IN2P3 contributions to the Japanese neutrino program: T2K, T2K-II, Super-K and Hyper-K

Claudio Giganti
for the LLR and LPNHE neutrino groups

IN2P3 Scientific Council - 28/06/2018

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

 θ_{13} and δ_{CP} unknown

Atmospheric (SK, K2K, Minos) $\rightarrow \theta_{23}$, Δm_{32}

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Phys.Rev.Lett. 107 (2011) 041801

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

Phys.Rev.Lett. 112 (2014) no.18, 181801

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance $(\theta_{13}\neq 0@2.5\sigma)$

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Hints of CP violation $\rightarrow \sin(\delta_{CP})=0$ excluded at 95%

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

Phys.Rev.Lett. 112 (2014) no.18, 181801

M. Wascko, Neutrino 2018

IN2P3 groups join T2K

T2K starts data taking

Take data in $\overline{\nu}$ -mode

LLR joins Super-K

T2K phase-II + ND280 upgrade

Start of Hyper-K

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

2036

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Observation of ν_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Precise measurement of θ_{23} , Δm^2_{32}

Hints of CP violation $\rightarrow \sin(\delta_{CP})=0$ excluded at 95%

CP violation @3σ

Phys.Rev.Lett. 107 (2011) 041801

Phys.Rev.Lett. 112 (2014) 061802

Phys.Rev.Lett. 112 (2014) no.18, 181801

M. Wascko, Neutrino 2018

- CP violation at >3σ → >5σ with Hyper-K
- Mass ordering
- * sin²θ₂₃ octant
- * And many ν and $\bar{\nu}$ crosssection measurements

IN2P3 groups in T2K

FTE* (including students and postdocs)

	T2K+T2K-II	NA61	Wagasci	SK	НК
LLR	3.0	0	2.0	3.5	0.5
LPNHE	4.0	1.0	0	0	1.0

*as of today

- Main responsibilities:
 - Convener of T2K beam group
 - NA61/SHINE analysis coordinator
 - Convener of T2K oscillation analysis
 - * 2 conveners of CC-0π cross-section group
 - Convener of INGRID and Wagasci
 - * 7 PhD theses defended since 2009, 4 PhD theses on-going

The T2K experiment

- High intensity ~600 MeV ν_μ beam produced at J-PARC (Tokai, Japan)
- Neutrinos detected at the Near Detectors (INGRID+ND280) and at the Far Detector (Super-Kamiokande) 295 km from J-PARC
- Can run in ν or $\bar{\nu}$ mode by changing horn polarity
- Main physics goals:
 - Observation of v_e and $\overline{v_e}$ appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of v_{μ} (\overline{v}_{μ}) disappearance $\rightarrow \theta_{23}$ and Δm^2_{32}

Sensitivity to oscillation parameters

- $P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$
 - Test of CPT conservation
 - * Measure $\sin^2(2\theta_{23}) \rightarrow$ weak sensitivity to the octant
 - Measure |∆m²₂₃| → cannot distinguish NO and IO
- $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
 - * Sensitive to CP violation (δ_{CP})
 - * Sensitive to octant of $sin^2(\theta_{23})$
 - * Sensitive to matter effects (hierarchy) → weak in T2K since L is (relatively) short

T2K goals: asure v_{\parallel} and \overline{v}_{\parallel}

measure v_{μ} and \overline{v}_{μ} disappearance and v_{e} and \overline{v}_{e} appearance probabilities

Near Detectors

INGRID: vital detector to monitor ν beam profile and direction during data taking Measure ν cross-sections

LLR: full design of the detector

WAGASCI + BabyMIND

First T2K upgrade (part of T2K since 2018)

Measure ν and $\bar{\nu}$ cross-sections on water

LLR: full design of mechanics and DAQ

ND280 off-axis: detectors installed in
the UAI/NOMAD magnet (0.2 T)
Fundamental input to T2K OA
2 Fine Grained Detectors → active
target for v interactions
3 Time Projection Chambers to measure
charge, momentum and PID of leptons
emitted in v interactions
LPNHE contributed to magnet and TPC
electronics

