accumulated in any order

• Pixels layout is sequential along depth (channels) for dense memory accesses

CNN Inference on a MPPA® Processor (1)
st

ri
d

e

stride

𝑝1
1 ⋯ 𝑝1

𝑑2
′

⋮ ⋱ ⋮

𝑝𝑑1
1 ⋯ 𝑝𝑑1

𝑑2
′

𝑝1
1 ⋯ 𝑝1

𝑑2

⋮ ⋱ ⋮

𝑝𝑑1
1 ⋯ 𝑝𝑑1

𝑑2

Page 93

Partition images across clusters, splitting along spatial and/or depth dimensions

• Spatial dimension splitting requires that the full set of parameters be loaded from external memory

• Channel dimension splittig requires access to the whole input image and a subset of the parameters

• NoC multicasting of parameters fosters spatial dimension splitting except for small dimensions (e.g. FC)

CNN Inference on a MPPA® Processor (2)

©2017 – Kalray SA All Rights Reserved

3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡] 3 3 𝑑𝑖𝑛 [𝑑𝑜𝑢𝑡/4]

Page 94 ©2017 – Kalray SA All Rights Reserved

Process layers sequentially, distributing computations across all available clusters

Each cluster local memory stores a tile + shadow region of the previous layer

Compute the current layer in 3 steps to overlap with shadow region transfers

CNN Inference on a MPPA® Processor (3)

Step 1

Step 2

Step 3

Initial results

stored into the

output layer

Intermediate

results added to

step 1 results and

stored into the

output layer

Final results

added to step 2

results and

stored into the

output layer

Part of the convolution

computed at this step

Neurons being processed

by the compute cluster

Neurons being transfered

from neighbours compute

clusters

Page 95 ©2017 – Kalray SA All Rights Reserved

Build a buffer allocation and task execution schedule in cluster memory to overlap
parameter transfers from external memory with computations on local memory

Allocation and scheduling are performed on the CNN network, considering an image
correspond to pre and post tasks, and computations correspond to a malleable task

On MPPA® processors, parameter loading from DDR leverages NoC multicasting

CNN Inference on a MPPA® Processor (4)

Page 96

For layers where images do not fit on-chip, stream sub-tiles from DDR memory

• All clusters remote write their tile of output image to DDR memory, then enter a synchronization barrier

• After clusters leave the barrier, they pipeline the remote read from DDR / operate / put to DDR of sub-tiles

• Larger sub-tiles factor more control overhead but reduce the amount of pipelining

CNN Inference on a MPPA® Processor (5)

©2017 – Kalray SA All Rights Reserved

post

operation

parameters

get

post

get

operation

get

post

operation

Input image in DDR

Sub-tile

Tile

Page 97 ©2017 – Kalray SA All Rights Reserved

Exécution de réseaux multiple par partitionnement spatial du MPPA

Multiple CNN Inferences on the MPPA®-80 Coolidge

Division sur 5

tuiles

Couche du CNN0

Couche du CNN1
Couche du CNN2 MPPA3®-80 Coolidge

Tuile 3 Tuile 4

Tuile 0

Tuile 1

Tuile 2

Page 98

0

50

100

150

200

250

AlexNet (FPS) SqueezeNet 1.0 (FPS) SqueezeNet 1.1 (FPS) GooLeNet (FPS)

Intel CPU i5 2.7 GHz

Embedded GPU 1GHz

MPPA Bostan 600 MHz

MPPA® Bostan vs CPU & GPU on CNN Inference

©2016 – Kalray SA All Rights Reserved

MPPA®: A PROCESSOR FOR DEEP LEARNING

51

77

100

2500

3000

6000

20nm GPU *

BOSTAN*

@ 600MHz (28nm)

16nm GPU *

12nm GPU **

COOLIDGE 80**

@ 600Mhz (16nm)

COOLIDGE 80**

@ 1200MHz (16nm)

GoogleNet
(Frame per second)

MPPA processors are especially well-suited for
efficient deep learning and computer vision

• Specific Co-processor for Vision and Learning

- 16-bits floats for more than 3 TFLOPS

- 8-bits fixed point for up to 6TFLOPS

• High on chip memory bandwidth 300GB/s to
store data closer to the compute units

• Fast and direct communication between clusters
and chip for faster communication between
layers

Page 99 ©2018 – Kalray SA All Rights Reserved

(*) Measurement
(**) Estimation

Page 100

Bostan
@500MHz

Coolidge-80 v1
@1.2 GHz

Coolidge-80 v2
@1.2 GHz

GoogleNet 65 fps (FP32)*
1500 fps (INT16)**
3000 fps (INT8)**

3000 fps (INT16)**
6000 fps (INT8)**

SqueezeNet 1.1 218 fps (FP32)*
4950 fps (INT16)**
9900 fps (INT8)**

9900 fps (INT16)**
19800 fps (INT8)**

SqueezeNet 1.0 106 fps (FP32)*
2610 fps (INT16)**
5220 fps (INT8)**

5220 fps (INT16)**
10440 fps (INT8)**

VGG-16 7 fps (FP32)*
180 fps (INT16)**
360 fps (INT8)**

360 fps (INT16)**
720 fps (INT8)**

ResNet-50 35 fps (FP32)*
870 fps (INT16)**
1740 fps (INT8)**

1740 fps (INT16)**
3480 fps (INT8)**

MPPA® DEEP LEARNING PERFORMANCES

©2018 – Kalray SA All Rights Reserved

(*) Measurements of computing on MPPA®
(**) Estimation based on simulation and results from Bostan

