Scintillateurs & détecteurs de lumière

Jean Peyré

CSNSM (Centre de Sciences Nucléaires et de Sciences de la Matière) CNRS-IN2P3-Université Paris Sud (Paris-Saclay)

91405 Orsay, France Tél. : +33 1 69 15 52 43 Fax : +33 1 69 15 50 08 http://www.csnsm.in2p3.fr

Jean.Peyre@csnsm.in2p3.fr

Scintillateurs & détecteurs de lumière

Sommaire

- I Introduction
- II Les scintillateurs inorganiques
- III Les scintillateurs organiques
- V Collection de lumière
- VI- Conversion de lumière VI_a - Lecture par Photomultiplicateurs VI_b - Lecture par Photodiodes

VII – Réponse d'un détecteur en fonction de sa taille

Jean Peyré

VIII – Les Différentes étapes de la conception d'un détecteur

I - Introduction

Ionisation & scintillation

dépasser les frontières

Caractéristiques Générales

Ensembles toujours composés d'au moins:

- 1/ Scintillateur
- 2/ détecteur de lumière ou "photo-détecteur"

Scintillateurs

utilisés à l'état liquide

II - Les scintillateurs inorganiques

Pour les scintillateurs inorganiques, la luminescence est essentiellement une **propriété** cristalline. Il y a deux groupes de scintillateurs inorganiques : les scintillateurs activés et les scintillateurs intrinsèques

les scintillateurs activés - NaI(TI), CsI(Na), LaBr₃(Ce), ...

La luminescence est produite par de **faibles quantités d'impuretés** introduites dans le réseau cristallin. Malheureusement, il n'est pas possible de prédire théoriquement les propriétés de luminescence d'un tel cristal. Par contre, il existe quelques ions qui produisent de la luminescence dans de nombreuses liaisons.

Le Thallium, le Cerium, le Sodium sont des impuretés couramment introduites. Les propriétés de luminescence de ces impuretés dépendront également de la nature du cristal dans lequel elles ont été introduites.

les scintillateurs intrinsèques - BGO, CsI, BaF₂, ...

Pour certains matériaux, il n'est **pas** nécessaire d'introduire des **impuretés** pour produire de la luminescence. Par contre, pour les cristaux purs, la luminescence peut être soit une propriété du réseau cristallin idéal, soit produite par des défauts du réseau qui jouent alors le rôle d'activateurs.

Mécanisme de scintillation

Pour les scintillateurs inorganiques, le mécanisme de scintillation est déterminé par la structure électronique en bande du réseau cristallin

1/ Excitation créée par une particule ionisante permet de faire passer un e⁻ dans la bande de conduction,

2/ Outre la formation de paires é-trous libres, des paires faiblement liées appelées excitons sont également créées.

3/ Les paires é-trous libres et les excitons peuvent migrer librement dans le cristal et être capturés par des impuretés (ionisation d'un atome d'impureté)

4/ Recombinaison: émission de lumière ou transformation en chaleur

5/ Piégeage possible ("afterglow")

dépasser les frontières

1. fluorescence

 \Rightarrow durée de vie courte -> scintillation

2. phosphorescence

⇒ durée de vie plus longue -> "afterglow"

Défauts : lacunes, ions en position interstitielle,...

création d'états métastables : pièges

3. Transition non radiative : transformation en chaleur dans le réseau (« quenching »)

Exemple : **pour le NaI(TI), 11% de l'énergie absorbée** dans le scintillateur est convertie en photons par désactivation d'un état excité de l'activateur (rendement énergétique de conversion).

$E = h\nu; \quad \lambda\nu = c$ Mécanisme de scintillation

$$= \frac{hc}{\lambda} \begin{cases} c = 299\,792\,458\,m/s \ (vitesse\ lumière\ dans\ le\ vide) \\ h = 6,626 \times 10^{-34}\,J.s\ (cste\ Planck) \\ E = \acute{e}nergie\ en\ J \\ \lambda = longueur\ d'onde\ en\ m \\ v = fr\acute{e}quence\ en\ Hz \end{cases}$$

$$E(eV) = \frac{1240}{\lambda(nm)}$$

Exemple du NaI

Gap:
$$Eg = 7,5 \ eV \rightarrow \lambda \cong 165 \ nm$$

- Détection de ces photons **pas** facile
- **Absorption** de cette longueur d'onde par l'iodure de sodium

UV						Visible						IR		
	200		300		400		500		600		700	٤	300	Longueur d'onde (nm)
12			5	4		3				2		Energie photon (eV)		

E

Mécanisme de scintillation Exemple du NaI(TI)