Super-Kamiokande

- 50 kton Water Cherenkov detector
 - * ~11000 PMTs for ID, ~2000 for OD
- 1000 m underground at Kamioka mine operated since 1996
- Very good PID capabilities to distinguish between $ν_e$ and $ν_μ$ thanks to shape of Cherenkov ring → <1% misidentification probability

Data taking

POT total: 3.16 x 10²¹

 $\bar{\nu}$ -mode 1.65 x 10²¹ (52.17%)

- * Collected 3.16x10²¹ protons on target (half ν and half $\bar{\nu}$)
 - ~40% of approved p.o.t.
- * Reached ~500 kW beam power
- Stability of the beam rate and direction over the whole data taking period measured by INGRID

T2K oscillation analysis

Flux prediction:

Proton beam measurement Hadron production (NA61 and others external data) Prediction at the Far Detector:
Combine flux, cross section
and ND280 to predict the
expected events at SK

ND280 measurements: ν_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Extract oscillation parameters!

Neutrino interactions:
Cross-section models
External data (Minerva,
MiniBooNE, ...)

SK measurements: Select CC ν_{μ} , $\overline{\nu}_{\mu}$, ν_{e} , $\overline{\nu}_{e}$ candidates after the oscillations

Flux uncertainties: NA61/SHINE

- Multipurpose detector @ CERN →
 precision hadron production
 measurements for T2K (and FNAL)
 neutrino fluxes predictions
- Took data for T2K in 2007, 2009,
 2010 with thin and replica target
- Thin target data already used → 10% uncertainties on neutrino fluxes
- Inclusion of 2010 data with replica target will allow to reduce flux uncertainties to ~5% level

ND280

- * Select 14 samples of ν_{μ} and $\overline{\nu}_{\mu}$ interactions on Carbon and Water with 0,1,>1 π in the final state
- Likelihood fit to constraint flux and cross-section uncertainties for T2K Oscillation Analysis
- Reduce uncertainties from ~15% to ~5%

Flux uncertainties

Cross-sectionuncertainties

ND280 cross-sections

- * 14 papers published for measurements of ν and $\bar{\nu}$ crosssections @ND280
- * Example of CC0π analysis with reconstructed protons in the final state (LPNHE,LLR)
- * Extract cross-section in 4-dimensional (P_μ, θ_μ, P_p, θ_p)
- Look for single transverse variables sensitive to nuclear effects

arXiv:1802.05078 submitted to PRD

Super-K

µ-like v-mode

	Dete	MC expected Number of events				
	Data	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =+π/2	δ _{СР} =π	
ν-mode μ-like	243	268.5	268.2	268.5	268.9	
$ar{ u}$ -mode μ -like	102	95.5	95.3	95.5	95.8	
ν-mode e-like	75	73.8	61.6	50.0	62.2	
⊽-mode e-like	9	11.8	13.4	14.9	13.2	
ν-mode e-like+1π	15	6.9	6.0	4.9	5.8	

To be updated with full run9 stat during Summer (50% more data in $\overline{\nu}$ mode)

e-like v-mode

e-like v-mode

Systematics

	1R μ-like		1R e-like		
	ν -mode	$ar{ u}$ -mode	ν -mode	$ar{ u}$ -mode	ν-mode (+1π)
SK detector	2.4 %	2.0%	2.8%	3.8%	13.1%
SK FSI+SI+PN	2.2%	2.0%	3.0%	2.3%	11.4%
ND280 flux & cross-section	2.9%	2.7%	3.0%	2.9%	3.8%
Binding energy	2.4%	1.7%	7.2%	3.0%	3.7%
$\sigma(\nu_e)/\sigma(\nu_\mu)$	<0.05 %	<0.05 %	2.6%	1.5%	2.6%
Neutral currents	0.3%	0.3%	1.1%	2.6%	1.0%
Total	4.9%	4.3%	8.8%	7.0%	18.3%