KaNN Integration into
3rd Party Autonomous Software Platforms

MPPA Processing Perception of

BAIDU Apollo

MPPA Processing Perception of

Autoware

Page 101 ©2018 – Kalray SA All Rights Reserved

Presentation

Manycore Processors

Manycore Programming

Symmetric Parallel Models

Untimed Dataflow Models

Kalray MPPA® Hardware

Kalray MPPA® Software

Model-Based Programming

Deep Learning Inference

Conclusions

Outline

Page 102 ©2018 – Kalray SA All Rights Reserved

Consolidating the MPPA® Eco-System

Page 103 ©2018 – Kalray SA All Rights Reserved

BLAS

OpenVX express a graph of image operations (‘Nodes’)

• Nodes can be run on any hardware or processor and coded in any
language

Graph-based computing enables implementations to
optimize for power and performance

• Nodes may be fused by the implementation to eliminate memory
transfers

• Processing can be tiled to keep data entirely in local memory/cache

Minimizes host interaction during frame-rate graph
execution

Khronos OpenVX for Computational Imaging

Page 104 ©2018 – Kalray SA All Rights Reserved

Build and check the Single-Rate Directed Acyclic Graph

• No multi-writer on outputs

• No unconnected image buffers

• At least one user input and output

Detect kernel fusion opportunities on virtual images

• Pairwise grouping of adjacent nodes

• Local memory capacity constraints

• Kernel dependency pattern

• Edge type (real or virtual)

Code generation for SPMD execution

• Topological sort scheduling of nodes

• Build allocation plan for local memory buffers

• Select commands for tiling/skewing runtime engines

Kalray OpenVX Compilation Workflow

Page 105 ©2018 – Kalray SA All Rights Reserved

Kalray OpenVX N-Buffering Tiling Engine

Page 106 ©2018 – Kalray SA All Rights Reserved

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Automated kernel fusion in MPPA2® OpenVX environment

MPPA2® Bostan Performances on OpenVX

Page 107 ©2018 – Kalray SA All Rights Reserved

Page 108

The MPPA® manycore architecture excels on standard CNN inference

• Not only on performance, but also on energy efficiency and time-predictability

• The key is to exploit the high-bandwidth local memory shared by cores in a cluster

• This is achieved by the KaNN code generation tool working from standard frameworks

Techniques applied by the KaNN code generator are generalized

• KaNN extensions to 8-bit/16-bit fixed-point inference as supported by standard frameworks
(TensorFlow gemmlowp, Caffe Ristretto)

• OpenVX framework for MPPA® processors to be released in 2019

Standard OpenCL environment must be extended

• OpenCL Task Parallel mode extensions to support C/C++, pthreads & OpenMP, and
asynchronous one-sided operations between Compute Units (MPPA® compute clusters)

Model-based execution environments

• Model-based environments (SCADE, Simulink) unlocks use of manycore processors

• Further developments that combine SCADE Suite (Esterel) and Asterios (Krono-Safe)

Conclusions and Perspectives

©2017 – Kalray SA All Rights Reserved

MPPA® Technology

SAFETY SECURITY DETERMINISM PERFORMANCE STANDARDS

• Hardware
partitioning

• Software
partitioning

• Hypervisor
support

• ISO26262 ASIL B/C

• Hardware root of
trust

• Secure boot

• Authenticated
debug

• Trusted execution
environment

• Encrypted
application code

• Fully timing
compositional cores

• Banked on-chip
memory

• Interference-free
local interconnect

• Network-on-Chip
(NoC) service
guarantees

• High-end floating-
point and bit-level
processing

• DSP-style energy
efficiency

• Scalability by
replicating clusters

• Standard
programming
environments
(C/C++, OpenMP,
POSIX, OpenCL,
OpenVX)

• Standard
development tools
(Eclipse, GCC, GDB,
LLVM, Linux)

Page 109 ©2018 – Kalray SA All Rights Reserved

SCALABLE

• Adaptability to E/E architecture

• Low range to high range car lines

• Allow distribution of functions

KALRAY S.A. - GRENOBLE - FRANCE

180 avenue de l’Europe,

38 330 Montbonnot - France

Tel: +33 (0)4 76 18 09 18

email: info@kalray.eu

KALRAY INC. - LOS ALTOS - USA

4962 El Camino Real

Los Altos, CA - USA

Tel: +1 (650) 469 3729

email: info@kalrayinc.com

MPPA, ACCESSCORE and the Kalray logo are trademarks or registered trademarks of Kalray in

various countries. All trademarks, service marks, and trade names are the marks of the respective

owner(s), and any unauthorized use thereof is strictly prohibited. All terms and prices are indicative

and subject to any modification without notice.

mailto:info@kalray.eu
mailto:info@kalrayinc.com