• Activateur : par exemple 10⁻³ mole de thallium

dépasser les frontières

CITS

Propriétés principales												
	\frown							\frown				
	LaBr ₃	LaCl₃	Nal(TI)	CsI(TI)	Csl(Na)	BGO	-YSC	PWO	Csl(pure)			
Density (g/cm³)	5.29	3.86	3.67	4.51	4.51	7.13	7.10	8.29	4.51			
Light Output (ph/MeV)	63,000	49,000	39,000	52,000	45,000	9000	32,000	100	16,800			
<u>ДЕ/Е</u> (FWHM)	<3%	3.5%	7%	6%	7.5%	10%	7.1%	>10%	7.5%			
@662keV APE	N/A	N/A	3.8%	4.9 %	N/A	8.3%	N/A	N/A	4.3%			
Peak λ (nm)	380	350 430	310 <i>fast</i> 415	550	420	480	420	420	315			
Fast Decay (ns)	25	25/213	620 <i>fast</i> 230	1000	630	300	41	6	35/6			
Hygroscopic	yes	yes	yes	slightly	yes	no	no	no	slightly			
Cost (per cm ³)	\$30) \$30 (\$2	\$4.50	\$4.50	\$9)\$25	\$2	\$4.50			
Radiation lenght (cm)	N/A	N/A	2.9	1.86	1.86	1.1	1.2	0.85	1.86			

 Ordres de grandeur, dépendent fortement du volume total, des quantités et formes des cristaux

Pic du ¹³⁷Cs à 662 keV

Cristaux LaBr₃(Ce) & NaI(Tl)

réponse en énergie

réponse en énergie

réponse en énergie

Non-proportionnalité du LaBr3 comparé au NaI(Tl) (Doc. Saint-Gobain)

Résolution en énergie

- Pour avoir des détecteurs de bonne résolution en énergie, il est important d'avoir un cristal à haut rendement lumineux, une bonne Efficacité Quantique du PM, et une Collection de lumière optimisé.
- Quoi qu'il en soit le facteur limitant reste la résolution en énergie intrinsèque. (Un exemple typique est la comparaison entre LSO et BGO: ils fournissent la même résolution en énergie à 662keV même si le LSO a 4 fois plus de lumière que le BGO).
- Cela signifie que le cristal doit fournir non seulement le <u>rendement</u> <u>lumineux élevé</u>, mais aussi un bon niveau de <u>proportionnalité</u>.

Réponses spectrales

Figure 8-7 The emission spectra of several common inorganic scintillators. Also shown are the response curves for two widely used photocathodes. (Primarily from *Scintillation Phosphor Catalog*, The Harshaw Chemical Company. The emission spectrum for BGO is from Ref. 55.)

Variations par rapport à la température

III - Les scintillateurs organiques

Les scintillateurs organiques

- Moins chers que les inorganiques
- Composés de C et de H (faible n° atomique moyen, bas Z)
- La scintillation a pour origine la désexcitation des électrons libres de valence de ces molécules organiques. Ces électrons ne sont associés à aucun atome particulier et occupent les "orbites moléculaires dites π".
- A contrario, les scintillateurs inorganiques se désexcitent et donnent de la lumière en particulier grâce à la présence du réseau cristallin.

1. Spectrométrie γ

- 2. Comptage X et γ (effet Compton) -> détecteurs de grande surface
- **3. Spectrométrie** β
- 4. haute efficacité pour la détection de **neutrons** par réaction (n,p)

Les scintillateurs organiques

- 1. Excitation de S_0 vers S_1 , S_2 ou S_3 .
- 2. Désexcitation rapide (pS) par transition interne non radiative de S_1 , S_2 ou S_3 vers S_{10}
- 3. Emission de lumière par fluorescence ($\tau \approx nS$) par désexcitation de S₁₀ vers un des états de vibration moléculaire de S₀. Il peut aussi y avoir des phénomènes de "quenching" (transformation en chaleur sans émission de lumière)
- 4. **Ou** Emission de lumière par phosphorescence ($\tau \approx mS$) par désexcitation de T₁₀ vers un des états de vibration moléculaire de S₀ suite à une transition inter-système non radiative. De loin la moins probable......