- Binding energy is treated as an effective parameter not fitted with ND280 → will be reduced in next round of analysis
- Contributions from flux and cross-section constrained by ND280
- SK detector and FSI+SI uncertainties (not constrained by ND280)
- Only use ν_μ selection at ND280 → uncertainties due to possible ν_e/ν_μ cross-section (theoretical uncertainties)

Oscillation results

- * T2K alone and T2K+reactor both prefer values of δ_{CP}~-π/2
- Normal ordering is also favoured

	$\sin^2\theta_{23}$ <0.5	sin²θ _{23>} 0.5	SUM	
NO (Δm ² 32>0)	20,4 %	68,4 %	88,8 %	
IO (∆m²₃1<0)	2,3 %	8,9 %	11,2 %	
SUM	22,7 %	77,3 %	100 %	

The future

- Long Baseline Experiments are leading techniques to measure several oscillation parameters (δ_{CP} , θ_{23} , mass ordering)
- Next generation of LBL (DUNE, Hyper-K) will not come online before 2026
- T2K and NOvA will be the leading experiments for the next 8-10 years
- Let's get the best from them!

T2K phase II

- ◆ T2K was originally approved to collect 7.8x10²¹ pot
 - Driven by sensitivity to θ₁₃
- Proposal for an extended run
 - **◆** T2K-II → 20x10²¹ pot
- Upgrade the Main Ring power supply to reach 1.3 MW operations

 v_e : 460 events ± 20% (δ_{CP} and ordering) \overline{v}_e : 130 events ± 13% (δ_{CP} and ordering)

- \Rightarrow >3σ measurement of CP violation (if δ_{CP} close to - π /2)
- ◆ Need to reduce systematics to ~4% (<3% from ND280)</p>

- Main limitation of ND280: reduced angular acceptance → only forward going muons are selected with high efficiency
- An analysis dedicated to select tracks with high polar angles allow to select 20% of the events in that region
- We can do better with an upgrade!

ND280 upgrade

CERN-SPSC-P357

- Replace upstream part of ND280 with an horizontal fully active target (SuperFGD) and 2 horizontal TPCs
- * This will allow to select μ and e at any angle with respect to the beam
- Proposal submitted to CERN SPSC in 2017
- * Test beam in Summer 2018 @ CERN

2017	2018	2019	2020	2021
Proposal	Prototypes, TDR	Construction	Construction	Installation

Upgrade performances

Parameters	Reduction of uncertainties by		
Neutrino fluxes	20 %		
$\sigma_{\nu}(CCQE/2p2h)$	25—40%		
FSI	45 %		
$\sigma_{\nu}(Q^2 \text{ dependent})$	25 %		

 Low momentum threshold and full angular coverage → much better sample to study nuclear effects

Super-FGD

LLR electronics developed for Calice

- 2 ton target with 1x1x1 cm cubes read by 3 fibers
- Total of 60-80k channels read with MPPC
- Proposal from LLR to read the MPPCs with ~2000 SPIROC2E chips (ADC and TDC)
- Front End Boards on the detector
- CALICE DAQ already used for WAGASCI
- Proposal from LLR being discussed within the T2K collaboration → total cost ~600
 k€ + request for an electronic engineer

Horizontal TPCs

- * Equipped with new resistive MicroMegas (8x2x2 modules)
- LPNHE will provide front end electronics boards to read existing AFTER chips (total
 of ~80 boards will be built) and cooling→ the lab already provided necessary ITA
- * A mechanical engineer to study detectors integration in the basket has also been allocated to the project
- * Total cost ~200 k€ (including cooling and mechanical support)

Conclusions

- T2K has been a very successful experiment
 - Discovery of electron neutrino appearance
 - * World best measurement of sin²θ₂₃
 - First hints of CP violation
- * T2K-II will be one of the two leading LBL experiments until ~2026
- We propose to participate to an upgrade of the Near Detector in order to reduce systematics and fully profit of the additional statistics
- NA61/SHINE data taking after LS2 has been recommended by the SPSC for accelerator neutrino experiments → we expect to participate at similar level
- Coherent scientific program over the next 20 years with no interruption in data taking and exceptional discovery potential