Réponses spectrales

Schéma de fonctionnement d'un compteur à scintillation D'après technologie des compteurs à scintillation L. Thornill CERN

Schéma de fonctionnement d'un compteur à scintillation D'après technologie des compteurs à scintillation L. Thornill CERN

Scintillateur plastique & son guide

Exemple: 8 "Octants" de l'Expérience G0 au Jefferson Laboratory (USA)

Exemple: 8 "Octants" de l'Expérience G0 au Jefferson Laboratory (USA)

Champ magnétique (8 secteurs)

> 16 paires Scintillateur (BC 408)

VI - Conversion de lumière

VI_a - Lecture par Photomultiplicateurs

Photo-détecteurs: Photomultiplicateurs

CINIS

Le Photomultiplicateur (PM) est composé de:

d'une photocathode qui effectue la conversion du flux de photons incidents en un flux d'électrons par effet photoélectrique.

 d'une optique d'entrée constituée d'une ou de plusieurs électrodes de focalisation et d'une électrode accélératrice. L'optique d'entrée est destinée à concentrer tous les électrons issus de la photocathode sur la première électrode du photomultiplicateur.

Queusot d'un **multiplicateur d'électrons** formé d'une succession d'électrodes appelées dynodes, lesquelles multiplient en cascade le nombre des électrons pénétrant dans le photomultiplicateur.

enfin, d'une anode chargée de recueillir le flux d'électrons issu de la dernière dynode du photomultiplicateur et sur laquelle est prélevé le signal de sortie.

- **G** Gain: M dynodes, $g_1 \sim 10$, $g_2 \ldots g_M \sim 2$ à 3 Gain $\uparrow 10^7$
- **QE**: efficacité quantique (20 à 40%@400nm)
- **CE**: efficacité de collection 1ere dynode > 80%
- $N_{photons}$: nb de photons arrivant sur la photocathode
- **q**_e: 1,6 x 10⁻¹⁹ C

Charge en sortie de photomultiplicateur:

$$Q_{tot} = N_{photons}.QE.CE.G.q_e$$

dénasser les frontières

- Les photomultiplicateurs sont sensibles au champ magnétique,

même au champ magnétique terrestre (qques Gauss) -> blindage

Jean Peyré

Μ

G =

Transmission de la fenêtre d'entrée

Documentation Hamamatsu

WAVELENGTH (nm)

TPMOB0076EB

UV					Visibl		IR		
200	3	00	400	500	600	700	800	Longueur d'onde (nm)	
12		2	4	3	2		Energie pho	Energie photon (eV)	

Réponse spectrale photocathode

Figure 4: Typical Spectral Response of Bialkali Photocathode

Documentation Hamamatsu

$$QE = \frac{N_{p.e.}}{N_{photons}} = \frac{S \times 124}{\lambda}$$

QE: Efficacité Quantique en %

S: sensibilité de la photocathode en **mA/W**

 λ : Longueur d'onde en **nm**

 $N_{photons}$. Nombre de photons qui arrivent sur la photocathode

N_{pe}: Nombre d'électrons extraits de la photocathode

les photocathodes sont souvent des composés de césium et d'antimoine. La surface des dynodes peut être recouverte soit de composés d'argent et de magnésium, soit de césium et d'antimoine.

P.45

TPMHB0342ED

Réponse spectrale photocathodes versus scintillateurs

Documentation Hamamatsu

VI_b - Lecture par Photodiodes

Photodiode

- Même principe qu'un détecteur à semi-conducteur
- Sensible des UV au proche IR (photomultiplicateur très limité au delà de 500 nm)
- Insensible au champ magnétique (contrairement au photomultiplicateur)
- Signal de sortie plus faible que les photomultiplicateurs (donc moins performant pour les faibles énergies)

Avantage : bonne efficacité quantique (QE) Inconvénient : gain de 1

Photodiode à avalanche (APD)

Operating principle of APD

L'APD a du gain

Generated carriers produce new electronhole pairs while being accelerated by high electric field. Ionization

Newly generated carriers are also accelerated to produce further electron-hole pairs, and this process repeats itself. Avalanche multiplication

Gain proportional to the applied reverse bias voltage can be obtained.

KAPDC0006EC

Documentation Hamamatsu

Photodiode à avalanche (APD)

Caractéristiques spectrales type Hamamatsu S8664-1010 APD

APD:

Surface active 100mm²

Photodiode à avalanche (APD)

SiPM – APD Multipixels en mode Geiger

Autres noms : MPPC...

dépasser les frontières

3x3 mm²

SiPM – APD Multipixels en mode Geiger

Number of photons

Pulse waveform when using an amplifier (120 times)

Time

Pulse height spectrum when using charge amplifier (S10362-11-025U, M=2.75 × 105)

Number of photons

KAPDB0133EA

SiPM – APD Multipixels en mode Geiger

Photodiode & APD

Photodiode & APD

- **QE**: efficacité quantique (~80%@400nm)
- **N**_{photons}: nb de photons arrivant sur la photodiode
- **G**: Gain de la photodiode (G=1 pour photodiode et G>1 pour APD)
- **q**_e: 1,6 x 10⁻¹⁹ C

Charge en sortie de photodiode:

$$Q_{tot} = N_{photons}.QE.G.q_e$$

<u>SiPM</u>

- PDE: Photon detection efficiency (~35% à 75% @ 450nm)

=**QE** × **Fill_factor** × **Avalanche probability**

Charge en sortie de SiPM:

$$Q_{tot} = N_{photons}.PDE.G.q_e$$

Les photodiodes ne sont pas sensibles au champ magnétique

- **G** Gain: M dynodes, $g_1 \sim 10$, $g_2 \ldots g_M \sim 2$ à 3 Gain $\uparrow 10^7$
- **QE**: efficacité quantique (20 à 40%@400nm)
- **CE**: efficacité de collection 1ere dynode > 80%
- $N_{photons}$: nb de photons arrivant sur la photocathode
- **q**_e: 1,6 x 10⁻¹⁹ C

Charge en sortie de photomultiplicateur:

$$Q_{tot} = N_{photons}.QE.CE.G.q_e$$

dénasser les frontières

- Les photomultiplicateurs sont sensibles au champ magnétique,

même au champ magnétique terrestre (qques Gauss) -> blindage

Jean Peyré

VII – Réponse d'un détecteur aux photons en fonction de la taille

Les interactions en jeu

Scintillateurs

Coefficients d'atténuation linéaires comparés

Fig. 7.13. Gamma-ray absorption coefficients for Nal and NE102A plastic scintillator. Note the difference in the relative magnitudes of the photoelectric and Compton cross sections

Cn

Détecteurs au Germanium Détection de photons

Coefficients d'atténuation dans le Germanium

Détecteurs Détection de photons

Ci

Détecteurs Détection de photons

CIII

Détecteurs Détection de photons

Cargèse 2019

CI

Effet des matériaux environnants

Pic du ¹³⁷Cs à 662 keV

PMT + Cristal NaI(TI)

Le détecteur ALICE

Le détecteur RICH d'ALICE

Jean Peyré

ALICE HMPID

- Le HMPID d'ALICE au LHC (High Momentum Particle Identification) est composé de 7 détecteurs identiques de type RICH (Ring Imaging Cherenkov) de 1.5x1.5 m²de surface chacun. Ce sera le plus grand détecteur de ce type utilisant des éléments photosensibles au CsI.
- Un compteur RICH se compose de deux éléments principaux: le "radiateur" où une faible lumière, appelée rayonnement Cherenkov, est produite par les particules chargées se déplacent plus vite que la lumière à travers le milieu du radiateur, et la "détecteur de photons", où cette lumière est convertie en un signal électrique. Le rayonnement Cherenkov est émis à un angle proportionnel à la vitesse des particules, tout autour de la trajectoire de particules, formant ainsi un "cône" de lumière. Par conséquent, lorsque la particule est perpendiculaire au plan du détecteur de photons, l'image détectée qui en résulte est un cercle.

http://alice-hmpid.web.cern.ch/alice-hmpid/

v = 0

v = 0

v = 0

 $\boldsymbol{v} = \boldsymbol{0}$

 $\boldsymbol{v} = \boldsymbol{0}$

 $v < \frac{c}{n}$

$v < \frac{c}{n}$

 $v < \frac{c}{n}$

 $v = \frac{c}{n}$

 $v = \frac{c}{n}$

 $v = \frac{c}{n}$

$$v=\frac{c}{n}$$

Flash de lumière Comparable au passage du mur du son

Jean Peyré

 $v > \frac{c}{n}$

 $v > \frac{c}{n}$

 $v > \frac{c}{n}$

dépasser les frontières

CINC

- Les cônes de lumière sont visualisés en convertissant le rayonnement Cherenkov au moyen d'un détecteur gazeux employant des centaines de fils très fins (Chambre multi-fils proportionnelle) et une matière photosensible: un film mince d'iodure de césium (CsI) déposé sur une électrode plane segmenté en plaques.
- Le film de Csl convertit les photons Cherenkov en photoélectrons; à son tour, la chambre à fils détecte ces photoélectrons produisant un signal électrique sur les plaques. La chambre à fils se compose d'un plan de fils de diamètre 20 µm (avec un pas de 4mm) et deux plans de fils de diamètre 100 µm (avec un pas de 2 et 4 mm respectivement).

Jean Peyré

http://alice-hmpid.web.cern.ch/alice-hmpid/

http://alice-hmpid.web.cern.ch/alice-hmpid/

